
Maria-Florina Balcan
03/23/2015

Kernels Methods in Machine Learning

• Perceptron. Geometric Margins.

• Support Vector Machines (SVMs).

Quick Recap about
Perceptron and Margins

Mistake bound model

• Example arrive sequentially.

The Online Learning Model

• We need to make a prediction.

Afterwards observe the outcome.

• Analysis wise, make no distributional assumptions.

• Goal: Minimize the number of mistakes.

Online Algorithm

Example 𝑥𝑖

Prediction ℎ(𝑥𝑖) Phase i:

Observe c∗(𝑥𝑖)

For i=1, 2, …, :

• Set t=1, start with the all zero vector 𝑤1.

Perceptron Algorithm in Online Model

• Given example 𝑥, predict + iff 𝑤𝑡 ⋅ 𝑥 ≥ 0

• On a mistake, update as follows:

• Mistake on positive, 𝑤𝑡+1 ← 𝑤𝑡 + 𝑥
• Mistake on negative, 𝑤𝑡+1 ← 𝑤𝑡 − 𝑥

Note 1: wt is weighted sum of incorrectly classified examples

𝑤𝑡 = 𝑎𝑖1𝑥𝑖1 +⋯+ 𝑎𝑖𝑘𝑥𝑖𝑘 So, 𝑤𝑡 ⋅ 𝑥 = 𝑎𝑖1𝑥𝑖1 ⋅ 𝑥 + ⋯+ 𝑎𝑖𝑘𝑥𝑖𝑘 ⋅ 𝑥

X

X
X

X

X

X

X
X

X
X

O

O

O

O

O O

O

O

w

Note 2: Number of mistakes ever made depends only on the
geometric margin of examples seen.

WLOG homogeneous linear separators [w0 = 0].

• No matter how long the sequence is or how high dimension n is!

X = Rn

Geometric Margin
Definition: The margin of example 𝑥 w.r.t. a linear sep. 𝑤 is the
distance from 𝑥 to the plane 𝑤 ⋅ 𝑥 = 0.

𝑥1

w

Margin of example 𝑥1

𝑥2

Margin of example 𝑥2

If 𝑤 = 1, margin of x
w.r.t. w is |𝑥 ⋅ 𝑤|.

+
+

+
+ -

-
-

-

-

𝛾
𝛾

+

- -

-
-

w

Definition: The margin 𝛾 of a set of examples 𝑆 is the maximum
𝛾𝑤 over all linear separators 𝑤.

Geometric Margin

Definition: The margin 𝛾𝑤 of a set of examples 𝑆 wrt a linear
separator 𝑤 is the smallest margin over points 𝑥 ∈ 𝑆.

Definition: The margin of example 𝑥 w.r.t. a linear sep. 𝑤 is the
distance from 𝑥 to the plane 𝑤 ⋅ 𝑥 = 0.

Perceptron: Mistake Bound
Theorem: If data linearly separable by margin 𝛾 and points inside
a ball of radius 𝑅, then Perceptron makes ≤ 𝑅/𝛾 2 mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes; algo is invariant to scaling.)

+ +

+
+

+
+

+

-

-
-

-

-

- -
-
-

+

w*

R

Margin: the amount of
wiggle-room available for
a solution.

• No matter how long the sequence is how high dimension n is!

Perceptron Extensions

• Can use it to find a consistent separator with a given set
S linearly separable by margin 𝛾 (by cycling through the data).

• Can convert the mistake bound guarantee into a distributional
guarantee too (for the case where the 𝑥𝑖s come from a fixed

distribution).

• Can be adapted to the case where there is no perfect
separator as long as the so called hinge loss (i.e., the total
distance needed to move the points to classify them correctly large

margin) is small.

• Can be kernelized to handle non-linear decision boundaries!

Theorem: If data linearly separable by margin 𝛾 and points inside
a ball of radius 𝑅, then Perceptron makes ≤ 𝑅/𝛾 2 mistakes.

