Machine Learning 10-601

Tom M. Mitchell Machine Learning Department Carnegie Mellon University

March 4, 2015

Today:

- Graphical models
- Bayes Nets:
 - EM
 - Mixture of Gaussian clustering
 - Learning Bayes Net structure (Chow-Liu)

Readings:

- Bishop chapter 8
- Mitchell chapter 6

Learning of Bayes Nets

- Four categories of learning problems
 - Graph structure may be known/unknown
 - Variable values may be fully observed / partly unobserved
- Easy case: learn parameters for graph structure is *known*, and data is *fully observed*
- Interesting case: graph *known*, data *partly known*
- Gruesome case: graph structure *unknown*, data *partly unobserved*

EM Algorithm - Informally

EM is a general procedure for learning from partly observed data Given observed variables X, unobserved Z (X={F,A,H,N}, Z={S})

Begin with arbitrary choice for parameters $\boldsymbol{\theta}$

Iterate until convergence:

- E Step: estimate the values of unobserved Z, using $\boldsymbol{\theta}$
- M Step: use observed values plus E-step estimates to derive a better $\boldsymbol{\theta}$

Guaranteed to find local maximum. Each iteration increases $E_{P(Z|X,\theta)}[\log P(X, Z|\theta')]$

EM Algorithm - Precisely

EM is a general procedure for learning from partly observed data Given observed variables X, unobserved Z (X={F,A,H,N}, Z={S}) \checkmark

Define
$$Q(\theta'|\theta) = E_{P(Z|X,\theta)}[\log P(X, Z|\theta')]$$

 $\uparrow_{\text{current}} \land \text{Mstep new}$

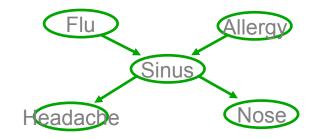
Iterate until convergence:

• E Step: Use X and current θ to calculate P(Z|X, θ)

• M Step: Replace current
$$\theta$$
 by
 $\theta \leftarrow \arg \max_{\theta'} Q(\theta' | \theta)$

Guaranteed to find local maximum. Each iteration increases $E_{P(Z|X,\theta)}[\log P(X, Z|\theta')]$ E Step: Use X, θ , to Calculate P(Z|X, θ)

observed X={F,A,H,N}, unobserved Z={S}



• How? Bayes net inference problem.

$$P(S_k = 1 | f_k a_k h_k n_k, \theta) = \frac{P(S_k = 1, f_k a_k h_k n_k | \theta)}{P(S_k = 1, f_k a_k h_k n_k | \theta) + P(S_k = 0, f_k a_k h_k n_k | \theta)}$$

let's use p(a,b) as shorthand for p(A=a, B=b)

EM and estimating
$$\theta_{s|ij}$$

observed X = {F,A,H,N}, unobserved Z={S}

E step: Calculate P(Z_k|X_k; θ) for each training example, k $P(S_{k} = 1|f_{k}a_{k}h_{k}n_{k}, \theta) = E[s_{k}] = \frac{P(S_{k} = 1, f_{k}a_{k}h_{k}n_{k}|\theta)}{P(S_{k} = 1, f_{k}a_{k}h_{k}n_{k}|\theta) + P(S_{k} = 0, f_{k}a_{k}h_{k}n_{k}|\theta)}$ M step: update all relevant parameters. For example: $\theta_{s|ij} \leftarrow \frac{\sum_{k=1}^{K} \delta(f_{k} = i, a_{k} = j) E[s_{k}]}{\sum_{k=1}^{K} \delta(f_{k} = i, a_{k} = j)}$

Recall MLE was:
$$\theta_{s|ij} = \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j, s_k = 1)}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}$$

