10-806 Foundations of Machine Learning and Data Science

Maria-Florina Balcan Lecture 1: September 9th, 2015

This course will cover fundamental topics in Machine Learning and Data Science, includ-
ing powerful algorithms with provable guarantees for making sense of and generalizing from
large amounts of data. The course will start by providing a basic arsenal of useful statistical
and computational tools, including generalization guarantees, core algorithmic methods, and
fundamental analysis models. We will examine questions such as: Under what conditions
can we hope to meaningfully generalize from limited data? How can we best combine dif-
ferent kinds of information such as labeled and unlabeled data, leverage multiple related
learning tasks, or leverage multiple types of features? What can we prove about methods for
summarizing and making sense of massive datasets, especially under limited memory? We
will also examine other important constraints and resources in data science including pri-
vacy, communication, and taking advantage of limited interaction. In addressing these and
related questions we will make connections to statistics, algorithms, linear algebra, complex-
ity theory, information theory, optimization, game theory, and empirical machine learning
research.

Note: The course web page is http://www.cs.cmu.edu/ ninamf/courses/806/.

The following books could be useful for understanding the material of this course:

1. An Introduction to Computational Learning Theory by M. Kearns and U. Vazirani
2. A Probabilistic Theory of Pattern Recognition by L. Devroye, L. Gyorfi, G. Lugosi.

3. Foundations of Machine Learning by M. Mohri, A. Rostamizadeh, and A. Talwalkar
MIT Press, 2012.

It’s not 100% crucial to have them, but they are very useful for better understanding the
material discussed in the class.

1 Passive Supervised Learning

For most of this course we will focus on the problem of concept learning in the passive
supervised learning setting. We are given data (say documents classified into topics or email
messages labeled as spam or not) and we want to be able to learn from this data to classify
future examples well. This might seem like a very restricted form of learning, but it turns
out that most methods for other kinds of learning end up solving this sort of problem at
their core.

Formally, in the passive supervised learning setting, we assume assume that the input to a
learning algorithm is a set S of labeled examples, let’s say a set of emails labeled as spam
or not.

S ($1,y1)7~-,($maym)

Here z; € X is the feature part of our example and and y; is the label part; we assume for
now that y; € {0,1}, so we do binary classification (decide between spam and not spam).

e Examples are typically described by their values on some set of features or variables
(we will use these words interchangeably) which we call the feature part. For instance,
if we are trying to predict spam, the first feature might be whether or not the email
contains the word "money”, the second feature might be whether or not the email
contains the word " pills”, the third feature might be whether or not the email contains
the word "Mr.”, the fourth feature might be whether or not the email contains bad
spelling, and the fitfh feature might be whether the email has a known sender or not.

If there are n boolean features, then we can think of examples as elements of {0,1}".
In the spam example (in the handout) X = {0,1}, and z; = 10110. If there are n
real-valued features, then examples are points in R". The space that examples live in
is called the instance space X.

e A labeled example (z;,y;) is an example x; together with a labeling y; (e.g., positive or
negative).

e A concept is a boolean function over an instance space. For instance, the concept
x1 A o over {0,1}" is the boolean function that outputs 1 on any example whose first
two features are set to 1. We will sometimes use the terms classifier, or hypothesis, or
prediction rule to mean a concept.

o A concept class is a set of concepts, typically with an associated representation. The
size of a concept is the number of bits needed to specify the concept in its representa-
tion.

For instance, the class of “monotone conjunctions” over {0, 1}" consists of all concepts
that can be expressed as a conjunction of variables. A common representation for a
monotone conjunction is to store n bits, one for each variable, specifying whether the
variable is in the conjunction or not; a much less efficient representation is one where
we store 2" bits specifying the value of the conjunction on each 2" examples in the
instance space. Yet another representation is one where we store the indices of all the
variables appearing in the conjunction; so, if the conjunction has k relevant variables,
this requires klogn bits.

Depending on the representation, some concept classes contain both simpler and more
complicated concepts. For example in the last representation, we have both simple

and complicated monotone conjunctions. In the standard enconding!, decision trees
can be small or large.

1.1 The Consistency Model

The consistency model is not a particularly great model of learning, but it’s simple and is a
good place to start.

Definition 1 We say that algorithm A learns class C' in the consistency model if given any
set of labeled examples S, the algorithm produces a concept ¢ € C consistent with S if one
exists, and outputs “there is no consistent concept” otherwise.

We'd also like our algorithm to run in polynomial time (in the size of S and the size
n of the examples). So, this should seem like very natural definition if you're an algo-
rithms/complexity /optimization person.

Let’s now consider the learnability of several simple classes in the consistency model. Then
we’ll critique the model at the end.

