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Two Core Aspects of Machine Learning

{Algori‘rhm Design. How to optimize? ] Computation

Automatically generate rules that do well on observed data.

+ E.g.! logistic regression, SVM, Adaboost, etc.

[Confidence Bounds, Generalization ] (Labeled) Data

Confidence for rule effectiveness on future data.




Today's focus: Sample Complexity for Supervised
Classification (Function Approximation)

+ Statistical Learning Theory (Vapnik)
« PAC (Valiant)

* Recommended readings:
Chapter 3 in the KV book.

Supervised Learning

» E.g., which emails are spam and which are important.

Supervised classification
Not spam

« E.g., classify images as man versus women.

Man g a Women
. J ;
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PAC/SLT models for Supervised Learning

X - feature/instance space; distribution D over X
eg., X=RdorXx={01}4

Algo sees training sample S: (x;,c*(x1)),..., (X;n,C* (X)), X; i.i.d. from D
- labeled examples - drawn i.i.d. from D and labeled by target c*
labels € {-1,1} - binary classification
Algo does optimization over S, find hypothesis h.
+ Goal: h has small error over D.

errp(h) = XPN’rD(h(x) # c*(x))

Bias: fix hypoThesis space H [whose complexity is not too large]
v e Realizable: ¢* € H.

Instance space X

« Agnostic: c* "close to" H.




PAC/SLT models for Supervised Learning

» Algo sees training sample S: (x;,c*(xy)),..., (X,€* (X)), X; i.i.d. from D
Does optimization over S, find hypothesis h € H.
* Goal: h has small error over D.
True error: errp(h) = XlirD(h(X) * c*(x))

How often h(x) # c*(x) over future
instances drawn at random from D

 But, can only measure:
Training error: errs(h) = %Zi I(h(xp) # c*(x1))

How often h(x) # c*(x) over training
instances

Sample complexity: bound err,(h) in terms of errg(h)

Sample Complexity for Supervised Learning

Consistent Learner
o Input: St (Xq,c*(Xq)),, (X, € (X))
* Output: Find h in H consistent with the sample (if one exits).

Bound only logarithmic in |H|, linear in 1/¢
1

Theorem

m> 2 [InQHD +1n
£

labeled examples are sufficient so that with prob. 1 —46,)all h € H with

errp(h) 2 ¢ have errg(h) > 0. Probability over different samples of m
training examples

So, if ¢ € Hand can find consistent fns, then only need this many
examples to get generalization error < € with prob. > 1 -6




Sample Complexity for Supervised Learning

Consistent Learner
e Input: St (X1,c*(X1)),... (Xp.C*(X,))
* Output: Find h in H consistent with the sample (if one exits).

Theorem
iz o+ (2]

labeled examples are sufficient so that with prob. 1 -6, all h € H with
errp(h) > ¢ have errg(h) > 0.

Example: H is the class of conjunctions over X = {0,1}". |H| = 3"
E.g., h = x; X3x5 or h = x4 X;X4X9

Thenm > é[n In3+1n (%)] suffice

Sample Complexity for Supervised Learning
Theorem
o> 2oy +1n (2]

labeled examples are sufficient so that with prob. 1 -4, all h € H with
errp(h) > £ have errg(h) > 0.

Proof Assume k bad hypotheses hy,h,, ..., hy with errp(h;) > €
1) Fix h;. Prob. h; consistent with first training example is <1 —e.

Prob. h; consistent with first m training examples is < (1 —€)™.

2) Prob. that at least one h; consistent with first m training
examplesis <k (1—¢e)™ < |H|(1—¢€)™.

3) Calculate value of m so that |H|(1 —e)™ < §

3) Use the fact that 1 —x < e™*, sufficient to set |[H|e™*™ < §




Sample Complexity: Finite Hypothesis Spaces
Realizable Case

1) PAC: How many examples suffice to guarantee small error whp.
Theorem
1 1
m > — [In(\HD +In (—)}
e 1)
labeled examples are sufficient so that with prob. 1 -4, all h € H with
errp(h) > £ have errg(h) > 0.

2) Statistical Learning Way:

With probability at least 1 — &, for all h € H s.t. errg(h) = 0 we have

errp(h) < i(ln [H| + In (%))

Supervised Learning: PAC model (Valiant)

+ X - instance space, e.g., X = {0,1}" or X = R"
Si={(x;, y;)} - labeled examples drawn i.i.d. from some
distr. D over X and labeled by some target concept ¢’
- labels € {-1,1} - binary classification

* Algorithm A PAC-learns concept class H if for any
target c* in H, any distrib. D over X, any ¢, & > O:
- A uses at most poly(n,1/¢,1/5 size(c*)) examples and running

time.
- With prob. > 1 — 8, A produces h in H of error at < ¢.




E.g., thresholds on the real line i

E.g., intervals on the real line

Sample Complexity: Infinite Hypothesis Spaces

H[m] - maximum number of ways to split m points using concepts

inH; i.e. Hm] = |g|13x |H[S]|

Theorem For any class H, distrib. D, if the number of labeled exam-

ples seen m satisfies
2

o ossanton 415 1)

then with probab. 1 —4, all h € H with errp(h) > ¢ have errg(h) > 0.
Rough Idea: 5= {x,x,,..,xy}iid. fromD
B: 3 h € H with errg(h) = 0 but errp(h) > €.

