

Sample Complexity for Supervised Learning Consistent Learner • Input: S: $(x_1, c^*(x_1)), ..., (x_m, c^*(x_m))$ • Output: Find h in H consistent with the sample (if one exits). Theorem $m \ge \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$ labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$. Example: H is the class of conjunctions over $X = \{0,1\}^n$. $|H| = 3^n$ E.g., $h = x_1 \overline{x_3} x_5$ or $h = x_1 \overline{x_2} x_4 x_9$ Then $m \ge \frac{1}{\varepsilon} \left[n \ln 3 + \ln\left(\frac{1}{\delta}\right) \right]$ suffice

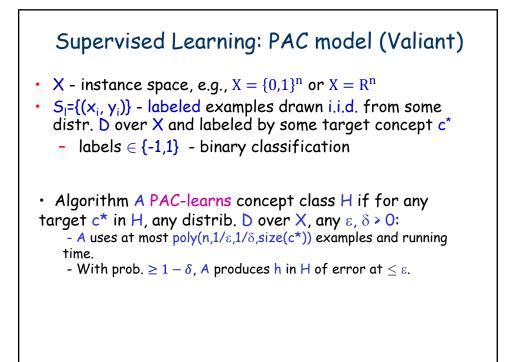
Sample Complexity for Supervised Learning Theorem

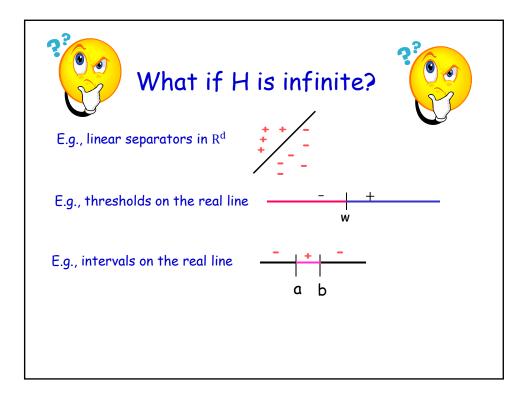
 $m \geq \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$

labeled examples are sufficient so that with prob. $1-\delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Proof Assume k bad hypotheses $h_1, h_2, ..., h_k$ with $err_D(h_i) \ge \epsilon$

1) Fix h_i . Prob. h_i consistent with first training example is $\leq 1 - \epsilon$.


Prob. h_i consistent with first m training examples is $\leq (1 - \epsilon)^m$.


2) Prob. that at least one h_i consistent with first m training examples is $\leq k (1 - \epsilon)^m \leq |H|(1 - \epsilon)^m$.

3) Calculate value of m so that $|H|(1-\epsilon)^m \leq \delta$

3) Use the fact that $1 - x \le e^{-x}$, sufficient to set $|H| e^{-\varepsilon m} \le \delta$

Sample Complexity: Finite Hypothesis Spaces Realizable Case 1) PAC: How many examples suffice to guarantee small error whp. Theorem $m \ge \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$ labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$. 2) Statistical Learning Way: With probability at least $1 - \delta$, for all $h \in H$ s.t. $err_S(h) = 0$ we have $err_D(h) \le \frac{1}{m} \left(\ln |H| + \ln\left(\frac{1}{\delta}\right) \right)$.

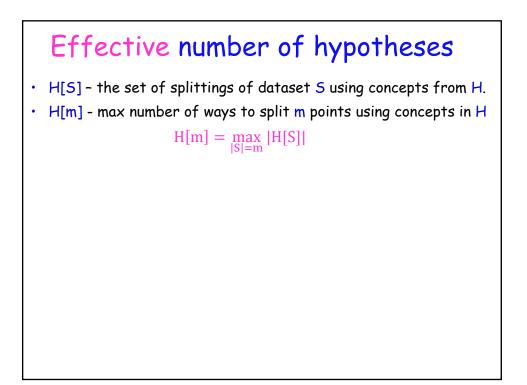
Sample Complexity: Infinite Hypothesis Spaces • H[m] - maximum number of ways to split m points using concepts in H; i.e. $H[m] = \max_{\substack{|S|=m \\ |S|=m}} |H[S]|$ Theorem For any class H, distrib. D, if the number of labeled examples seen m satisfies $m \ge \frac{2}{\varepsilon} \left[\log_2(2H[2m]) + \log_2\left(\frac{1}{\delta}\right) \right]$ then with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$. Rough Idea: $S = \{x_1, x_2, ..., x_m\}$ i.i.d. from D B: $\exists h \in H$ with $err_S(h) = 0$ but $err_D(h) \ge \varepsilon$. $S' = \{x'_1, ..., x'_m\}$ another i.i.d. "ghost sample" from D B': $\exists h \in H$ with $err_S(h) = 0$ but $err_{S'}(h) \ge \varepsilon$. To bound P(B), sufficient to bound P(B'). Over B U B' only H[2m] effective hypotheses left... need randomness to bound the prob of a bad event, another symmetrization trick....

