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1 Computational Hardness of Learning

Today we will talk about some computational hardness results for learning. Generally speaking,
there are two different types of such results. The first focus on the concept class (or representation)
used by the learning algorithm. For example, given a labeled sample S, how hard is it to find a
consistent h ∈ C whenever one exists? Or, given a labeled sample S, how hard is it to find the
h ∈ C of minimum empirical error (especially if there is no h ∈ C whose empirical error is 0)? The
second type of result focuses on the intrinsic difficulty of prediction. For example, given access to
data from some distribution D labeled by some target c∗ ∈ C, how hard is it to find a prediction
rule h of error at most, say, 1/4 when we do not require that h ∈ C and only require that it be
some polynomial-time procedure?

The first type of hardness is often called “representation-dependent” hardness, or hardness of
“proper learning”. The second type is often called “representation-independent” hardness, or hard-
ness of “improper learning”.

2 Representation-dependent hardness

We’ve seen that the consistency problem can be efficiently solved for linear threshold functions
(using linear programming) and for disjunctions (using a simple list-and-cross-off algorithm). How
about for the intersection of 2 halfspaces, i.e., the AND of two linear threshold functions, or for
a 2-clause CNF, i.e., the AND of two disjunctions? These consistency problems turn out to be
NP-hard.

2.1 Hardness for learning an intersection of two halfspaces

Let’s consider the intersection of two halfspaces. We will prove that solving the consistency problem
is NP-hard by performing a reduction from the NP-hard problem “hypergraph 2-coloring”. First
of all, what is the hypergraph 2-coloring problem? Here you are given a hypergraph, which is just
a set V of n nodes (call them 1, 2, . . . , n) and m subsets s1, s2, . . . , sm ⊆ V which are sometimes
called “hyperedges”. Your goal is to give each node a color, Red or Blue, such that no subset sj

is monochromatic. That is, every Sj has at least one Red node and at least one Blue node. This
problem is NP-hard.

To perform our reduction, we want to create a set S of positive and negative examples in Rn (in
fact, they will be in {0, 1}n) such that the set S is consistent with an intersection of two halfspaces
(i.e., an AND of two linear threshold functions) if and only if the given instance of hypergraph
2-coloring has a solution. We can do this as follows.

1. First, we label the origin as positive.
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2. Next, for each coordinate i, we label the unit vector ei (having a 1 in coordinate i and a 0 in
all other coordinates) as negative.

3. Finally, for each set sj we label the indicator-vector for that set (having a 1 in coordinate i
for each i ∈ sj and a 0 in the rest) as positive.

Claim 1 The labeled examples produced by this reduction are consistent with an intersection of
two halfspaces (i.e., an AND of two linear threshold functions) if and only if the given instance of
hypergraph 2-coloring has a solution.

Proof: First, suppose the labeled examples are consistent with the AND of two linear threshold
functions. For each negative example: if threshold 1 says negative, color its associated node Red;
if threshold 2 says negative, color its associated node Blue. (For points on the negative side of
both, their associated nodes can be colored anything). We claim this is a legal solution to the given
hypergraph 2-coloring instance. The reason is that suppose some set sj had all its nodes the same
color, say Red. Let’s look at the Red LTF: w1x1 + w2x2 + . . . + wnxn ≤ w0, where w0 ≥ 0 since
the origin is positive. For each i ∈ sj , we know wi > w0 since ei is negative. But this means that∑

i∈sj
wi > |sj |w0, and this in turn is ≥ w0 since w0 ≥ 0. So, this means the indicator vector for sj

would be mistakenly labeled as negative, a contradiction.

In the other direction, suppose you are given a solution to the hypergraph 2-coloring instance.
Then just create the “Red” LTF w1x1 + . . . wnxn ≤ 1/2 where wi = 1 if i is Red and wi = −n if i
is Blue, and create the “Blue” LTF w′

1x1 + . . . w′
nxn ≤ 1/2 where w′

i = 1 if i is Blue and w′
i = −n

if i is Red. Each negative example ei is correctly separated from the origin by one of the two LTFs
(Red points separated by the Red LTF and Blue points by the Blue LTF). But each of the positives
will be correctly classified since the large −n value will counteract any number of +1 values of the
other color, and each set has at least one element of each color.

2.2 Hardness for learning an AND of two OR-functions (2-clause CNF)

We saw we could easily learn a single OR function, like x1 ∨ x3 ∨ x5. How about an AND of two
OR functions, like (x1 ∨ x3 ∨ x5) ∧ (x2 ∨ x4 ∨ x6)? This turns out to be NP-hard. These are called
“2-clause CNF formulas”.

