1 Concentration Inequalities (Tail Inequalities)

Consider a coin of bias p flipped m times. Let S be the number of observed number of heads. So $\mathbf{E}[S/m] = p$.

Hoeffding bounds state that for any $\epsilon \in [0, 1]$,

1.
$$\Pr[\frac{S}{m} > p + \epsilon] \le e^{-2m\epsilon^2}$$
, and

2.
$$\Pr[\frac{S}{m} .$$

Chernoff bounds state that under the same conditions,

1.
$$\Pr\left[\frac{S}{m} > p(1+\epsilon)\right] \leq e^{-mp\epsilon^2/3}$$
, and

2.
$$\Pr\left[\frac{S}{m} < p(1 - \epsilon)\right] \le e^{-mp\epsilon^2/2}$$
.

Hoeffding bounds and Chernoff bounds are great tools that we will often use in our analyses.

2 Sample Complexity Lower Bounds

Recall that we earlier proved the following theorem:

Theorem 1 Let C be an arbitrary hypothesis space of VC-dimension d. Let D be an arbitrary unknown probability distribution over the instance space and let c^* be an arbitrary unknown target function. For any ϵ , $\delta > 0$, if we draw a sample S from D of size m satisfying

$$m \ge \frac{8}{\epsilon} \left[d \ln \left(\frac{16}{\epsilon} \right) + \ln \left(\frac{2}{\delta} \right) \right].$$

then with probability at least $1 - \delta$, all the hypotheses in C with $err_D(h) > \epsilon$ are inconsistent with the data, i.e., $err_S(h) \neq 0$.

So it is possible to PAC-learn a class C of VC-dimension d with parameters δ and ϵ given that the number of samples m is at least $m \geq c\left(\frac{d}{\epsilon}\log\frac{1}{\epsilon} + \frac{1}{\epsilon}\log\frac{1}{\delta}\right)$ where c is a fixed constant. So, as long as VCdim(C) is finite, it is possible to PAC-learn concepts from C even though |C| might be infinite. We now show that this sample complexity result is tight within a factor of $O(\log(1/\epsilon))$.

Theorem 2 Any algorithm for PAC-learning a concept class of VC dimension d with parameters ϵ and δ must use $\Omega(\frac{1}{\epsilon}[d + \log(1/\delta)])$ examples in the worst case.

We will prove here the $\Omega(\frac{d}{\epsilon})$ part of the lower bound. The $\Omega(\frac{\log 1/\delta}{\epsilon})$ part will be in your homework.

Theorem 3 Any algorithm for PAC-learning a concept class of VC dimension d with parameters ϵ and $\delta \leq 1/15$ must use more than $(d-1)/(64\epsilon)$ examples in the worst case.

Proof: Consider a concept class C with VC dimension d. Let $X = \{x_1, \ldots, x_d\}$ be shattered by C. To show a lower bound we construct a particular distribution that forces any PAC algorithm to take that many examples. The support of this probability distribution is X, so we can assume WLOG that C = C(X), so C is a finite class, $|C| = 2^d$. Note that we have arranged things such that for all possible labelings of the points in X, there is exactly one concept in C that induces that labeling. Thus, choosing the target concept uniformly at random from C is equivalent to flipping a fair coin d times to determine the labeling induced by c on X.

Let $m = (d-1)/(64\epsilon)$, and A be an algorithm that uses at most m i.i.d. examples and then produces a hypothesis h. We need to show that there exist a distribution D on X and a concept $c \in C$ such that the $err(h) > \epsilon$ with probability at least 1/15.

We first define D independently of A:

$$p(x_1) = 1 - 16\epsilon$$

 $p(x_2) = p(x_3) = \dots = p(x_d) = \frac{16\epsilon}{d-1}$

In the following we assume that S is a random i.i.d sample from D of size m. We want to establish that there is a c so that $\Pr_S[err(h) > \epsilon] > \frac{1}{15}$.

Let $X' = \{x_2, \dots, x_d\}$. For any fixed $c \in C$ and hypothesis h, let

$$err'(h) = \Pr[c(x) \neq h(x) \land x \in X'].$$

For technical reasons, it is easier to prove that $\Pr_S[err'(h) > \epsilon] > 1/15$, which is enough since $err'(h) \leq err(h)$.