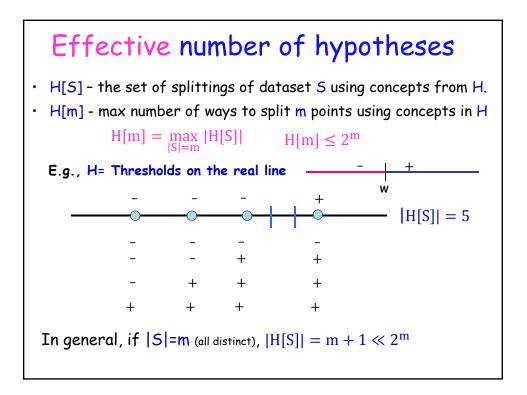
Sample Complexity: Infinite Hypothesis Spaces

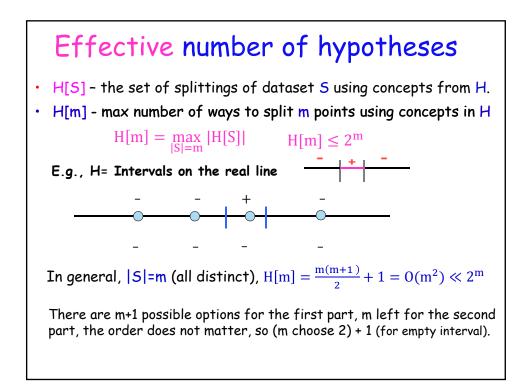
• H[m] - maximum number of ways to split m points using concepts in H; i.e. $H[m] = \max_{|S|=m} |H[S]|$

Theorem For any class H, distrib. D, if the number of labeled examples seen m satisfies

$$m \ge \frac{2}{\varepsilon} \left[\log_2(2H[2m]) + \log_2\left(\frac{1}{\delta}\right) \right]$$


then with probab. $1-\delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.


Sauer's Lemma: $H[m] = O(m^{VCdim(H)})$


Theorem

$$m = \mathcal{O}\left(\frac{1}{\varepsilon}\left[VCdim(H)\log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right)\right]\right)$$

labeled examples are sufficient so that with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Effective number of hypotheses • H[S] - the set of splittings of dataset S using concepts from H. • H[m] - max number of ways to split m points using concepts in H $H[m] = \max_{|S|=m} |H[S]| \qquad H[m] \le 2^m$ Definition: H shatters S if $|H[S]| = 2^{|S|}$.

Sample Complexity: Infinite Hypothesis Spaces

• H[m] - max number of ways to split m points using concepts in H

Theorem For any class H, distrib. D, if the number of labeled examples seen m satisfies

 $m \geq \frac{2}{\varepsilon} \left[\log_2(2H[2m]) + \log_2\left(\frac{1}{\delta}\right) \right]$

then with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

 $\begin{array}{ll} \mbox{Very Very} & \mbox{S=} \{x_1, x_2, \dots, x_m\} \mbox{ i.i.d. from D} \\ \mbox{Rough Idea:} & \mbox{B: } \exists \ h \in H \ \mbox{with } err_S(h) = 0 \ \mbox{but } err_D(h) \geq \epsilon. \end{array}$

S' ={ x'_1 , ..., x'_m } another i.i.d. "*ghost sample*" from D

B': $\exists h \in H \text{ with } err_S(h) = 0 \text{ but } err_{S'}(h) \ge \varepsilon$.

Claim: To bound P(B), sufficient to bound P(B')

Over $S \cup S'$ only H[2m] effective hypotheses left... but, no randomness left. Need randomness to bound the probability of a bad event, another symmetrization trick....

Sample Complexity: Infinite Hypothesis Spaces Realizable Case H[m] - max number of ways to split m points using concepts in HTheorem For any class H, distrib. D, if the number of labeled examples seen m satisfies $<math display="block">m \ge \frac{2}{\varepsilon} \left[\log_2(2H[2m]) + \log_2\left(\frac{1}{\delta}\right) \right]$ $then with probab. 1 - \delta, all h \in H with err_D(h) \ge \varepsilon have err_S(h) > 0.$ $If H[m] = 2^m, then m \ge \frac{m}{\varepsilon} (....) \circledast$

• VC-dimension is roughly the point at which H stops looking like it contains all functions, so hope for solving for m.

