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Sample complex.
χ

Foundations of Machine Learning 
and Data Science 

Two Core Aspects of Machine Learning

Algorithm Design. How to optimize?

Automatically generate rules that do well on observed data.

Confidence Bounds, Generalization

Confidence for rule effectiveness on future data.

Computation

(Labeled) Data

• E.g.: logistic regression, SVM, Adaboost, etc.
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Today’s focus: Sample Complexity for Supervised 
Classification (Function Approximation)

• PAC (Valiant)
• Statistical Learning Theory (Vapnik)

• Recommended readings: 
Chapter 3 in the KV book.

Supervised Learning
• E.g., which emails are spam and which are important.

• E.g., classify images as man versus women.
Man Women

Not spam
Supervised classification

spam
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Labeled Examples  

PAC/SLT models for Supervised Learning

Learning 
Algorithm

Expert / Oracle

Data 
Source

Alg.outputs

Distribution D on X

c* : X → Y

(x1,c*(x1)),…, (xm,c*(xm))

h : X → Y
x1 > 5

x6 > 2

+1 -1

+1

+

-

+
+
+

-
-

-
-

-

• Algo does optimization over S, find hypothesis ݄.

• Goal:  h has small error over D.

• Algo sees training sample S: (x1,c*(x1)),…, (xm,c*(xm)), xi i.i.d. from D
– labeled examples - drawn i.i.d. from D and labeled by target c*

– labels ∈ {-1,1} - binary classification
h c*

Instance space X

+ +
++

--
--

• Realizable: ܿ∗ ∈  .ܪ

஽ݎݎ݁ ݄ ൌ Pr
௫~	஽

ሺ݄ ݔ ് ܿ∗ሺݔሻሻ

PAC/SLT models for Supervised Learning

• X – feature/instance space; distribution D over X
e.g., X ൌ Rୢ or X ൌ ሼ0,1ሽୢ

Bias: fix hypothesis space H [whose complexity is not too large]

• Agnostic: ܿ∗ “close to” H. 
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• Goal:  h has small error over D.

• Algo sees training sample S: (x1,c*(x1)),…, (xm,c*(xm)), xi i.i.d. from D

Training error: errୗ h ൌ ଵ

୫
∑ I h x୧ ് c∗ x୧୧

True error: errୈ h ൌ Pr
୶~	ୈ

ሺh x ് c∗ሺxሻሻ

• Does optimization over S, find hypothesis ݄ ∈ .ܪ

PAC/SLT models for Supervised Learning

How often ݄ ݔ ് ܿ∗ሺݔሻ over future 
instances drawn at random from D 

• But, can only measure:

How often ݄ ݔ ് ܿ∗ሺݔሻ over training 
instances

Sample complexity: bound ݁ݎݎ஽ ݄ in terms of ݁ݎݎௌ ݄

Sample Complexity for Supervised Learning

Consistent Learner

• Output: Find h in H consistent with the sample (if one exits). 
• Input: S: (x1,c*(x1)),…, (xm,c*(xm))

So, if c∗ ∈ H	and can find consistent fns, then only need this many 
examples to get generalization error ൑ ߳ with prob. ൒ 1 െ ߜ

Probability over different samples of m 
training examples

Bound only logarithmic in |H|, linear in 1/߳
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Sample Complexity for Supervised Learning

Consistent Learner

Example: H is the class of conjunctions over X ൌ 0,1 ୬.

E.g., h ൌ xଵ	xଷxହ or h ൌ xଵ	xଶxସݔଽ

|H| ൌ 3୬

Then ݉ ൒
ଵ

ఢ
݊ ln 3 ൅ ln

ଵ

ఋ
suffice

• Output: Find h in H consistent with the sample (if one exits). 
• Input: S: (x1,c*(x1)),…, (xm,c*(xm))

Sample Complexity for Supervised Learning

Assume k bad hypotheses hଵ, hଶ, … , h୩ with errୈ h୧ ൒ ϵProof
1)  Fix h୧. Prob. h୧ consistent with first training example is

Prob. h୧ consistent with first m training examples is ൑ 1 െ ϵ ୫. 

2) Prob. that at least one ݄௜ consistent with first m training 
examples is

3) Calculate value of m so that H 1 െ ϵ ୫ ൑ δ

3) Use the fact that 1 െ x ൑ eି୶, sufficient to set H 	eି஫୫ ൑ δ

൑ k	 1 െ ϵ ୫ ൑ H 1 െ ϵ ୫.

൑ 1 െ ϵ. 
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Sample Complexity: Finite Hypothesis Spaces
Realizable Case

1) PAC: How many examples suffice to guarantee small error whp. 

2) Statistical Learning Way:

errୈሺhሻ ൑
ଵ

୫
ln	 H ൅ ln

ଵ

ఋ
.