Implies that large margin classifiers have
smaller complexity!

Complexity of Large Margin Linear Sep.
• Know that in Rn we can shatter n+1 points with linear

separators, but not n+2 points (VC-dim of linear sep is n+1).

What if we require that the points be
linearly separated by margin 𝛾?

Can have at most
𝑅

𝛾

2
 points inside ball of radius R

that can be shattered at margin 𝛾 (meaning that every

labeling is achievable by a separator of margin 𝛾).

• So, large margin classifiers have smaller complexity!

• Less prone to overfitting!!!!

• Less classifiers to worry about that will look good over
the sample, but bad over all….

X

X
X

X

X

X

X X

X
X

O

O

O

O

O O

O

O

w

• Nice implications for usual distributional learning setting.

Both sample complexity and algorithmic implications.

Margin Important Theme in ML.

Sample/Mistake Bound complexity:

• If large margin, # mistakes Peceptron makes
is small (independent on the dim of the space)!

• If large margin 𝛾 and if alg. produces a large
margin classifier, then amount of data needed
depends only on R/𝛾 [Bartlett & Shawe-Taylor ’99].

Algorithmic Implications:

• Perceptron, Kernels, SVMs…

+ +
+
+ -

- -

-
-

𝛾
𝛾

+

- -
-

-

w

• Suggests searching for a
large margin classifier…

So far, talked about margins in
the context of (nearly) linearly
separable datasets

What if Not Linearly Separable

Problem: data not linearly separable in the most natural

feature representation.

Solutions:

• “Learn a more complex class of functions”
• (e.g., decision trees, neural networks, boosting).

• “Use a Kernel”

• “Use a Deep Network”

Example: vs
No good linear
separator in pixel
representation.

• “Combine Kernels and Deep Networks”

(a neat solution that attracted a lot of attention)

http://images.google.com/imgres?imgurl=http://www.classicsavers.com/casablanca.jpg&imgrefurl=http://www.classicsavers.com/Casablanca.html&h=600&w=800&sz=72&tbnid=wSXOd5UUibIJ:&tbnh=106&tbnw=141&start=3&prev=/images?q=casablanca&hl=en&lr=&ie=UTF-8
http://images.google.com/imgres?imgurl=http://www.classicsavers.com/casablanca.jpg&imgrefurl=http://www.classicsavers.com/Casablanca.html&h=600&w=800&sz=72&tbnid=wSXOd5UUibIJ:&tbnh=106&tbnw=141&start=3&prev=/images?q=casablanca&hl=en&lr=&ie=UTF-8

Overview of Kernel Methods

What is a Kernel?

A kernel K is a legal def of dot-product: i.e. there exists an
implicit mapping Φ s.t. K(,) =Φ()⋅ Φ()

Why Kernels matter?

• Many algorithms interact with data only via dot-products.

• So, if replace x ⋅ z with K x, z they act implicitly as if data
was in the higher-dimensional Φ-space.

• If data is linearly separable by large margin in the Φ-space,
then good sample complexity.

E.g., K(x,y) = (x ¢ y + 1)d

: (n-dimensional space) ! nd-dimensional space

[Or other regularity properties for controlling the capacity.]

http://images.google.com/imgres?imgurl=http://www.classicsavers.com/casablanca.jpg&imgrefurl=http://www.classicsavers.com/Casablanca.html&h=600&w=800&sz=72&tbnid=wSXOd5UUibIJ:&tbnh=106&tbnw=141&start=3&prev=/images?q=casablanca&hl=en&lr=&ie=UTF-8
http://images.google.com/imgres?imgurl=http://www.classicsavers.com/casablanca.jpg&imgrefurl=http://www.classicsavers.com/Casablanca.html&h=600&w=800&sz=72&tbnid=wSXOd5UUibIJ:&tbnh=106&tbnw=141&start=3&prev=/images?q=casablanca&hl=en&lr=&ie=UTF-8
http://images.google.com/imgres?imgurl=http://www.classicsavers.com/casablanca.jpg&imgrefurl=http://www.classicsavers.com/Casablanca.html&h=600&w=800&sz=72&tbnid=wSXOd5UUibIJ:&tbnh=106&tbnw=141&start=3&prev=/images?q=casablanca&hl=en&lr=&ie=UTF-8
http://images.google.com/imgres?imgurl=http://www.classicsavers.com/casablanca.jpg&imgrefurl=http://www.classicsavers.com/Casablanca.html&h=600&w=800&sz=72&tbnid=wSXOd5UUibIJ:&tbnh=106&tbnw=141&start=3&prev=/images?q=casablanca&hl=en&lr=&ie=UTF-8

