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Boosting

• Works by creating a series of challenge datasets s.t. even 
modest performance on these can be used to produce an 
overall high-accuracy predictor.

• Backed up by solid foundations.

• Works amazingly well in practice --- Adaboost and its 
variations one of the top 10 algorithms.

• General method for improving the accuracy of any given 
learning algorithm.

Readings: 

• The Boosting Approach to Machine Learning: An 
Overview.  Rob Schapire, 2001

• Theory and Applications of Boosting. NIPS tutorial.  
http://www.cs.princeton.edu/~schapire/talks/nips-tutorial.pdf

Plan for today: 
• Motivation.

• A bit of history.

• Adaboost: algo, guarantees, discussion.

• Focus on supervised classification.

An Example: Spam Detection

Key observation/motivation:

• Easy to find rules of thumb that are often correct.

• Harder to find single rule that is very highly accurate.

• E.g., “If buy now in the message, then predict spam.”

Not spam spam

• E.g., “If say good-bye to debt in the message, then predict spam.”

• E.g., classify which emails are spam and which are important.
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• Boosting: meta-procedure that takes in an algo for finding rules 
of thumb (weak learner). Produces a highly accurate rule, by calling 
the weak learner repeatedly on cleverly chosen datasets.

An Example: Spam Detection

• apply weak learner to a subset of emails, obtain rule of thumb
• apply to 2nd subset of emails, obtain 2nd rule of thumb
• apply to 3rd subset of emails, obtain 3rd rule of thumb
• repeat T times; combine weak rules into a single highly accurate rule.

…
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Boosting: Important Aspects

How to choose examples on each round?

How to combine rules of thumb into single 
prediction rule?

• take (weighted) majority vote of rules of thumb

• Typically, concentrate on “hardest” examples (those most 
often misclassified by previous rules of thumb)

Historically….

Weak Learning vs Strong/PAC Learning
• [Kearns & Valiant ’88]:  defined weak learning:
being able to predict better than random guessing 
(error ) , consistently.

• Posed an open pb: “Does there exist a boosting algo that 
turns a weak learner into a strong PAC learner (that can 
produce arbitrarily accurate hypotheses)?”

• Informally, given “weak” learning algo that can consistently 
find classifiers of error , a boosting algo would 
provably construct a single classifier with error .



3

Weak Learning vs Strong/PAC Learning
Strong (PAC) Learning

• ∃	algo A
• ∀	 ∈
• ∀
• ∀	 0
• ∀	 0
• A produces h s.t.:

Weak Learning

• ∃	algo A
• ∃ 0
• ∀	 ∈
• ∀

• ∀	

• ∀	 0
• A produces h s.t.Pr 	

Pr 	

• [Kearns & Valiant ’88]:  defined weak learning & 
posed an open pb of finding a boosting algo.

Surprisingly….
Weak Learning =Strong (PAC) Learning

Original Construction [Schapire ’89]:
• poly-time boosting algo, exploits that we can 

learn a little on every distribution.

• A modest booster obtained via calling the weak learning 
algorithm on 3 distributions.

• Cool conceptually and technically, not very practical.

• Then amplifies the modest boost of accuracy by 
running this somehow recursively.

Error → error 3 2

An explosion of subsequent work

Adaboost (Adaptive Boosting)

[Freund-Schapire, JCSS’97]

Godel Prize winner 2003 

“A Decision-Theoretic Generalization of On-Line 
Learning and an Application to Boosting”



4

Informal Description Adaboost

• For t=1,2, … ,T
• Construct D on {x , …, x }
• Run A on D producing h : → 1,1 (weak classifier)

x ∈ , ∈ 1,1

+
++

+
+

++

+

- -
-

-

- -

-
-

h

• Boosting: turns a weak algo into a strong (PAC) learner.

• Output H sign ∑

Input: S={(x , ), …,(x , )};

Roughly speaking D increases weight on x 	if h incorrect on x ; 
decreases it on x 	if	h 	 correct.

weak learning algo A (e.g., Naïve Bayes, decision stumps)

ϵ P 	~ h x y error of h over D

Adaboost (Adaptive Boosting)

• For t=1,2, … ,T
• Construct on { , …, }
• Run A on D producing h

D puts half of weight on examples
x where h is incorrect & half on
examples where h is correct

• Weak learning algorithm A.

	e 		 if	

	e 		 if	

Constructing 
[i.e., D ]