Sample Complexity: Infinite Hypothesis Spaces

H[m] - max number of ways to split m points using concepts in H

Theorem For any class H, distrib. D, if the number of labeled examples seen m satisfies

$$m \ge \frac{2}{\varepsilon} \left[\log_2(2H[2m]) + \log_2\left(\frac{1}{\delta}\right) \right]$$

then with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Sauer's Lemma: $H[m] = O(m^{VCdim(H)})$

Theorem

$$m = O\left(\frac{1}{\varepsilon} \left[VCdim(H) \log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right)\right]\right)$$

labeled examples are sufficient so that with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Shattering, VC-dimension

Definition: H shatters S if $|H[S]| = 2^{|S|}$.

A set of points S is shattered by H is there are hypotheses in H that split S in all of the $2^{|S|}$ possible ways, all possible ways of classifying points in S are achievable using concepts in H.

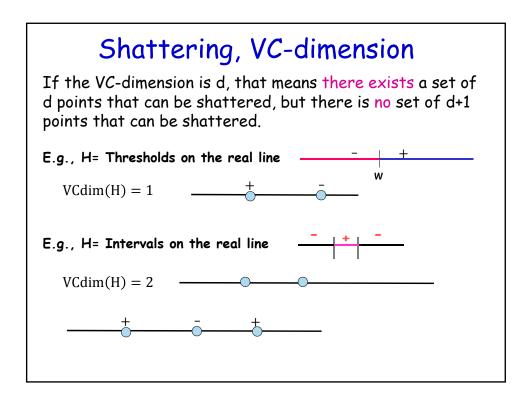
Definition: VC-dimension (Vapnik-Chervonenkis dimension)

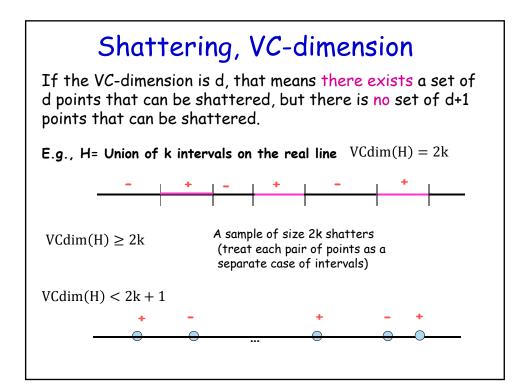
The VC-dimension of a hypothesis space H is the cardinality of the largest set S that can be shattered by H.

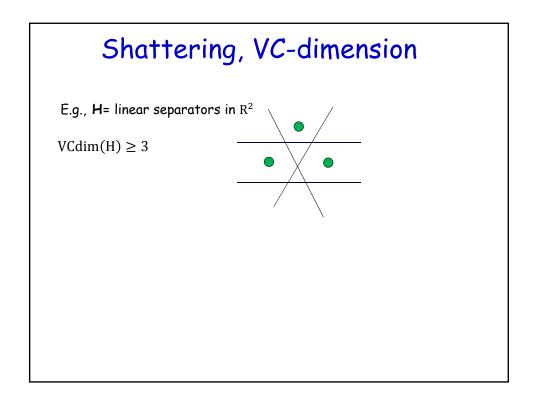
If arbitrarily large finite sets can be shattered by H, then $VCdim(H) = \infty$

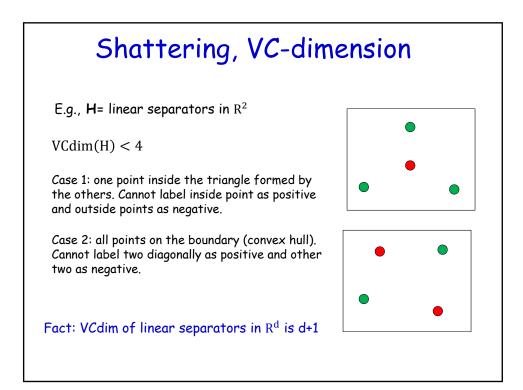
Shattering, VC-dimension

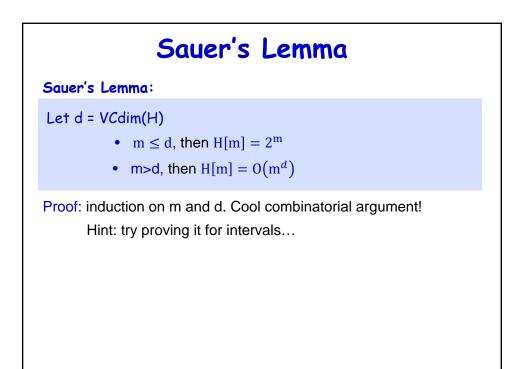
Definition: VC-dimension (Vapnik-Chervonenkis dimension)


The VC-dimension of a hypothesis space H is the cardinality of the largest set S that can be shattered by H.