EM and estimating θ

More generally, Given observed set X, unobserved set Z of boolean values

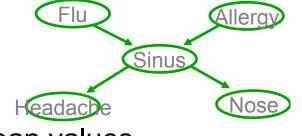
E step: Calculate for each training example, k

the expected value of each unobserved variable in each training example

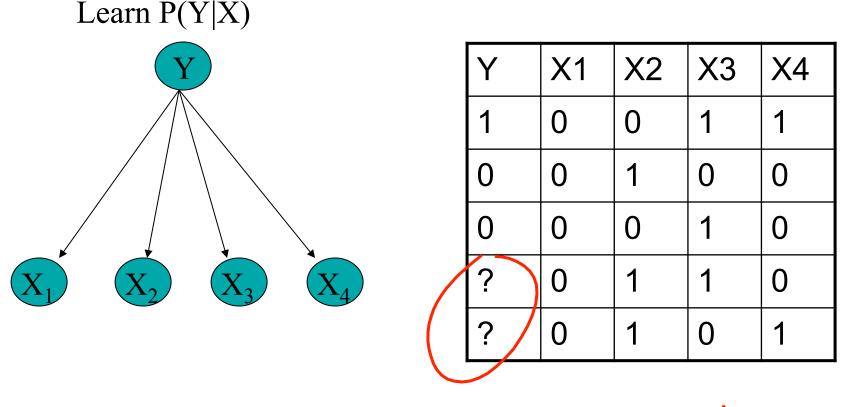
M step:

Calculate θ similar to MLE estimates, but replacing each count by its <u>expected count</u>

 $\delta(Y = 1) \rightarrow E_{Z|X,\theta}[Y] \qquad \delta(Y = 0) \rightarrow (1 - E_{Z|X,\theta}[Y])$



Using Unlabeled Data to Help Train Naïve Bayes Classifier



Unlab $P(X, X_2, X_3, X_4)$

EM and estimating θ

Given observed set X, unobserved set Y of boolean values

E step: Calculate for each training example, k the expected value of each unobserved variable Y $E_{P(Y|X_1...X_N)}[y(k)] = P(y(k) = 1|x_1(k), \dots x_N(k); \theta) = \frac{P(y(k) = 1)\prod_i P(x_i(k)|y(k) = 1)}{\sum_{i=0}^1 P(y(k) = j)\prod_i P(x_i(k)|y(k) = j)}$ M step: Calculate estimates similar to MLE, but replacing each count by its expected count $\theta_{ij|m} = \hat{P}(X_i = j|Y = m) = \frac{\sum_k P(y(k) = m|x_1(k) \dots x_N(k)) \ \delta(x_i(k) = j)}{\sum_k P(y(k) = m|x_1(k) \dots x_N(k))}$

 (\mathbf{X}_{2})

MLE would be:
$$\hat{P}(X_i = j | Y = m) = \frac{\sum_k \delta((y(k) = m) \land (x_i(k) = j))}{\sum_k \delta(y(k) = m)}$$

Experimental Evaluation

From [Nigam et al., 2000]

- Newsgroup postings
 - 20 newsgroups, 1000/group
- Web page classification
 - student, faculty, course, project
 - 4199 web pages
- Reuters newswire articles
 - 12,902 articles
 - 90 topics categories