• Given D and h set

1
2
ln

1
0

Final hyp: H sign ∑

• D uniform on {x , …, x }

	e 	 		

Adaboost: A toy example

Weak classifiers:  vertical or horizontal half-planes (a.k.a. decision stumps)

Adaboost: A toy example
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Adaboost: A toy example Adaboost (Adaptive Boosting)

• For t=1,2, … ,T
• Construct on { , …, }
• Run A on D producing h

D puts half of weight on examples
x where h is incorrect & half on
examples where h is correct

• Weak learning algorithm A.

	e 		 if	

	e 		 if	

Constructing 
[i.e., D ]

• Given D and h set

1
2
ln

1
0

Final hyp: H sign ∑

• D uniform on {x , …, x }

	e 	 		

Nice Features of Adaboost
• Very general: a meta-procedure, it can use any weak learning 

algorithm!!! 

• Very fast (single pass through data each round) & simple to 
code, no parameters to tune.

• Grounded in rich theory.

• Shift in mindset: goal is now just to find classifiers a 
bit better than random guessing.

• Relevant for big data age: quickly focuses on “core 
difficulties”, well-suited to distributed settings, where data 
must be communicated efficiently [Balcan-Blum-Fine-Mansour COLT’12].

(e.g., Naïve Bayes, decision stumps)

Analyzing Training Error

Theorem 1/2 (error of over )

exp 	 2	

So, if ∀ , 0, then exp 	 2	

Adaboost is adaptive
• Does not need to know or T a priori
• Can exploit ≫ 	

The training error drops exponentially in T!!!

To get , need only log 	rounds 
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Understanding the Updates & Normalization

Pr 	
:

1
	 	

1
	
1

1

Pr 	
:

Probabilities are equal!  

	

:

Claim: D puts half of the weight on x where h was incorrect  and 
half of the weight on x where h was correct.

Recall 	e 	 		

1 2 1

: :

	
1
	 	

1 1

• If incorrectly classifies ,

Analyzing Training Error: Proof Intuition

- Then incorrectly classified by (wtd) majority of ’s.

• On round , we increase weight of for which is wrong.  

- Which implies final prob. weight of is large.

Can show probability 
∏

• Since sum of prob. 1, can’t have too many of high weight.  

And ∏ → 0 .

Can show # incorrectly classified 	 ∏ . 

Theorem 1/2 (error of over )

exp 	 2	

Analyzing Training Error: Proof Math

Step 1: unwrapping recurrence: 	
∏

where ∑ .

Step 2:	err ∏ .

Step 3: ∏ ∏ 2 1 ∏ 1 4 ∑

[Unthresholded weighted vote of on ]

Analyzing Training Error: Proof Math

Step 1: unwrapping recurrence: 	
∏

where ∑ .

Recall and 

		

…… .

⋯

	
⋯

⋯ ∏
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Analyzing Training Error: Proof Math

Step 1: unwrapping recurrence: 	
∏

where ∑ .

	err
1

1

1

0

0/1 loss

exp loss

1
1

1
exp

∏ .

Step 2:	err ∏ .

Analyzing Training Error: Proof Math

Step 1: unwrapping recurrence: 	
∏

where ∑ .

Step 2:	err ∏ .

Step 3: ∏ ∏ 2 1 ∏ 1 4 ∑

Note: recall 1 2 1

minimizer of → 1

Step 2: #mistakes ∑ 1
	 ∑ 1

Step 3: Each mistake of has 
∏

, so 
total number of mistakes ∏ .

Step 4: ∏ ∏ 2 1 ∏ 1 4 ∑

Analyzing Training Error: Proof Math

Step 1: unwrapping recurrence: 	
∏

where ∑ .

• Why does ∏ → 0?

• On round , we have 1 probability mass that 
gets correct and that gets incorrect.

• Our reweighting replaces these with their geometric 
mean 1 , which is less than .

• So we normalize by 2 1 , which is less than 1.

• If , then geometric mean would be , would 
normalize by 1, and get nowhere, but that makes 
sense since is just guessing!

Analyzing Training Error: Proof Intuition
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• If incorrectly classifies ,

Analyzing Training Error: Proof Intuition

- Then incorrectly classified by (wtd) majority of ’s.

• On round , we increase weight of for which is wrong.  

- Which implies final prob. weight of is large.

Can show probability 
∏

• Since sum of prob. 1, can’t have too many of high weight.  

And ∏ → 0 .

Can show # incorrectly classified 	 ∏ . 