AND functions (monotone conjunctions). This is the class of functions like x1 AzgAz7,
which is positive whenever the 1st, 4th, and 7th features are on. For example, the
following set of data has a consistent monotone conjunction:

10110011 +
11111010 +
601110011 +
060011111 -
11111000 -

We can learn this class in the consistency model by the following method:

1. Throw out any feature that is set to 0 in any positive example. Notice that these
cannot possibly be in the target function. Take the AND of all that are left.

2. If the resulting conjunction is also consistent with the negative examples, produce
it as output. Otherwise halt with failure.

Since we only threw out features when absolutely necessary, if the conjunction after
step 1 is not consistent with the negatives, then no conjunction will be.

'We can use O(logn) bits to give the index of the variable at the root or one of the constants “+” or “-”.
Then, if the root is not one of the constants, recursively describe the left subtree and the right subtree. In
this way, the total number of bits stored is O(klogn) where k is the number of nodes in the tree.

OR functions (monotone disjunctions) This is the class of functions like x5 V 5 V 27,
which is positive whenever either the 2nd, or the 5th, or the Tth feature is on. Observe
that any monotone disjunction can be expressed as a monotone conjunction if we
negate each variable and apply De Morgan’s law. That is, x5 V x5V 27 = T3 A T5 A T7.
If we replace each z; with z; = #; and flip all positive labels in the data set to negative
and vice versa, we can use our learning algorithm for monotone conjunctions to learn
a conjunction c on the modified instances. To obtain a concept from the original class,
simply negate each variable in ¢ and replace all the A with V.

Non-monotone conjunctions, disjunctions, k-CNF, k-DNF. What about functions like
r17Z4x7? Instead of thinking about this from scratch, we can just perform a reduction
to the monotone case. If we define y; = Z; then we can think of the target function as a
monotone conjunction over this space of 2n variables and use our previous algorithm.
k-CNF is the class of Conjunctive Normal Form formulas in which each clause has
size at most k. E.g., x4 A (21 V x2) A (22 V Z3) is a 2-CNF. So, the 3-CNF learning
problem is like the inverse of the 3-SAT problem: instead of being given a formula and
being asked to come up with a satisfying assignment, we are given assignments (some
satisfying and some not) and are asked to come up with a formula. k-DNF is the class
of Disjunctive Normal Form formulas in which each term has size at most k. We can
learn these too by reduction: e.g., we can think of k-CNF's as conjunctions over a space
of O(n*) variables, one for each possible clause.

Next time we will discuss other more interesting concept classes such as Decision lists,
linear separators, etc.

Unfortunately, the consistency mode does not address the generalization issue at all. We
discuss next the PAC model that can deal with this aspect.

1.2 The PAC Model

The basic idea of the PAC model is to assume that examples are being provided from a fixed
(but perhaps unknown) distribution over the instance space. The assumption of a fixed
distribution gives us hope that what we learn based on some training data will carry over to
new test data we haven’t seen yet. A nice feature of this assumption is that it provides us a
well-defined notion of the error of a hypothesis with respect to target concept.

Definition 2 Given a example distribution D, the error of a hypothesis h with respect to a
target concept c is Prob,ep[h(z) # c(x)]. (Prob.ep(A) means the probability of event A
given that x is selected according to distribution D.)

In the PAC model we assume that the input to the learning algorithm is a set of labeled
examples

S (961,y1),~-,(95m;ym)

where x; are drawn i.i.d. from some fixed but unknown distrution D over the the instance
space X and that they are labeled by some target concept ¢* in some concept class C. So
y; = ¢*(x;). Here the goal is to do optimization over the given sample S in order to find a
hypothesis h : X — {0, 1}, that has small error over whole distribution D.

What kind of guarantee could we hope to make?

e We converge quickly to the target concept (or equivalent). But, what if our distribution
places low weight on some part of X7

e We converge quickly to an approximation of the target concept. But, what if the
examples we see don’t correctly reflect the distribution?

e With high probability we converge to an approximation of the target concept. This is
the idea of Probably Approximately Correct learning.

1.2.1 Conjunctions

Here a nice guarantee for the case of learning conjunction in this model.

Theorem 1 Let C' be the class of conjunctions over {0,1}". Let D be an arbitrary, fized
unknown probability distribution over X and let ¢* be an arbitrary unknown target function.
For any e, 6 > 0, if we draw a sample from D of size

m = 1 {nln(i’)) +1In ((15)] :

then with probability at least 1 — 9, all concepts in C with error > € are inconsistent with
the data (or alternatively, with probability at least 1 — § any conjunction consistent with the
data will have error at most €.)