With probability at least 1 െ for all h ,ߜ ∈ H s.t. errୗ h ൌ 0 we have

Supervised Learning: PAC model (Valiant)

• X - instance space, e.g., X ൌ 0,1 ୬ or X ൌ R୬

• Sl={(xi, yi)} - labeled examples drawn i.i.d. from some 
distr. D over X and labeled by some target concept c*

– labels ∈ {-1,1} - binary classification

• Algorithm A PAC-learns concept class H if for any 
target c* in H, any distrib. D over X, any ,  > 0:

- A uses at most poly(n,1/,1/,size(c*)) examples and running 
time.
- With prob. ൒ 1 െ A ,ߜ produces h in H of error at ≤ .
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What if H is infinite?

E.g., linear separators in Rୢ
+
-

+++
--

-
-

-

E.g., intervals on the real line

a b

+- -

E.g., thresholds on the real line
w

+-

Sample Complexity: Infinite Hypothesis Spaces
• H[m] - maximum number of ways to split m points using concepts 

in H; i.e.

B: ∃ h ∈ H with errୗ h ൌ 0 but errୈ h ൒ ϵ.
Rough Idea:

B’: ∃ h ∈ H with errୗ h ൌ 0 but errୗᇱ h ൒ ϵ.

S= {xଵ, xଶ, … , x୫ሽ i.i.d. from D

S’ ={xଵᇱ , … , x௠ᇱ } another i.i.d. “ghost sample” from D

To bound P(B), sufficient to bound P(B’) .

Over B ∪ Bᇱ only H[2m] effective hypotheses left… need randomness 
to bound the prob of a bad event, another symmetrization trick…. 
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Sample Complexity: Infinite Hypothesis Spaces
• H[m] - maximum number of ways to split m points using concepts 

in H; i.e.

Sauer’s Lemma: H m ൌ O m୚େୢ୧୫ ୌ

Effective number of hypotheses
• H[S] – the set of splittings of dataset S using concepts from H.
• H[m] - max number of ways to split m points using concepts in H

H m ൌ max
ୗ ୀ୫

|HሾSሿ|
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Effective number of hypotheses
• H[S] – the set of splittings of dataset S using concepts from H.
• H[m] - max number of ways to split m points using concepts in H

H m ൌ max
ୗ ୀ୫

|HሾSሿ|

E.g., H= Thresholds on the real line

- - - +

In general, if |S|=m (all distinct), |H S | ൌ m ൅ 1 ≪ 2୫

|H S | ൌ 5

- - - -

w
+-

- - + +

- + + +
+ + + +

Hሾmሿ ൑ 2୫

Effective number of hypotheses
• H[S] – the set of splittings of dataset S using concepts from H.
• H[m] - max number of ways to split m points using concepts in H

E.g., H= Intervals on the real line

- - + -

In general, |S|=m (all distinct), H m ൌ ୫ ୫ାଵ	

ଶ
൅ 1 ൌ Oሺmଶሻ ≪ 2୫

- - - -

+- -

There are m+1 possible options for the first part, m left for the second 
part, the order does not matter, so (m choose 2) + 1 (for empty interval).

• H[m] - max number of ways to split m points using concepts in H
H m ൌ max

ୗ ୀ୫
|HሾSሿ| Hሾmሿ ൑ 2୫
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Effective number of hypotheses
• H[S] – the set of splittings of dataset S using concepts from H.
• H[m] - max number of ways to split m points using concepts in H

Definition: H shatters S if |H S | ൌ 2|ௌ|.

H m ൌ max
ୗ ୀ୫

|HሾSሿ| Hሾmሿ ൑ 2୫

Sample Complexity: Infinite Hypothesis Spaces

B: ∃ h ∈ H with errୗ h ൌ 0 but errୈ h ൒ ϵ.
Very Very
Rough Idea:

B’: ∃ h ∈ H with errୗ h ൌ 0 but errୗᇱ h ൒ ϵ.

S= {xଵ, xଶ, … , x୫ሽ i.i.d. from D

S’ ={xଵᇱ , … , x௠ᇱ } another i.i.d. “ghost sample” from D

Claim: To bound P(B), sufficient to bound P(B’) 
.
Over S ∪ Sᇱ only H[2m] effective hypotheses left… but, no randomness left.

• H[m] - max number of ways to split m points using concepts in H

Need randomness to bound the probability of a bad event, another 
symmetrization trick…. 
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Sample Complexity: Infinite Hypothesis Spaces
Realizable Case

• Not too easy to interpret sometimes hard to calculate 
exactly, but can get a good bound using “VC-dimension

• VC-dimension is roughly the point at which H stops looking 
like it contains all functions, so hope for solving for m.

