10-806 Foundations of Machine Learning and Data Science

Homework # 3 Due: November 4, 2015

Groundrules:

e Your work will be graded on correctness, clarity, and conciseness. You should only submit
work that you believe to be correct; if you cannot solve a problem completely, you will get
significantly more partial credit if you clearly identify the gap(s) in your solution. It is
good practice to start any long solution with an informal (but accurate) proof summary that
describes the main idea.

e You may collaborate with others on this problem set and consult external sources. However,
you must write your own solutions and list your collaborators/sources for each problem.

Problems:

1. [25 pts] Halving with a Prior. Suppose we are in the realizable case, but we believe that
certain functions in C are more likely to be the target than others. In particular, suppose we
have a probability distribution p over C where p(h) denotes the likelihood, according to our
belief, that the target is h. In this case, a natural prediction strategy is to run the halving
algorithm, but where each h in the version space (i.e., each h € C that has not yet made any
mistakes) is weighted according to p.

(a) Prove that if the target is some ¢* € C, then the total number of mistakes we make will
be at most lg ﬁ.

(b) The Kolmogorov complezxity K (h) of a function h is defined as the length in bits of the
shortest program to compute h. Using the fact that at most 2* functions can have
Kolmogorov complexity k, define a prior p such that Halving run with that prior would
make at most 2K (¢*) mistakes to learn a target function c¢*. It is fine if your p has total
probability mass less than 1 (this only improves the bound from part (a)).

Interestingly, note that part (a) also implies that if indeed the target really was chosen ran-
domly according to p, then the expected number of mistakes (expectation taken over the ran-
dom draw of the target function) is at most the binary entropy of p, namely >, cc p(h)lg Tlh)'

2. [25 pts|] Mistake-bound lower bound. We saw that the class of threshold functions on
the real line has VC-dimension 1. However, show that this class cannot be learned with any
finite mistake bound in the mistake-bound model.

Specifically, define hq(z) = 1if > a and hy(x) =0 if © < a, and let C = {h, : @ € R}. Show
that for any deterministic prediction algorithm A, and any finite integer M, there exists
a value a and a sequence of examples x1,x2,...,...,2p4+1 such that if these examples are
presented in order to algorithm A and labeled by h, then A makes mistakes on all of them.

Hint: note that it is fine if your example x; depends on A’s answers to x1,...,x;_1, and if
the correct label of x; depends on A’s prediction on z;, so long as in the end these are all
consistent after the fact with some function h,. That is because algorithm A is deterministic,
so you could now fix a and the sequence x1,...,z54+1 and re-run A on that.



3. [25 pts] FTRL with an entropic regularizer. In this problem you will see how FTRL
with the appropriate regularizer produces the randomized weighted majority algorithm in the
“combining expert advice” setting.

Specifically, let C = {p € R" : > ;pi = 1, and p; > 0 for all i}. ILe., C is the set of all
probability distributions over n experts. Each day ¢ we will get a loss vector £*) and pay the
dot-product of the loss vector with our hypothesis vector (using superscripts to index time
since we are using subscripts to index coordinates). Given a regularizer R (defined below),
FTRL chooses h(*) = argmin,cc[R(p) + (p, ¢ 1y

Define regularizer R(p) = % > i pilnp;, where by convention 0ln0 = 0. Note that R(p) < 0.

(a) What is h(D? ILe., what p minimizes R subject to lying in the convex set C. One way
to solve this is to add a penalty term A(1 — >", p;) to R that is constant on C, then take
derivatives in each direction and set them to 0, and then adjust A so that the minimum
actually occurs in C.

(b) Now, show that the FTRL algorithm is equivalent to a version of the randomized
weighted majority algorithm in which, when expert ¢ experiences a loss of ¢;, we pe-
nalize it by multiplying its weight by e~ ~ (1 — €f;).

(c) Show that in fact, we can get an O(v/T Inn) regret bound for this algorithm using the
FTRL analysis. Specifically,

i. Show that R(h*) — R(hV) < 1lnn.
ii. Show that so long as the loss vectors £() € [0, 1] (i.e., each expert has loss between
0 and 1), we have £ (A1) — (@O (REFD) = (¢ BB _ )Y <1 — €,
iii. Using the fact that 1 — e™¢ & ¢, we have a loss bound of €T" + %ln n. Now set € in
terms of 7" to get the desired bound.

4. [25 pts] Tracking a moving target. Here is a variation on the deterministic Weighted-
Majority algorithm, designed to make it more adaptive.

(a) Each expert begins with weight 1 (as before).
(b) We predict the result of a weighted-majority vote of the experts (as before).
(c) If an expert makes a mistake, we penalize it by dividing its weight by 2, but only if its

weight was at least 1/4 of the average weight of experts.

Prove that in any contiguous block of trials (e.g., the 51st example through the 77th example),
the number of mistakes made by the algorithm is at most O(m+logn), where m is the number
of mistakes made by the best expert in that block, and n is the total number of experts.

5. [20 pts extra credit] Decision List mistake bound. Give an algorithm that learns the class
of decision lists over n Boolean variables in the mistake-bound model, with mistake bound
O(n?). The algorithm should run in polynomial time per example.

Hint: think of using some kind of “lazy” version of decision lists as hypotheses that perhaps
has several if-then rules at the same level.



6. [20 pts extra credit] Generalization bounds for Boosting. Recall that the final predictor
produced by Adaboost looks like sgn(f(z)) where f(z) = S, azhs(x) and the h; are the
hypotheses produced by the weak-learning algorithm in the boosting process. Let H be the
class used by the weak-learner (i.e., hy,...,hy € H).

(a) Let d = VCdim(H). Show that the class of functions of the form sgn(3°7_, a/4h}(x)) for

hy € H has VC-dimension O(dT log(dT)). Since Adaboost’s predictor is in this class,

this implies that whp the gap between its empirical error and true error is O(y/L2),

m
where m is the number of examples in the training set S.

The above bound depends on T', suggesting that if we run Adaboost longer, we will overfit
more. However, in practice often Adaboost does not have this problem. Here we will see an
explanation using Rademacher complexity and the notion of L; margins (defined below).

Let R, (H) be the empirical Rademacher complexity of H. To define margin, let’s scale the
ot used in the final predictor sgn(f(z)) produced by Adaboost so that >/, a; = 1. For
a labeled example (x,y), define the margin of the prediction as yf(z); that is, this is the
strength of the vote on example z (and is positive if the vote is correct). What you will prove
is that for any value 6, with probability > 1 — §:
Pr(yf(z) < 0) < Pr(yf(z) < 0) + O(GRum(H)) + O/ =),
(b) Let conv(H) be the set of all convex combinations of functions in H; so f € conv(H).
Prove that Ry,(conv(H)) = Rpyn(H).

(¢) Now, define the function

1 if2<0
Pp(z)=¢q 1—-2/0 if0<2<4
0 ifz>86

Argue why Prp(yf(z) < 0) < Ep[é(yf(2))] and Es[6(yf(2))] < Prs(yf(z) < 0).

(d) The contraction lemma states that if ¢ is a function with Lipschitz constant p (changing
its input by A can change the value of ¢ by at most pA) then for any class of functions F,
the set of functions of the form ¢(f(z)) for f € F has empirical Rademacher complexity
at most pRy, (F).

Now, let G be the set of functions of the form ¢(yf(z)) for f € conv(H). In class we
showed that for any class G, with probability > 1 — 6 we have that for every g € G,

Eplg(x,y)] < Eslg(z,y)] + O(Rn(G)) + O( M). Using this fact along with parts

m
(b) and (c) and the contraction lemma, prove the desired guarantee.