S' ={x1, ..., X} another i.i.d. "ghost sample” from D
B 3 h € H with errg(h) = 0 but errg,(h) > e.

To bound P(B), sufficient o bound P(B') .

Over B U B’ only H[2m] effective hypotheses left.. need randomness
to bound the prob of a bad event, another symmetrization trick....




Sample Complexity: Infinite Hypothesis Spaces

H[m] - maximum number of ways to split m points using concepts
inH; i.e. H[m] = max |H[S]|
|S|=m
Theorem For any class H, distrib. D, if the number of labeled exam-

ples seen m satisfies
2 1
m > = [logy(2H[2m]) + logz (5 )]
19

then with probab. 1 -4, all h € H with errp(h) > ¢ have errg(h) > 0.

Sauer's Lemma: H[m] = o(mVCdim(H))

Theorem
m=0 (2 [vodmyos (1) + 10a (1))

labeled examples are sufficient so that with probab. 1 -394, all h e H
with errp(h) > & have errg(h) > 0.

Effective number of hypotheses

H[S] - the set of splittings of dataset S using concepts from H.
H[m] - max number of ways to split m points using concepts in H
H[m] = max |H[S]|
[S|=m




Effective number of hypotheses

H[S] - the set of splittings of dataset S using concepts from H.
H[m] - max number of ways to split m points using concepts in H

H[m] = max [H[S]| H[m] < 2™
[S|=m
E.g., H= Thresholds on the real line — =+
w
- . - +
I I O |H[S]| =5
- - + +
- + + +
+ + + +

In general, if |S|=m (il distinct), |[H[S]| = m + 1 « 2™

Effective number of hypotheses

H[S] - the set of splittings of dataset S using concepts from H.
H[m] - max number of ways to split m points using concepts in H
H[m] = max [H[S]| H[m] < 2™
[S|=m

- +
E.g., H= Intervals on the real line i i

In general, |S|=m (all distinct), H[m] = @ +1=0(m?) « 2™

There are m+1 possible options for the first part, m left for the second
part, the order does not matter, so (m choose 2) + 1 (for empty interval).




Effective number of hypotheses

H[S] - the set of splittings of dataset S using concepts from H.
H[m] - max number of ways to split m points using concepts in H

Him] = max |H[S]| H[m] < 2™

Definition: H shatters S if |H[S]| = 2/¥I.

Sample Complexity: Infinite Hypothesis Spaces

H[m] - max number of ways to split m points using concepts in H

Theorem For any class H, distrib. D, if the number of labeled exam-
ples seen m satisfies

then with probab. 1 -4, all h € H with errp(h) > ¢ have errg(h) > 0.

Very Very S= {X1,Xg, ..., Xpn} i.i.d. from D

Rough Idea: B: 3 h € H with errg(h) = 0 but errp(h) > €.
S' ={x1, ..., xp} another i.i.d. " ghost sample"’ from D
B 3 h € H with errg(h) = 0 but errg,(h) > e.

Claim: To bound P(B), sufficient to bound P(B')

Over SU S’ only H[2m] effective hypotheses left... but, no randomness left.

Need randomness to bound the probability of a bad event, another
symmetrization trick....
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Sample Complexity: Infinite Hypothesis Spaces
Realizable Case

H[m] - max number of ways to split m points using concepts in H

Theorem For any class H, distrib. D, if the number of labeled exam-
ples seen m satisfies

m > g log2(2H[2m]) + logz (%)]

then with probab. 1 -4, all h € H with errp(h) > ¢ have errg(h) > 0.

» Not too easy to interpret sometimes hard to calculate
exactly, but can get a good bound using "VC-dimension

If H[m] = 2™, then m > %(....) ®

» VC-dimension is roughly the point at which H stops looking
like it contains all functions, so hope for solving for m.

Sample Complexity: Infinite Hypothesis Spaces

H[m] - max number of ways to split m points using concepts in H

Theorem For any class H, distrib. D, if the number of labeled exam-
ples seen m satisfies

o> ossantan 15 (1)

then with probab. 1 —4, all h € H with errp(h) > ¢ have errg(h) > 0.

Sauer's Lemma: H[m] = O(mVCdim(H))

Theorem
m=0 (2 [vedmiyos (1) +10a (1))

labeled examples are sufficient so that with probab. 1 -4, all h € H
with errp(h) > ¢ have errg(h) > 0.

11



Shattering, VC-dimension

Definition: H shatters S if |H[S]| = 2!

A set of points S is shattered by H is there are hypotheses in H
that split S in all of the 2!5! possible ways, all possible ways of
classifying points in S are achievable using concepts in H.

Definition: VC-dimension (Vapnik-Chervonenkis dimension)

The VC-dimension of a hypothesis space H is the cardinality of
the largest set S that can be shattered by H.