Kernels

Definition

K(⋅,⋅) is a kernel if it can be viewed as a legal definition of
inner product:

• ∃ ϕ: X → RN s.t. K x, z = ϕ x ⋅ ϕ(z)

• Range of ϕ is called the Φ-space.

• N can be very large.

• But think of ϕ as implicit, not explicit!!!!

Example

For n=2, d=2, the kernel K x, z = x ⋅ z d corresponds to

𝑥1, 𝑥2 → Φ 𝑥 = (𝑥1
2, 𝑥2
2, 2𝑥1𝑥2)

x2

x1

O

O O

O

O

O

O
O

X
X

X

X

X
X

X

X X

X

X

X

X

X

X

X

X
X

z1

z3

O

O

O
O

O

O

O

O O

X X

X X

X

X

X

X X

X

X

X

X

X

X

X X

X

Φ-space Original space

Example
ϕ:R2 → R3, x1, x2 → Φ x = (x1

2, x2
2, 2x1x2)

x2

x1

O

O O

O

O

O

O
O

X
X

X

X

X
X

X

X X

X

X

X

X

X

X

X

X
X

z1

z3

O

O

O
O

O

O

O

O O

X X

X X

X

X

X

X X

X

X

X

X

X

X

X X

X

Φ-space Original space

ϕ x ⋅ ϕ 𝑧 = x1
2, x2
2, 2x1x2 ⋅ (𝑧1

2, 𝑧2
2, 2𝑧1𝑧2)

= x1𝑧1 + x2𝑧2
2 = x ⋅ 𝑧 2 = K(x, z)

Kernels

Definition

K(⋅,⋅) is a kernel if it can be viewed as a legal definition of
inner product:

• ∃ ϕ: X → RN s.t. K x, z = ϕ x ⋅ ϕ(z)

• Range of ϕ is called the Φ-space.

• N can be very large.

• But think of ϕ as implicit, not explicit!!!!

Example

Note: feature space might not be unique.

ϕ:R2 → R4, x1, x2 → Φ x = (x1
2, x2
2, x1x2, x2x1)

ϕ x ⋅ ϕ 𝑧 = (x1
2, x2
2, x1x2, x2x1) ⋅ (z1

2, z2
2, z1z2, z2z1)

= x ⋅ 𝑧 2 = K(x, z)

ϕ:R2 → R3, x1, x2 → Φ x = (x1
2, x2
2, 2x1x2)

ϕ x ⋅ ϕ 𝑧 = x1
2, x2
2, 2x1x2 ⋅ (𝑧1

2, 𝑧2
2, 2𝑧1𝑧2)

= x1𝑧1 + x2𝑧2
2 = x ⋅ 𝑧 2 = K(x, z)

Avoid explicitly expanding the features

Feature space can grow really large and really quickly….

Crucial to think of ϕ as implicit, not explicit!!!!

– 𝑥1
𝑑 , 𝑥1𝑥2…𝑥𝑑 , 𝑥1

2𝑥2…𝑥𝑑−1

– Total number of such feature is

𝑑 + 𝑛 − 1
𝑑

=
𝑑 + 𝑛 − 1 !

𝑑! 𝑛 − 1 !

