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1 Concentration Inequalities (Tail Inequalities)

Consider a coin of bias p flipped m times. Let S be the number of observed number of heads. So
E[S/m] = p.
Hoeffding bounds state that for any e € [0, 1],

2

L. Pr[% >p+e <e 2 and

2. Pr[% <p—¢ < e 2me,
Chernoff bounds state that under the same conditions,

L. Pr[2 > p(1+¢)] < e=mre’/3 and

2. Pr[2 <p(1—¢)] < emmpe’/2,

Hoeffding bounds and Chernoff bounds are great tools that we will often use in our analyses.

2 Sample Complexity Lower Bounds

Recall that we earlier proved the following theorem:

Theorem 1 Let C' be an arbitrary hypothesis space of VC-dimension d. Let D be an arbitrary
unknown probability distribution over the instance space and let ¢* be an arbitrary unknown target
function. For any €, 6 > 0, if we draw a sample S from D of size m satisfying

w8 o () e (2)].

then with probability at least 1 — &, all the hypotheses in C' with errp(h) > € are inconsistent with
the data, i.e., errs(h) # 0.

So it is possible to PAC-learn a class C' of VC-dimension d with parameters § and € given that the
number of samples m is at least m > ¢ (‘El log% + % log %) where c is a fixed constant. So, as long as
VCdim(C) is finite, it is possible to PAC-learn concepts from C even though |C| might be infinite.
We now show that this sample complexity result is tight within a factor of O(log(1/e)).

Theorem 2 Any algorithm for PAC-learning a concept class of VC dimension d with parameters
€ and § must use Q(L[d +log(1/6)]) examples in the worst case.

€



We will prove here the Q(%) part of the lower bound. The Q(@) part will be in your homework.

Theorem 3 Any algorithm for PAC-learning a concept class of VC dimension d with parameters
€ and 6 < 1/15 must use more than (d — 1)/(64¢€) examples in the worst case.

Proof: Consider a concept class C' with VC dimension d. Let X = {x1,...,24} be shattered by
C. To show a lower bound we construct a particular distribution that forces any PAC algorithm
to take that many examples. The support of this probability distribution is X, so we can assume
WLOG that C' = C(X), so C is a finite class, |C| = 2?. Note that we have arranged things such
that for all possible labelings of the points in X, there is exactly one concept in C' that induces that
labeling. Thus, choosing the target concept uniformly at random from C' is equivalent to flipping
a fair coin d times to determine the labeling induced by ¢ on X.

Let m = (d — 1)/(64¢), and A be an algorithm that uses at most m i.i.d. examples and then
produces a hypothesis h. We need to show that there exist a distribution D on X and a concept
¢ € C such that the err(h) > e with probability at least 1/15.

We first define D independently of A:
p(z1) =1 — 16¢
16€
d—1

p(z2) = p(x3) = -+ =p(xq) =

In the following we assume that S is a random i.i.d sample from D of size m. We want to establish
that there is a c so that Prglerr(h) > € > .

Let X' = {z9,...,24}. For any fixed ¢ € C and hypothesis h, let

err’'(h) = Prlc(z) # h(z) Nz € X'].
For technical reasons, it is easier to prove that Prglerr’(h) > €] > 1/15, which is enough since
err’(h) < err(h).

We pick a random ¢ € C' and show that with positive probability ¢ is hard to learn for A, thereby
showing that there must be some fixed ¢ that is hard to learn for A.

Let us now define the event:
B: S contains less than (d — 1)/2 points in X'.
We have:

Prg[B] > 1/2 (1)
To see this, let Z be the number of points in S that are from X’. Clearly, E[Z] = 16em = (d—1)/4.

We have Prg[B] > 1 —Pr[Z > (d —1)/2] > 1/2, since by Markov’s inequality we have Pr[Z >
(d—-1)/2] <1/2.

We can also show:
Ec.slerr’'(h) | B] > 4e (2)

Let S be the set of points that A gets. Choosing a random c is equivalent to flipping a fair coin
for each point in X to determine its label. Since h is independent of the labeling of X’ — S, the



contribution to err’(h) is expected to be 16¢/(2(d — 1)) for each point in X’ — S. When B occurs,
we have | X’ — S| > (d —1)/2; thus the expected value of err’(h) given B is strictly greater than 4e.

Using (1) and (2) we get a lower bound on E. glerr’(h)].

1
E.slerr'(h)] > %r[B] -Ecglerr’(h) | B] > 3 de = 2e.

So there must exist some ¢* € C such that Eglerr’(h)] > 2e. We take ¢* as the target concept and
show that A is likely to produce a hypothesis with high error rate.

Using the fact that for any h we have err’/(h) < Pr[x € X'] = 16¢ we note that
Egl[err’(h) | err’(h) > €] < 16¢ for any fixed c. (3)

We have:

2¢ < Eglerr'(h)]
= Prglerr’(h) > €| - Eglerr’(h) | err’(h) > €]
+(1 = Prglerr’(h) > €]) - Eglerr’(h) | err’(h) < €].
Next we apply (3) to get
2¢ < Eglerr’(h)] < Prglerr’(h) > €] - 16e + (1 — Prglerr’(h) > ¢€]) - €
= 15ePrglerr’(h) > €] + ¢,
which implies Prglerr’(h) > €] > 1/15, as desired. H

3 Recent results

As mentioned in class, there have been several fairly recent results on the general sample complexity
of learning. First, Auer and Ortner [1] show that Theorem 1 is tight for arbitrary consistent
learners. That is, there exist classes C' and distributions D such that Q(1[dIn(1/e) + In(1/4)])
examples are needed to ensure that every hypothesis h € C with errg(h) = 0 has errp(h) < e,
where d = VCdim(C).

However, Simon [2] shows that for any integer k& > 1 there exist algorithms that require only
O(L[d log®)(1/€) + In(1/6)]) examples to learn to error e with probability 1 — d. Here, we define

log(® (z) = log(log(...log(x))) where the log is iterated k times. The constant hidden by the “O”
depends on k however.
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