20 Newsgroups

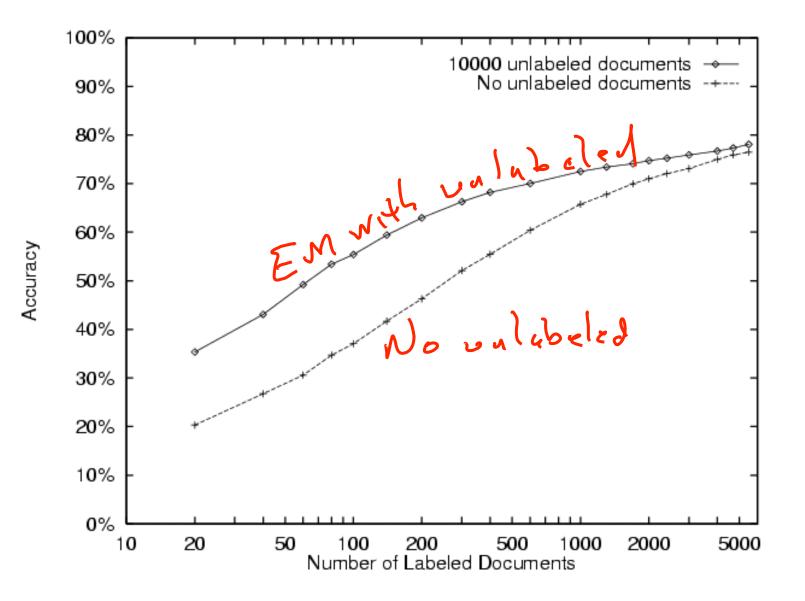
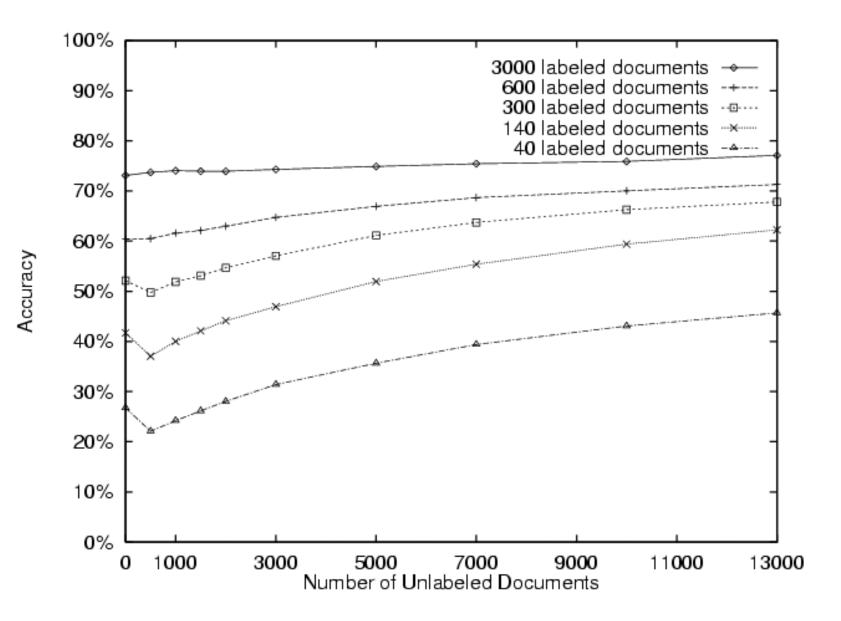


Table 3. Lists of the words most predictive of the course class in the WebKB data set, as they change over iterations of EM for a specific trial. By the second iteration of EM, many common course-related words appear. The symbol D indicates an arbitrary digit.

Iteration 0		Iteration 1	Iteration 2
intelligence DD artificial understanding DDw dist	word w ranked by P(w Y=course) / P(w Y ≠ course)	DD D lecture cc D* DD:DD	D DD lecture cc DD:DD due
identical rus arrange games dartmouth natural cognitive logic proving prolog knowledge human representation field		handout due problem set tay DDam	D* homework assignment handout set hw
	Using one labeled example per class	yurttas homework kfoury	exam problem DDam
		sec postscript exam solution assaf	postscript solution quiz chapter ascii

20 Newsgroups



Usupervised clustering

Just extreme case for EM with zero labeled examples...

Clustering

- Given set of data points, group them
- Unsupervised learning
- Which patients are similar? (or which earthquakes, customers, faces, web pages, ...)

Mixture Distributions

Model joint $P(X_1 \dots X_n)$ as mixture of multiple distributions.

Use discrete-valued random var Z to indicate which

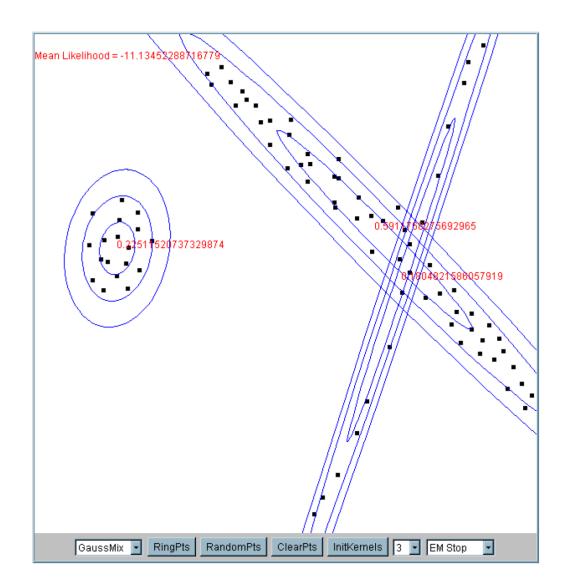
distribution is being use for each random draw

So
$$P(X_1...X_n) = \sum_i P(Z=i) P(X_1...X_n|Z)$$

Mixture of Gaussians:

- Assume each data point X=<X1, ... Xn> is generated by one of several Gaussians, as follows:
- 1. randomly choose Gaussian i, according to P(Z=i)
- 2. randomly generate a data point <x1,x2 .. xn> according to $N(\mu_i, \Sigma_i)$