If H m ൌ 2୫, then m ൒ ୫

஫
ሺ… . ሻ 

H[m] - max number of ways to split m points using concepts in H

Sample Complexity: Infinite Hypothesis Spaces

Sauer’s Lemma: H m ൌ O m୚େୢ୧୫ ୌ

H[m] - max number of ways to split m points using concepts in H
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Shattering, VC-dimension

A set of points S is shattered by H is there are hypotheses in H
that split S in all of the 2|ௌ| possible ways, all possible ways of 
classifying points in S are achievable using concepts in H.

Definition:

The VC-dimension of a hypothesis space H is the cardinality of 
the largest set S that can be shattered by H.

Definition:

If arbitrarily large finite sets can be shattered by H, then 
VCdimሺHሻ ൌ ∞

VC-dimension (Vapnik-Chervonenkis dimension)

H shatters S if |H S | ൌ 2|ௌ|.

Shattering, VC-dimension

The VC-dimension of a hypothesis space H is the cardinality of 
the largest set S that can be shattered by H.

Definition:

If arbitrarily large finite sets can be shattered by H, then 
VCdimሺHሻ ൌ ∞

VC-dimension (Vapnik-Chervonenkis dimension)

To show that VC-dimension is d:

– there is no set of d+1 points that can be shattered.
– there exists a set of d points that can be shattered

Fact: If H is finite, then	VCdim	ሺHሻ ൑ log	ሺ|H|ሻ.
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Shattering, VC-dimension

E.g., H= Thresholds on the real line

VCdim H ൌ 1
w

+-

If the VC-dimension is d, that means there exists a set of 
d points that can be shattered, but there is no set of d+1 
points that can be shattered.

E.g., H= Intervals on the real line +- -

+ -

VCdim H ൌ 2

+ - +

Shattering, VC-dimension
If the VC-dimension is d, that means there exists a set of 
d points that can be shattered, but there is no set of d+1 
points that can be shattered.

E.g., H= Union of k intervals on the real line

+- -

VCdim H ൌ 2k

+ - +

+ - + -
…

VCdim H ൏ 2k ൅ 1

VCdim H ൒ 2k             A sample of size 2k shatters 
(treat each pair of points as a 
separate case of intervals) 

+
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E.g., H= linear separators in Rଶ

Shattering, VC-dimension

VCdim H ൒ 3

Shattering, VC-dimension

VCdim H ൏ 4

Case 1: one point inside the triangle formed by 
the others. Cannot label inside point as positive 
and outside points as negative.

Case 2: all points on the boundary (convex hull).  
Cannot label two diagonally as positive and other 
two as negative.

Fact: VCdim of linear separators in Rୢ is d+1

E.g., H= linear separators in Rଶ
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Sauer’s Lemma 
Sauer’s Lemma:

• m ൑ d, then H m ൌ 2୫

Proof: induction on m and d. Cool combinatorial argument!

Hint: try proving it for intervals…

• m>d, then H m ൌ O mௗ

Let d = VCdim(H)

Sample Complexity: Infinite Hypothesis Spaces
Realizable Case

Sauer’s Lemma: H m ൌ O m୚େୢ୧୫ ୌ
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Sample Complexity: Infinite Hypothesis Spaces
Realizable Case

E.g., H= linear separators in Rୢ

Sample complexity linear in d

So, if double the number of features, then I only need 
roughly twice the number of samples to do well.

What if c∗ ∉ H?
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Uniform Convergence

• This basic result only bounds the chance that a bad hypothesis looks 
perfect on the data. What if there is no perfect h∈H (agnostic case)?

• What can we say if c∗ ∉ H?
• Can we say that whp all h∈H satisfy |errD(h) – errS(h)| ൑	?

– Called “uniform convergence”.
– Motivates optimizing over S, even if we can’t find a 

perfect function.

Sample Complexity: Finite Hypothesis Spaces

Realizable Case

What if there is no perfect h? 

Agnostic Case

To prove bounds like this, need some good tail inequalities.
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Hoeffding bounds
Consider coin of bias p flipped m times.  
Let N be the observed # heads.  Let ∈ [0,1].
Hoeffding bounds:
• Pr[N/m > p + ] ൑ e-2m2, and
• Pr[N/m < p - ] ൑ e-2m2.

• Tail inequality: bound probability mass in tail of 
distribution (how concentrated is a random variable 
around its expectation).

Exponentially decreasing tails

• Proof: Just apply Hoeffding.
– Chance of failure at most 2|H|e-2|S|2.
– Set to . Solve.

• So, whp, best on sample is -best over D.
– Note: this is worse than previous bound (1/ has become 1/2), 

because we are asking for something stronger.
– Can also get bounds “between” these two.

Sample Complexity: Finite Hypothesis Spaces
Agnostic Case