If arbitrarily large finite sets can be shattered by H, then
VCdim(H) = o

Shattering, VC-dimension

Definition: VC-dimension (Vapnik-Chervonenkis dimension)

The VC-dimension of a hypothesis space H is the cardinality of
the largest set S that can be shattered by H.

If arbitrarily large finite sets can be shattered by H, then
VCdim(H) = o

To show that VC-dimension is d:
- there exists a set of d points that can be shattered

- there is no set of d+1 points that can be shattered.

Fact: If H is finite, then VCdim(H) < log(JH|).

12



Shattering, VC-dimension

If the VC-dimension is d, that means there exists a set of
d points that can be shattered, but there is no set of d+1
points that can be shattered.

E.g., H= Thresholds on the real line ——=
w
. _ + -
VCdim(H) =1 O

E.g., H= Intervals on the real line

VCdim(H) = 2 o o—

+ - £
|\ N

Shattering, VC-dimension

If the VC-dimension is d, that means there exists a set of
d points that can be shattered, but there is no set of d+1
points that can be shattered.

E.g.. H= Union of k intervals on the real line VCdim(H) = 2k

: A sample of size 2k shatters
>
VCdim(H) = 2k (treat each pair of points as a
separate case of intervals)

VCdim(H) < 2k + 1

+ -

+
|
+

VY VY VA o)
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Shattering, VC-dimension

E.g., H= linear separators in R
)

VCdim(H) > 3
® >( ®

Shattering, VC-dimension

E.g., H= linear separators in R?
VCdim(H) < 4

Case 1: one point inside the triangle formed by
the others. Cannot label inside point as positive

and outside points as negative.

Case 2: all points on the boundary (convex hull).
Cannot label two diagonally as positive and other ®
two as negative.

Fact: VCdim of linear separators in RY is d+1

14



Sauer's Lemma

Sauer's Lemma:
Let d = VCdim(H)
e m <d, then Him] = 2™

« m>d, then H[m] = O(m%)

Proof: induction on m and d. Cool combinatorial argument!
Hint: try proving it for intervals...

Sample Complexity: Infinite Hypothesis Spaces
Realizable Case

Theorem For any class H, distrib. D, if the number of labeled exam-
ples seen m satisfies

w2 osantond +1om ()

then with probab. 1 —34, all h € H with errp(h) > ¢ have errg(h) > O.

Sauer's Lemma: H[m] = O(mVCdim()
Theorem
m=0 (% {VCdim(H) log (1> + log (%)D

I3
labeled examples are sufficient so that with probab. 1 -4, all h€e H
with errp(h) > ¢ have errg(h) > 0.

15



Sample Complexity: Infinite Hypothesis Spaces
Realizable Case

Theorem

m=0 G {VCdim(H) log (é) +log (%)D

labeled examples are sufficient so that with probab. 1 -4, all h € H
with errp(h) > ¢ have errg(h) > 0.

E.g., H= linear separators in R4 m=0 Gg G) + log (%)D

Sample complexity linear in d

So, if double the number of features, then I only need
roughly twice the number of samples to do well.

s 9?2
What if c* ¢ H: @@

16



Uniform Convergence
Theorem
m > % {m(\m) +in (%)}

labeled examples are sufficient so that with prob. 1 -394, all h € H with
errp(h) > ¢ have errg(h) > 0.

This basic result only bounds the chance that a bad hypothesis looks
perfect on the data. What if there is no perfect heH (agnostic case)?

What can we say if ¢* ¢ H?
Can we say that whp all heH satisfy |erry(h) - errg(h)| <€?

- Called "uniform convergence”.

- Motivates optimizing over S, even if we can't find a
perfect function.

Sample Complexity: Finite Hypothesis Spaces

Realizable Case
Theorem

m > 1 [In(\HD +In (EN
5 1)
labeled examples are sufficient so that with prob. 1 -4, all h € H with
errp(h) > £ have errg(h) > 0.
Agnostic Case
What if there is no perfect h?

Theorem After m examples, with probab. > 1 -6, all h € H have
lerrp(h) —errg(h)| < e, for

m> % {In(|H|) +1n (?)}

To prove bounds like this, need some good tail inequalities.

17



Hoeffding bounds

Consider coin of bias p flipped m times.
Let N be the observed # heads. Let c€ [0,1].
Hoeffding bounds:

PrIN/m > p + €] < e?™°, and
PrIN/m < p - €] < e2me",

Exponentially decreasing tails

Tail inequality: bound probability mass in tail of
distribution (how concentrated is a random variable
around its expectation).

Sample Complexity: Finite Hypothesis Spaces

Agnostic Case

Theorem After m examples, with probab. > 1 —§, all h € H have
lerrp(h) —errg(h)| < e, for
1

m >
— 2e2

() +1n (?)}

Proof: Just apply Hoeffding.
- Chance of failure at most 2|H|e2I5!:,

- Set to 5. Solve.
So, whp, best on sample is e-best over D.

- Note: this is worse than previous bound (1/¢ has become 1/¢2),
because we are asking for something stronger.

- Can also get bounds "between” these two.
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