Mixture of Gaussians



EM for Mixture of Gaussian Clustering

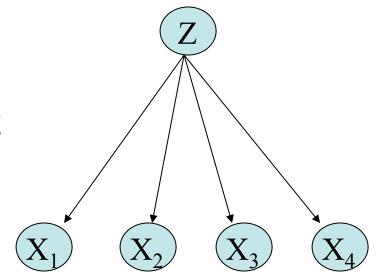
Let's simplify to make this easier:

- 1. assume $X = \langle X_1 \dots X_n \rangle$, and the X_i are conditionally independent given Z. $P(X|Z = j) = \prod N(X_i|\mu_{ji}, \sigma_{ji})$
- 2. assume only 2 clusters (values of Z), and $\forall i, j, \sigma_{ji} = \sigma$ $P(\mathbf{X}) = \sum_{j=1}^{2} P(Z = j | \pi) \prod_{i} N(x_i | \mu_{ji}, \sigma)$ (Z)
- 3. Assume σ known, $\pi_{l} \dots \pi_{K_{i}} \mu_{li} \dots \mu_{Ki}$ unknown

Observed: $X = \langle X_1 \dots X_n \rangle$ Unobserved: Z

EM

Given observed variables X, unobserved Z Define $Q(\theta'|\theta) = E_{Z|X,\theta}[\log P(X, Z|\theta')]$ where $\theta = \langle \pi, \mu_{ji} \rangle$



Iterate until convergence:

- E Step: Calculate $P(Z(n)|X(n),\theta)$ for each example X(n). Use this to construct $Q(\theta'|\theta)$
- M Step: Replace current θ by $\theta \leftarrow \arg \max_{\theta'} Q(\theta'|\theta)$

EM – E Step

Ζ

X

 \mathbf{X}_{2}

X

X

Calculate $P(Z(n)|X(n),\theta)$ for each observed example X(n)

 $X(n) = \langle x_1(n), x_2(n), \dots x_T(n) \rangle.$

$$P(z(n) = k|x(n), \theta) = \frac{P(x(n)|z(n) = k, \theta) \quad P(z(n) = k|\theta)}{\sum_{j=0}^{1} p(x(n)|z(n) = j, \theta) \quad P(z(n) = j|\theta)}$$

$$P(z(n) = k|x(n), \theta) = \frac{\prod_{i} P(x_i(n)|z(n) = k, \theta)] \quad P(z(n) = k|\theta)}{\sum_{j=0}^{1} \prod_{i} P(x_i(n)|z(n) = j, \theta) \quad P(z(n) = j|\theta)}$$

$$P(z(n) = k | x(n), \theta) = \frac{\prod_{i} N(x_i(n) | \mu_{k,i}, \sigma)] (\pi^k (1 - \pi)^{(1-k)})}{\sum_{j=0}^{1} [\prod_{i} N(x_i(n) | \mu_{j,i}, \sigma)] (\pi^j (1 - \pi)^{(1-j)})}$$

First consider update for
$$\pi$$

$$Q(\theta'|\theta) = E_{Z|X,\theta}[\log P(X,Z|\theta')] = E[\log P(X|Z,\theta') + \log P(Z|\theta')]$$

$$\pi \leftarrow \arg \max_{\pi'} E_{Z|X,\theta}[\log P(Z|\pi')] = E_{Z|X,\theta}[\log P(Z|\pi')]$$