If arbitrarily large finite sets can be shattered by H, then $VCdim(H) = \infty$


To show that VC-dimension is d:

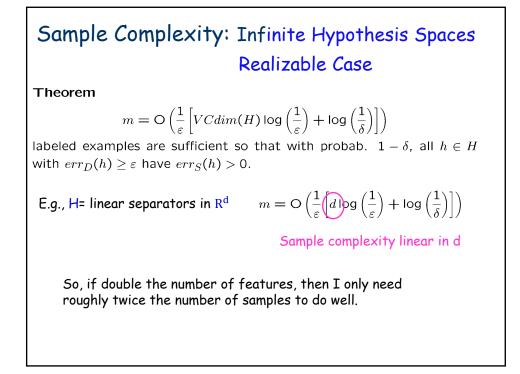

- there exists a set of d points that can be shattered
- there is no set of d+1 points that can be shattered.

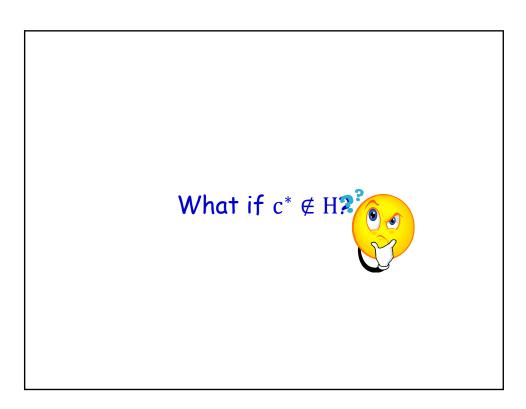

Fact: If H is finite, then $VCdim(H) \le log(|H|)$.

Sample Complexity: Infinite Hypothesis Spaces Realizable Case

Theorem For any class H, distrib. D, if the number of labeled examples seen m satisfies

$$m \geq \frac{2}{\varepsilon} \left[\log_2(2H[2m]) + \log_2\left(\frac{1}{\delta}\right) \right]$$


then with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.


Sauer's Lemma: $H[m] = O(m^{VCdim(H)})$

Theorem

$$m = \mathrm{O}\left(\frac{1}{\varepsilon}\left[VCdim(H)\log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right)\right]\right)$$

labeled examples are sufficient so that with probab. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Uniform Convergence

Theorem

 $m \geq \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$

labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

- This basic result only bounds the chance that a bad hypothesis looks perfect on the data. What if there is no perfect h∈H (agnostic case)?
- What can we say if $c^* \notin H$?
- Can we say that whp all $h \in H$ satisfy $|err_{D}(h) err_{S}(h)| \le \varepsilon$?
 - Called "uniform convergence".
 - Motivates optimizing over S, even if we can't find a perfect function.

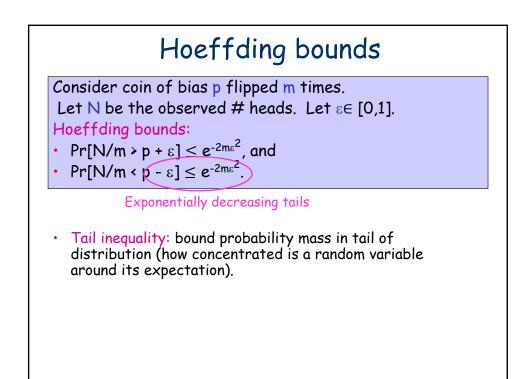
Sample Complexity: Finite Hypothesis Spaces

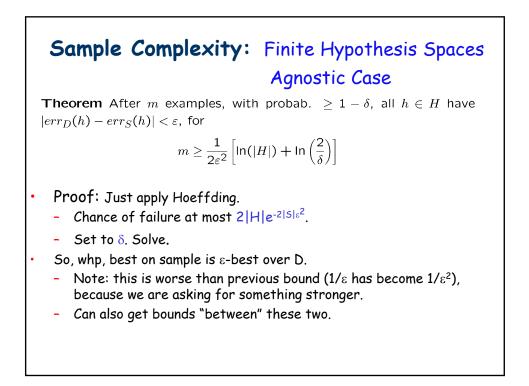
Realizable Case

Theorem

$$m \ge \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.


Agnostic Case


What if there is no perfect h?

Theorem After *m* examples, with probab. $\geq 1 - \delta$, all $h \in H$ have $|err_D(h) - err_S(h)| < \varepsilon$, for

$$m \ge \frac{1}{2\varepsilon^2} \left[\ln(|H|) + \ln\left(\frac{2}{\delta}\right) \right]$$

To prove bounds like this, need some good tail inequalities.

