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1 Concentration Inequalities (Tail Inequalities)

Recall our concentration inequalities from last time.

Consider a coin of bias p flipped m times. Let S be the number of observed number of heads. So
E[S/m] = p.

Hoeffding bounds state that for any e € [0, 1],
1. Pr[% >pte < e2m<* and

2. Pr[2 <p—¢ < em2me,

Chernoff bounds state that under the same conditions,
L. Pr[% > p(1+¢€)] < e /3 and

2. Pr[2 < p(1—¢)] < emmpe’/2,

2 The Non-realizable Case

So far, we have been assuming the target function belongs to the class C. In general, the target
function might not be in the class of functions we consider. Formally, in the non-realizable or
agnostic passive supervised learning setting, we assume that the input to a learning algorithm is a
set S of labeled examples S = {(z1,91),- .., (Tm,ym)}. We assume that these examples are drawn
i.i.d. from some fixed but unknown distribution D over the the instance space X and that they
are labeled by some target concept c¢*. So y; = ¢*(x;). However, ¢* might not belong to C. The
goal is just as in the realizable case to do optimization over the given sample S in order to find a
hypothesis h : X — {0,1} of low error over whole distribution D. The error of h is defined as

err(h) = Pr (h(z) £ ¢ (2)).

We denote by
errs(h) = Pr (h(z) # ¢ (z))

the empirical error over the sample. Our goal is to compete with the best function (the function
of smallest true error rate) in some concept class C.

A natural hope is that picking a concept ¢ with a small observed error rate gives us small true error
rate. It is therefore useful to find a relationship between observed error rate for a sample and the
true error rate.

We now present sample complexity guarantees for the non-realizable case, where we will use Ho-
effding and Chernoff bounds to extend the results we previously showed for the realizable case.



2.1 Simple sample complexity results for finite hypotheses spaces

We can use the Hoeffding bounds to show the following:

Theorem 1 Let C be a finite hypothesis space. Let D be an arbitrary, fized unknown probability
distribution over X and let ¢* be an arbitrary unknown target function. For any e, § > 0, if we
draw a sample S from D of size

m> o (mele) +1 ().

then probability at least (1 — ), all hypotheses h in C have

lerr(h) —errg(h)| < e. (1)

Proof: Let us fix a hypothesis h. By Hoeffding, we get that the probability that its observed error
within € of its true error is at most 2¢~2m<* < §/|C|. By union bound over all all A in C, we then
get the desired result. N

Note: A statement of type one is called a uniform convergence result. It implies that the hypoth-
esis that minimizes the empirical error rate will be very close in generalization error to the best
hypothesis in the class. In particular if h = argminyccerrg(h) we have err(lAz) < err(h*) + 2e,
where h* is a hypothesis of smallest true error rate.

Note: The sample size grows quadratically with 1/e. Recall that the learning sample size in the
realizable (PAC) case grew only linearly with 1/e.

Note: Another way to write the bound in Theorem 1 is as follows:

For any €, § > 0, if we draw a sample from D of size m then with probability at least 1 — 4, all
hypotheses h in C have

In(2|C]) +In (%)

2m

err(h) <errs(h) + J

This is the more “statistical learning theory style” way of writing the same bound.

We can get rid of that pesky €? by relaxing our goal, to say that for hypotheses whose true error is
greater than e, we are satisfied if their observed error comes just within a factor of 2. If you think
about it, this is often all we need since we don’t care so much about the high-error hypotheses.
Now we can use Chernoff bounds.

Theorem 2 Let C be a finite hypothesis space. Let D be an arbitrary, fived unknown probability
distribution over X and let ¢* be an arbitrary unknown target function. For any e, § > 0, if we
draw a sample S from D of size

m > 2(n(C) +In(1/5)

then with probability at least 1 —6, all h € C with err(h) > 2¢ have errs(h) > €, and all h € C with
err(h) < €/2 have errs(h) < e. Thus, if the hypothesis h* of minimum true error has err(h*) < €/2

~

then the hypothesis h of minimum empirical error has err(h) < 2e.