To make things easier to think about, let’s define our class of interest C to be the class of monotone
2-clause CNFs; i.e., no variables are negated.

Claim 2 The consistency problem for monotone 2-clause CNF is NP-complete.

Proof: We can do a reduction from hypergraph 2-coloring just like before. For each i = 1, 2, . . . , n
create the negative example ei (with xi = 1 and the rest of the features set to 0). Notice that this
implies that no variable can be in both clauses. Next, for each set sj we label the indicator vector
for sj as positive.

Let’s think about what this means. Suppose we have a consistent 2-clause CNF. Create a coloring
where variables in clause 1 are the red nodes, variables in clause 2 are the blue nodes, and nodes
whose variables are not in either clause can be either color (recall that no variable is in both clauses).
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This will be a legal coloring since the fact that the indicator vector for sj is positive means that
sj must have at least one feature set to 1 inside each clause (to make their AND be positive). In
the other direction, given a legal coloring, we just create one clause for each. This will correctly
output negative on the negatives and correctly output positive on the positives.

What about the non-monotone case? Actually, the above reduction still works (assuming n ≥ 3).
In particular, if there exists a consistent 2-clause CNF at all, it will have to be monotone. The
reason is that if some x̄i is in clause 1, then clause 2 can’t have any x̄j (else ek will be positive for
k 6∈ {i, j}) and clause 2 can’t have any xj for j 6= i (else ej would be positive). So the only option
for clause 2 is to equal xi. But ANDing clause 1 with xi is the same as just removing x̄i from clause
1.

2.3 Learning 2-clause CNF using 2-DNF

Interestingly, you can learn 2-clause CNF formulas using the class of 2-DNF formulas (an OR of
ANDs where each AND is of size at most 2). The reason is that (a) any 2-clause CNF can be written
as a 2-term DNF by just distributing out the AND, and (b) you can learn 2-DNF in polynomial
time and O(n2/ε) examples by reduction to learning a single OR function.

Interestingly, no similar trick is known for an intersection of 2 halfspaces.

2.4 Hardness of finding the LTF of minimum empirical error

We know that we can find a single LTF consistent with the data when one exists. However, when
there is no consistent LTF, the problem of finding the LTF of minimum empirical error is NP-hard.

We can show this using a very similar reduction, based on the Maximum Independent Set problem
in graphs. Given a graph G = (V,E), an independent set is a set of nodes having no edges between
them. Finding the maximum independent set in a graph is NP-hard.

We can do a reduction by using the same idea as before. For sake of intuition, let’s flip signs this
time. Specifically, the origin will be negative, each coordinate unit vector ei will be positive, and
then for each edge (i, j) in the graph, we will make the indicator vector for that edge negative.
Notice that the maximum independent set in G is exactly the largest set of positive examples that
can be separated from all the negatives. In other words, imagine you are not allowed to make
mistakes on any negative examples and you goal is to get as many positive examples correct as
possible. Specifically, if S is an independent set, then the associated LTF is

w1x1 + . . . + wnxn ≥ 1/2

where we set wi = 1 if i ∈ S and wi = −1 if i 6∈ S. Notice that this guarantees that for each edge
(i, j), the example x corresponding to that edge has w · x ≤ 0. In the other direction, if we have
an LTF w1x1 + . . . + wnxn ≥ w0, where w0 > 0, and we let S = {i : wi ≥ w0}, then this has to be
an independent set, because if wi ≥ w0 and wj ≥ w0 then wi + wj ≥ 2w0 ≥ w0, so there can’t be a
negative example in the indicator vector for that pair.

Now, what about minimizing empirical error, i.e., you are allowed to make mistakes of both kinds?
To address this, we just replicate each negative example enough times (more than the total number
positive examples) so that even making a mistake on a single negative example would be suboptimal.
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3 Representation-independent hardness

We now consider hardness results that do not depend on the form of the hypotheses used by the
learning algorithm. Specifically, our goal is to say that the class C contains functions that are
so “complicated” that for some distributions D, no polynomial-time algorithm can predict much
better than just random guessing.

3.1 Cryptographic assumptions

A classic cryptographic result is that if factoring is hard, then one can create functions f called
pseudorandom generators (PRGs) with the following properties. First of all f is a function from
{0, 1}n to {0, 1}m where m > n. An algorithm A is said to “break” f if

| Pr
v∈{0,1}m

[A(v) = 1]− Pr
x∈{0,1}n

[A(f(x)) = 1]| ≥ 1/poly(n).