– 𝑑 = 6, 𝑛 = 100, there are 1.6 billion terms

• Polynomial kernel degreee 𝑑, 𝑘 𝑥, 𝑧 = 𝑥⊤𝑧 𝑑 = 𝜙 𝑥 ⋅ 𝜙 𝑧

𝑘 𝑥, 𝑧 = 𝑥⊤𝑧 𝑑 = 𝜙 𝑥 ⋅ 𝜙 𝑧

𝑂 𝑛 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛!

Kernelizing a learning algorithm

• If all computations involving instances are in terms of
inner products then:

 Conceptually, work in a very high diml space and the alg’s
performance depends only on linear separability in that
extended space.

 Computationally, only need to modify the algo by replacing
each x ⋅ z with a K x, z .

• Examples of kernalizable algos:

• classification: Perceptron, SVM.

• regression: linear, ridge regression.

• clustering: k-means.

• Set t=1, start with the all zero vector 𝑤1.

Kernelizing the Perceptron Algorithm

• Given example 𝑥, predict + iff 𝑤𝑡 ⋅ 𝑥 ≥ 0

• On a mistake, update as follows:

• Mistake on positive, 𝑤𝑡+1 ← 𝑤𝑡 + 𝑥

• Mistake on negative, 𝑤𝑡+1 ← 𝑤𝑡 − 𝑥

Easy to kernelize since 𝑤𝑡 is weighted sum of incorrectly
classified examples 𝑤𝑡 = 𝑎𝑖1𝑥𝑖1 +⋯+ 𝑎𝑖𝑘𝑥𝑖𝑘

𝑤𝑡 ⋅ 𝑥 = 𝑎𝑖1𝑥𝑖1 ⋅ 𝑥 + ⋯+ 𝑎𝑖𝑘𝑥𝑖𝑘 ⋅ 𝑥

X

X
X

X

X

X

X
X

X
X

O

O

O

O

O O

O

O

w

Replace

Note: need to store all the mistakes so far.

with
𝑎𝑖1 𝐾(𝑥𝑖1 , 𝑥) + ⋯+ 𝑎𝑖𝑘𝐾(𝑥𝑖𝑘 , 𝑥)

Kernelizing the Perceptron Algorithm

• Given 𝑥, predict + iff

• On the 𝑡 th mistake, update as follows:

• Mistake on positive, set 𝑎𝑖𝑡 ← 1; store 𝑥𝑖𝑡

• Mistake on negative, 𝑎𝑖𝑡 ← −1; store 𝑥𝑖𝑡

Perceptron 𝑤𝑡 = 𝑎𝑖1𝑥𝑖1 +⋯+ 𝑎𝑖𝑘𝑥𝑖𝑘

𝑤𝑡 ⋅ 𝑥 = 𝑎𝑖1𝑥𝑖1 ⋅ 𝑥 + ⋯+ 𝑎𝑖𝑘𝑥𝑖𝑘 ⋅ 𝑥

X

X
X

X

X

X

X X

X
X

O

O

O

O

O O

O

O

w

Exact same behavior/prediction rule as if mapped data in the
𝜙-space and ran Perceptron there!

→ 𝑎𝑖1 𝐾(𝑥𝑖1 , 𝑥) + ⋯+ 𝑎𝑖𝑘𝐾(𝑥𝑖𝑘 , 𝑥)

Φ-space

𝑎𝑖1 𝐾(𝑥𝑖1 , 𝑥) + ⋯+ 𝑎𝑖𝑡−1𝐾(𝑥𝑖𝑡−1 , 𝑥) ≥ 0

Do this implicitly, so computational savings!!!!!

𝜙(𝑥𝑖𝑡−1) ⋅ 𝜙(𝑥)

Generalize Well if Good Margin
• If data is linearly separable by margin in the 𝜙-space,

then small mistake bound.

• If margin 𝛾 in 𝜙-space, then Perceptron makes
𝑅

𝛾

2
 mistakes.