Theorem 1/2 (error of over )

exp 	 2	

Generalization Guarantees

G={all fns of the form sign ∑ 	}

is a weighted vote, so the hypothesis class is: 

Theorem [Freund&Schapire’97]

∀	 ∈ ,  T= # of rounds

Key reason: VCd plus typical VC bounds.

• H space of weak hypotheses; d=VCdim(H)

Theorem where 1/2exp 	 2	

How about generalization guarantees?
Original analysis [Freund&Schapire’97]

Generalization Guarantees
Theorem [Freund&Schapire’97]

∀	 ∈ ,  where d=VCdim(H)

error

complexity

train error

generalization
error

T= # of rounds

Generalization Guarantees
• Experiments with boosting showed that the test error of 

the generated classifier usually does not increase as its 
size becomes very large.

• Experiments showed that continuing to add new weak 
learners after correct classification of the training set had 
been achieved could further improve test set performance!!!
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Generalization Guarantees

• Experiments with boosting showed that the test error of 
the generated classifier usually does not increase as its 
size becomes very large.

• Experiments showed that continuing to add new weak 
learners after correct classification of the training set had 
been achieved could further improve test set performance!!!

• These results seem to contradict FS’87 bound and Occam’s 
razor (in order achieve good test error the classifier should be as 
simple as possible)!

How can we explain the experiments?

Key Idea:

R. Schapire, Y. Freund, P. Bartlett, W. S. Lee. present in 
“Boosting the margin: A new explanation for the effectiveness 
of voting methods” a nice theoretical explanation.

Training error does not tell the whole story. 
We need also to consider the classification confidence!!

Boosting didn’t seem 
to overfit…(!)

test 
errortrain 

error

test error of base classifier 
(weak learner)

Error Curve, Margin Distr. Graph - Plots from [SFBL98]

…because it turned out to be 
increasing the margin of the 

classifier

Classification Margin
• H space of weak hypotheses. Define the convex hull of H to be

• Let ∈ , ∑ , 0,	 ∑ 1. 

The majority vote rule given by	 (given by ) 
predicts wrongly on example , iff 0.

∑ , 0, ∑ 1, ∈

Definition: margin of (or of ) on example , to be . 

::

The margin is positive iff . 
See  | | as the strength or the confidence of the vote.

1

High confidence, 
correct

-1

High confidence, 
incorrect

Low confidence
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Gen. error as a function of margin Distributions
Assume that the examples are generated i.i.d. according to some 
distr. over 1,1 ; denote by Pr ⋅ the probability when , 	is 
chosen from . 

If S is a training set (a sample of size , 	 	 , , 	 	 	 , ), 
then we denote by Pr ⋅ the probability when , 	is chosen uniformly 
at random from . 

Theorem 2: if is finite, then with prob 1 , ∀ ∈ , ∀ 0,

Pr 0 Pr 	 ln

Theorem 3: if has VC-dim d, then w.prob 1 , ∀ ∈ , ∀ 0,

Pr 0 Pr 	
	

ln

Boosting and Margins

Theorem 2: If is finite, then with prob 1 , ∀ ∈ , ∀ 0,

Pr 0 Pr 	 ln

Theorem 3:VCdim( , then with prob 1 , ∀ ∈ , ∀ 0,

Pr 0 Pr 	
	

ln

Note:  bound does not depend on the # of rounds of boosting, 
depends only on the complex. of the weak hyp space and the margin!

Boosting and Margins

• If all training examples have large margins, then we can 
approximate the final classifier by a much smaller classifier.

Theorem 3:VCdim( , then with prob 1 , ∀ ∈ , ∀ 0,

Pr 0 Pr 	
	

ln

• Can use this to prove that better margin  smaller test error, 
regardless of the number of weak classifiers.

• Can also prove that boosting tends to increase the margin of 
training examples by concentrating on those of smallest margin.

• Although final classifier is getting larger, 
margins are likely to be increasing, so the 
final classifier is actually getting closer to a 
simpler classifier, driving down test error.

Boosting summary

• Very general: can use any given weak learning algorithm!!!

• Adaboost is very fast (single pass through data each round) & 
simple to code, no parameters to tune.

• Shift in mindset: goal is now just to find classifiers a 
bit better than random guessing.

• Relevant for big data age: quickly focuses on “core difficulties”, so 
well-suited to distributed settings, where data must be 
communicated efficiently [Balcan-Blum-Fine-Mansour COLT’12].

• Backed up by solid foundations.

• Adaboost work and its variations well in practice with 
many kinds of data (one of the top 10 algorithms).