Note: Since we have an algorithm that finds a consistent conjunction whenever one exists,
this means that if the target function is a conjunction, then we can use this algorithm to
produce a hypothesis with error at most € with probability at least 1 — ¢, in time and sample
%, %, and n (we simply run it on a large enough sample).

Proof: The proof involves the following steps:

size polynomial in

1. Consider some specific “bad” conjunction whose error is at least e. The probability
that this bad conjunction is consistent with m examples drawn from D is at most
(1 —¢)™.

2. Notice that there are (only) 3™ conjunctions over n variables.

5

3. (1) and (2) imply that given m examples drawn from D, the probability there ezists a
bad conjunction consistent with all of them is at most 3"(1 — €)™. Suppose that m is
sufficiently large so that this quantity is at most §. That means that with probability
(1 —¢) there are no consistent conjunctions whose error is more than e.

4. The final step is to calculate the value m needed to satisfy
3M(1—e)™ < 0. (1)

xT

Using the inequality 1 —x < e™*, it is simple to verify that (1) is true as long as:

m = 1 [nln(?)) +1n <(15>] .

Note: Another way to write the bound in Theorem 1 is as follows:

For any €, 6 > 0, if we draw a sample from D of size m then with probability at least 1 — 9,
any conjunction consistent with the data will have error at most

;L {nln(?)) +1n <(15>] :

This is the more “statistical learning theory style” way of writing the same bound.

1.2.2 Defining the PAC Model

(19l

Theorem 1 motivates a general definition for PAC learning. In the following definition, “n
denotes the size of an example.

Definition 3 An algorithm A PAC-learns concept class C' by hypothesis class H if for any
c* € C, any distribution D over the instance space, any €,6 > 0, and for some polynomial
p, the following is true. Algorithm A, with access to labeled examples of ¢* drawn from
distribution D produces with probability at least 1 — 9 a hypothesis h € H with error at most
€. In addition,

1. A runs in time polynomial in n and the size of the sample

2. The sample has size p(1/e,1/0,n, size(c*)).

The quantity e is usually called the accuracy parameter and ¢ is called the confidence pa-
rameter. A hypothesis with error at most € is often called “e-good.”

This definition allows us to make statements such as: “the class of k-term DNF formulas is
learnable by the hypothesis class of k-CNF formulas.”

Remark 1: If we require H = C|, then this is typically called “proper PAC learning”. If we
allow H to be the class of polynomial time programs (i.e., we don’t care what representation
the learner uses so long as it can predict well) then this is typically called “PAC prediction”.
[will usually say: “concept class C' is PAC-learnable” to mean that C' is learnable in the
PAC-prediction sense.

Remark 2: One nice extension of this model is instead of requiring the error of h by at
most € to just require that the error be at most % — 1/poly(n). This is called weak learning
and we will talk more about this later.

Remark 3: Another nice extension is to the case where H is not necessarily a superset of
C'. In this case, let ez be the least possible error using hypotheses from H. Now, we relax the
goal to having the error of h be at most €+ ep. If we let C' be the set of all concepts (and we
remove “size(c*)” from the set of parameters we are allowed to be polynomial in), then this
is often called the agnostic model of learning: we simply want to find the (approximately)
best h € H we can, without any prior assumptions on the target concept.

1.3 Relating the Consistency and the PAC model

Generalizing the case of conjunctions, we can relate the Consistency and the PAC model as
follows.

Theorem 2 Let A be an algorithm that learns class C in the consistency model (i.e., it
finds a consistent h € C' whenever one exists). Then A needs only

1 1

examples to output a hypothesis of error at most € with probability at least 1—4§. Therefore, A
is a PAC-learning algorithm for learning C (by C') in the PAC model so long as this quantity
is polynomial in size(c) and n.

Note: If we learn C' by H, we just need to replace In|C| with In|H| in the bound. For
example, if In | H| is polynomial in n (the description length of an example) and if we can find
a consistent h € H in polynomial time, then we have a PAC-learning algorithm for learning
the class C.

Proof: We want to bound the probability of the following bad event.
B: 3h e C with errp(h) > € and h is consistent with S.

To do so, let us first fix a bad hypothesis, i.e., a hypothesis of error at least . The probability
that this hypothesis is consistent with m examples is at most (1 —€)™. So, by union bound,
the probability that there exists a bad hypothesis consistent with the sample S is at most
|C)(1 —€)™.

To get the desired result, we simply set this to § and solve form . =R
The above quantity is polynomial for conjunctions, k-CNF, and k-DNF (for constant k).

It is not polynomial for general DNF. It is currently unknown whether the class of DNF
formulas is learnable in the PAC model.