+
w*

+

+
+

+
+

+

-

-
-

-

-

-
-

-

-

+

R

Φ-space

Kernels: More Examples

• Polynomial: K x, 𝑧 = x ⋅ 𝑧 d or K x, 𝑧 = 1 + x ⋅ 𝑧 d

• Gaussian: K x, 𝑧 = exp −
𝑥−𝑧

2

2 𝜎2

• Linear: K x, z = x ⋅ 𝑧

• Laplace Kernel: K x, 𝑧 = exp −
||𝑥−𝑧||

2 𝜎2

• Kernel for non-vectorial data, e.g., measuring similarity
between sequences.

Properties of Kernels

Theorem (Mercer)

K is a kernel if and only if:

• K is symmetric

• For any set of training points 𝑥1, 𝑥2, … , 𝑥𝑚 and for
any 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ 𝑅, we have:

 𝑎𝑖𝑎𝑗𝐾 𝑥𝑖 , 𝑥𝑗 ≥ 0𝑖,𝑗

𝑎𝑇𝐾𝑎 ≥ 0

I.e., 𝐾 = (𝐾 𝑥𝑖 , 𝑥𝑗)𝑖,𝑗=1,…,𝑛 is positive semi-definite.

Kernel Methods

• Offer great modularity.

• No need to change the underlying learning
algorithm to accommodate a particular choice
of kernel function.

• Also, we can substitute a different algorithm
while maintaining the same kernel.

Kernel, Closure Properties

Easily create new kernels using basic ones!

then K x, z = c1K1 x, z + c2K2 x, z is a kernel.

If K1 ⋅,⋅ and K2 ⋅,⋅ are kernels c1 ≥ 0, 𝑐2 ≥ 0, Fact:

Key idea: concatenate the 𝜙 spaces.

ϕ x = (c1 ϕ1 x , c2 ϕ2(x))

ϕ x ⋅ ϕ(z) = c1 ϕ1 x ⋅ ϕ1 z + c2 ϕ2 x ⋅ ϕ2 z

𝐾1(𝑥, 𝑧) 𝐾2(𝑥, 𝑧)

Kernel, Closure Properties

then K x, z = K1 x, z K2 x, z is a kernel.

If K1 ⋅,⋅ and K2 ⋅,⋅ are kernels, Fact:

Key idea: ϕ x = ϕ1,i x ϕ2,j x 𝑖∈ 1,…,𝑛 ,𝑗∈{1,…,𝑚}

ϕ x ⋅ ϕ(z) = ϕ1,i x ϕ2,j x ϕ1,i z ϕ2,j z

𝑖,𝑗

= ϕ1,i x ϕ1,𝑖 z ϕ2,𝑗 x ϕ2,j z

𝑗

𝑖

= ϕ1,i x ϕ1,𝑖 z K2 x, z𝑖 = K1 x, z K2 x, z

Easily create new kernels using basic ones!

Kernels, Discussion

• Lots of Machine Learning algorithms are kernalizable:

• classification: Perceptron, SVM.

• regression: linear regression.

• clustering: k-means.

• If all computations involving instances are in terms
of inner products then:

 Conceptually, work in a very high diml space and the alg’s
performance depends only on linear separability in that
extended space.

 Computationally, only need to modify the algo by replacing
each x ⋅ z with a K x, z .

Kernels, Discussion
• If all computations involving instances are in terms

of inner products then:

 Conceptually, work in a very high diml space and the alg’s
performance depends only on linear separability in that
extended space.

 Computationally, only need to modify the algo by replacing
each x ⋅ z with a K x, z .

How to choose a kernel:

• Use Cross-Validation to choose the parameters, e.g., 𝜎 for
Gaussian Kernel K x, 𝑧 = exp −

𝑥−𝑧
2

2 𝜎2

• Learn a good kernel; e.g., [Lanckriet-Cristianini-Bartlett-El Ghaoui-
Jordan’04]

• Kernels often encode domain knowledge (e.g., string kernels)