Or, to be analogous to Note 3, given m examples, with probability at least 1 — 4§, all h € C with
err(h) > L21n(2|C|/6) satisfy errg(h) > err(h)/2 and all h € C with err(h) < 2 In(2|C|/d) satisty
errg(h) < £ 1n(2|C|/6).

Proof of Theorem: 1If err(h) = p > 2¢ and we want empirical error at least p/2 > € with confidence
&', we can solve e /8 < § to get that it suffices to have m > %ln(l/é’) (and we can replace p
with 2€). On the other hand, if err(h) = p < €/2, we can rewrite our additive error goal by saying
that we want the observed error to be no more than §(1 + 1), which by Chernoff bounds implies
that m > 91n(1/6’) examples suffice. So, setting &' = §/|C| we get that:

m > 2[in(|C1/5)

examples are sufficient for both conditions of the theorem.

2.2 Sample complexity results for infinite hypothesis spaces

We now consider the case of VC-dimension-based sample complexity for the non-realizable case,
which will apply when |C| may be infinite. Recall that for a class C' and set of examples S =
{z1, -, xm}, we define

C(S) ={(c(@1), -, c(zm));c€C}.

Also, for any natural number m, we consider C [m] to be the maximum number of ways to split m
points using concepts in C, that is

C'lm] = max {|C (5)];[S] =m,5 € X}.
Earlier we proved the following result:

Theorem 3 Let C be an arbitrary hypothesis space. Let D be an arbitrary, fixed unknown proba-
bility distribution over X and let c* be an arbitrary unknown target function. For any e, 6 > 0, if
we draw a sample S from D of size

m > % - |logy (2 - C[2m]) + log, (2)} (2)

then with probability (1 —9), all bad hypothesis in C (with error > e with respect to ¢ and D) are
inconsistent with the data.

For the non-realizable case, the analogous result is as follows:

Theorem 4 Let C be an arbitrary hypothesis space. Let D be an arbitrary, fized unknown proba-
bility distribution over X and let ¢* be an arbitrary unknown target function. For any e, § > 0, if
we draw a sample S from D of size m > (8/¢2)[In(2C[2m]) + In(1/6)] then with probability 1 — 6,
all h in C have |errp(h) — errg(h)| < e.

Proof Sketch: We just need to redo the proof we had for the realizable case using Hoeffding bounds.

Draw 2m examples. Let B be the event that on first m, there exists hypothesis in C' with empirical
and true error that differ by at least e. (This is what we want to bound for the theorem). Let B’ be



the event that there exists a concept in C' whose empirical error on 1st half differs from empirical
error on 2nd half by at least €/2.

For large enough m, we have Pr[B’|B] > 1/2 so Pr[B] < 2 - Pr[B’]. Now we have to show that
Pr[B’] is low.

As before, let’s first pick S, S/, then we do the symmetrization (or swapping). Once S U S’ is
determined, there are only C[2m] hypotheses we need to worry about. Using Hoeffding bounds, we
can show that for any fixed h, S, and $’,

Pr [lerrp(h) — errp(h)] > €/2] < e~ <mi8,

Swap

Performing a union bound over all C'[2m] hypotheses as in Theorem 3, we get the desired result.
|

2.3 Combining with VC-dimension

As in the realizable case, we can apply Sauer’s lemma to get a bound in terms of VC-dimension
that only has m on one side.

Theorem 5 Let C be an arbitrary hypothesis space of VC-dimension d and let D be an arbitrary
unknown probability distribution over the instance space. There exists constant ¢ > 0 such that for
any €, 0 > 0, if we draw a sample S from D of size m satisfying

c 1 1
then with probability at least 1 — 0, all the hypotheses in C' satisfy |errp(h) — errg(h)| < e.

Interestingly, here there are certain tricks that can be used to get rid of the log(1/e) term. See
Anthony and Bartlett [1].

2.4 Sample complexity lower bounds

As in the realizable case, one can also get lower bounds for the sample complexity of learning in
the agnostic case. Let OPT(C') = minpec errp(h).

Theorem 6 Any algorithm for agnostically learning a concept class C of VC' dimension d, that
achieves error at most OPT(C) + € with probability at least 1 — &, must for some constant ¢ > 0

use at least )
c

examples in the worst case.
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