We pick a random $c \in C$ and show that with positive probability c is hard to learn for A, thereby showing that there must be some fixed c that is hard to learn for A.

Let us now define the event:

B: S contains less than (d-1)/2 points in X'.

We have:

$$\Pr_S[B] \ge 1/2 \tag{1}$$

To see this, let Z be the number of points in S that are from X'. Clearly, $E[Z] = 16\epsilon m = (d-1)/4$. We have $\Pr_S[B] \ge 1 - \Pr[Z \ge (d-1)/2] \ge 1/2$, since by Markov's inequality we have $\Pr[Z \ge (d-1)/2] \le 1/2$.

We can also show:

$$E_{c,S}[err'(h) \mid B] > 4\epsilon$$
 (2)

Let S be the set of points that A gets. Choosing a random c is equivalent to flipping a fair coin for each point in X to determine its label. Since h is independent of the labeling of X' - S, the

contribution to err'(h) is expected to be $16\epsilon/(2(d-1))$ for each point in X'-S. When B occurs, we have |X'-S| > (d-1)/2; thus the expected value of err'(h) given B is strictly greater than 4ϵ . Using (1) and (2) we get a lower bound on $E_{c,S}[err'(h)]$.

$$\operatorname{E}_{c,S}[err'(h)] \ge \Pr_{S}[B] \cdot \operatorname{E}_{c,S}[err'(h) \mid B] > \frac{1}{2} \cdot 4\epsilon = 2\epsilon.$$

So there must exist some $c^* \in C$ such that $E_S[err'(h)] > 2\epsilon$. We take c^* as the target concept and show that A is likely to produce a hypothesis with high error rate.

Using the fact that for any h we have $err'(h) \leq \Pr[x \in X'] = 16\epsilon$ we note that

$$E_S[err'(h) \mid err'(h) > \epsilon] \le 16\epsilon \text{ for any fixed } c.$$
 (3)

We have:

$$2\epsilon < E_S[err'(h)]$$

$$= Pr_S[err'(h) > \epsilon] \cdot E_S[err'(h) \mid err'(h) > \epsilon]$$

$$+ (1 - Pr_S[err'(h) > \epsilon]) \cdot E_S[err'(h) \mid err'(h) < \epsilon].$$

Next we apply (3) to get

$$2\epsilon < E_S[err'(h)] \leq Pr_S[err'(h) > \epsilon] \cdot 16\epsilon + (1 - Pr_S[err'(h) > \epsilon]) \cdot \epsilon$$
$$= 15\epsilon Pr_S[err'(h) > \epsilon] + \epsilon,$$

which implies $\Pr_S[err'(h) > \epsilon] > 1/15$, as desired.

3 Recent results

As mentioned in class, there have been several fairly recent results on the general sample complexity of learning. First, Auer and Ortner [1] show that Theorem 1 is tight for arbitrary consistent learners. That is, there exist classes C and distributions D such that $\Omega(\frac{1}{\epsilon}[d\ln(1/\epsilon) + \ln(1/\delta)])$ examples are needed to ensure that every hypothesis $h \in C$ with $err_S(h) = 0$ has $err_D(h) \leq \epsilon$, where d = VCdim(C).

However, Simon [2] shows that for any integer $k \geq 1$ there exist algorithms that require only $O(\frac{1}{\epsilon}[d\log^{(k)}(1/\epsilon) + \ln(1/\delta)])$ examples to learn to error ϵ with probability $1 - \delta$. Here, we define $\log^{(k)}(x) = \log(\log(\ldots\log(x)))$ where the log is iterated k times. The constant hidden by the "O" depends on k however.

References

- [1] Peter Auer and Ronald Ortner. A new PAC bound for intersection-closed concept classes. *Machine Learning*, 66(2-3):151–163, 2007.
- [2] Hans Ulrich Simon. An almost optimal PAC algorithm. In *Proceedings of The 28th Conference on Learning Theory (COLT)*, pages 1552–1563, 2015.