In other words, A can (at least slightly) distinguish the a random m-bit string from the result of
running f on a random n-bit string. Now the claim is that given an n-bit number N , for any
m = poly(n), one can create such a function f such that if f can be broken by a polynomial-time
algorithm A, then this gives a polynomial-time algorithm for factoring N . (Formally, there is a
general efficient procedure for creating such functions fN from any given N).

It turns out one can use such constructions to show that learning DFAs (finite automata) is hard,
under the assumption that factoring is hard.1 Specifically, if you could learn an n-state DFA to
error less than 1/4 (say), with at most nk samples and polynomial time, then you could get a
polynomial-time factoring algorithm. Here is the idea. Let m = 10nk, and suppose we are given
a string of m bits b1b2 · · · bm and need to decide if it’s truly random or is the output of a PRG
f on a random input of size n. What we’ll do is create a probability distribution that is uniform
over m = 10nk examples x1, x2, . . . , xm (chosen in a specifc way that I won’t get into), where
the label of xi is bi. If b1b2 · · · bm is truly random, then there’s no way an algorithm from only
nk = m/10 samples will be able to get to error rate 1/4. The best it could hope to do is have error
rate 9

10
1
2 = 9

20 > 1
4 . However, if b1b2 · · · bm is the result of running a PRG from some appropriate

construction,2 the claim is there exists an n-state DFA that can compute the bi from the xi and so
our algorithm has to get error at most 1/4. So our algorithm can break the PRG.

To make this all work, one has to show there are PRGs that are “simple” enough that the ith bit
can be computed from the xi using a DFA. This is discussed in the Kearns-Vazirani book.

3.2 Modern results using hardness of refuting random CSPs

Recently there has been a development of strong representation-independent hardness results for
classes we encounter much more commonly in machine learning, based on the presumed difficulty of
refuting certain kinds of random constraint satisfaction problems (CSPs). Here is a brief summary
of a result of [2] on hardness for agnostic learning of linear separators.

1You can view a DFA as a Boolean function: given an input string x, we feed it into the DFA and output “positive”
if the DFA accepts the string and “negative” if the DFA rejects the string.

2Technically, this will be a PRG on an input of size n′ such that n = poly(n′), but that’s fine since we still have
m = poly(n′).
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First, the claim is that under an appropriate hardness assumption (described below), for any
constant c, there is no polynomial-time algorithm that given a sample S of nc points in {−1, 1}n,
can in general whp distinguish (a) the case that labels are just uniform random coin flips from (b)
the case that there exists a linear separator of error at most 10%. (You can replace “10%” with
any constant greater than 0). So, this is a pretty strong hardness claim.

The assumption used to achieve this result is that “refuting random k-XOR formulas” is hard. A
k-XOR formula is an AND of XORs, where XORs are allowed to be negated too. For instance, a
2-XOR might look like:

(x1 ⊕ x3) ∧ (x2 ⊕ x3) ∧ ¬(x1 ⊕ x3) ∧ . . . .

It is easy to find a satisfying assignment to such a formula if one exists, using Gaussian elimination.
However, if there is no satisfying assignment, finding the one that satisfies as many of the XORs
as possible is NP-hard. What the assumption states is that for m ≤ n

√
k log k, it is in fact hard

to distinguish the case (a) of a random k-XOR formula of m constraints from (b) a formula of m
k-XOR constraints that has an assignment satisfying at least 90% of the constraints.

A few notes about this:

1. A random formula of m ≥ n/ε2 k-XOR constraints will with high probability have the prop-
erty that no assignment satisfies more than a 1

2 + ε fraction of the constraints. We can see
this as follows. Fix an assignment x and then draw the m constraints at random (each se-
lected by picking k variables at random, along with randomly choosing to negate the XOR or
not). Each constraint is satisfied by x with probability 1/2, independently, so by Hoeffding
bounds, the probability that the specific assignment x satisfies more than a 1

2 + ε fraction
of the constraints is at most e−2mε2 . By the union bound, the chance that any assignment
satisfies more than this many is at most 2ne−2mε2 ≤ 2ne−2n < e−n = o(1).

2. There were earlier results based on the assumption that this task was hard for other kind of
constraint satisfaction problems, some of which were recently broken (i.e., shown not to be
hard) by [1].

3. For the k-XOR problem, the best known polynomial-time algorithm requires m = Ω(nk/2) to
solve the distinguishing problem.
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