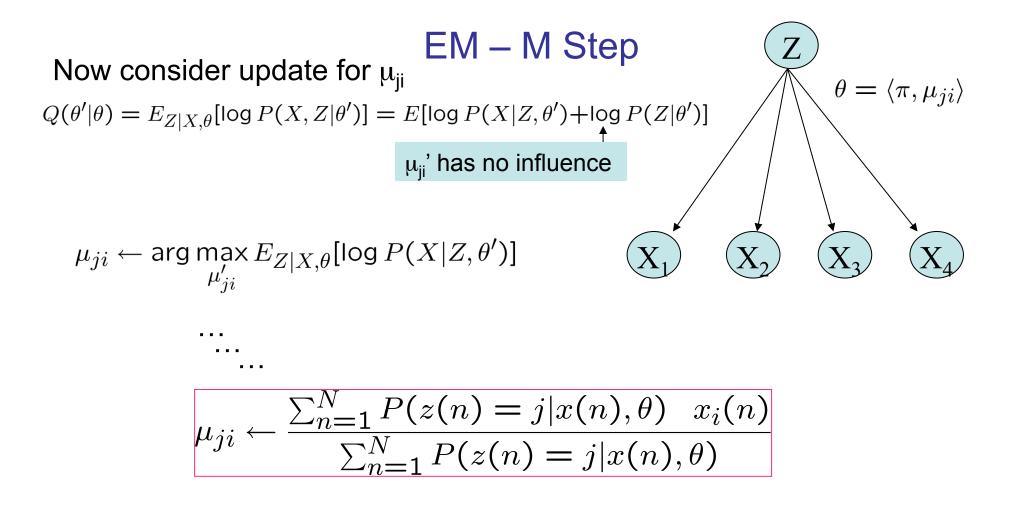
$$E_{Z|X,\theta}[\log P(Z|\pi')] = E_{Z|X,\theta}[\log \left(\pi'\sum_{n=2}^{\infty}(n)(1-\pi')\sum_{n}(1-z(n))\right)]$$

$$= E_{Z|X,\theta}\left[\left(\sum_{n=2}^{\infty}(x_n)\right)\log \pi' + \left(\sum_{n=2}^{\infty}(x_n)(1-z(n))\right)\log(1-\pi')\right]$$

$$= \left(\sum_{n=2}^{\infty}E_{Z|X,\theta}[z(n)]\right)\log \pi' + \left(\sum_{n=2}^{\infty}E_{Z|X,\theta}[(1-z(n)])\right)\log(1-\pi')$$

$$\frac{\partial E_{Z|X,\theta}[\log P(Z|\pi')]}{\partial \pi'} = \left(\sum_{n=2}^{\infty}E_{Z|X,\theta}[z(n)]\right)\frac{1}{\pi'} + \left(\sum_{n=2}^{\infty}E_{Z|X,\theta}[(1-z(n)])\right)\frac{(-1)}{1-\pi'}$$

$$\pi \leftarrow \frac{\sum_{n=1}^{n}E[z(n)]}{\left(\sum_{n=1}^{n}E[z(n)]\right) + \left(\sum_{n=1}^{\infty}(1-E[z(n)])\right)} = \frac{1}{N}\sum_{n=1}^{N}E[z(n)]$$

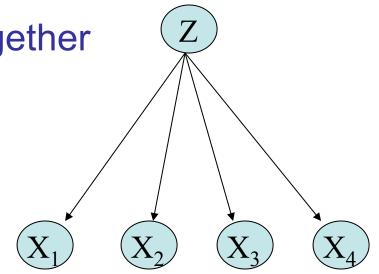


Compare above to MLE if Z were observable:

$$\mu_{ji} \leftarrow \frac{\sum_{n=1}^{N} \delta(z(n) = j) \quad x_i(n)}{\sum_{n=1}^{N} \delta(z(n) = j)}$$

EM – putting it together

Given observed variables X, unobserved Z Define $Q(\theta'|\theta) = E_{Z|X,\theta}[\log P(X, Z|\theta')]$ where $\theta = \langle \pi, \mu_{ji} \rangle$



Iterate until convergence:

2

- E Step: For each observed example X(n), calculate $P(Z(n)|X(n),\theta)$ $P(z(n) = k \mid x(n),\theta) = \frac{\left[\prod_{i} N(x_{i}(n)|\mu_{k,i},\sigma)\right] \quad (\pi^{k}(1-\pi)^{(1-k)})}{\sum_{j=0}^{1}\left[\prod_{i} N(x_{i}(n)|\mu_{j,i},\sigma)\right] \quad (\pi^{j}(1-\pi)^{(1-j)})}$
- M Step: Update $\theta \leftarrow \arg \max_{\theta'} Q(\theta'|\theta)$

$$\underbrace{\left(\begin{array}{c} \mathcal{I} \\ \pi \\ \mathcal{I} \end{array}\right)}_{n \in \mathbb{N}} \sum_{n=1}^{N} E[z(n)] \qquad \qquad \mu_{ji} \leftarrow \frac{\sum_{n=1}^{N} P(z(n) = j | x(n), \theta) \quad x_i(n)}{\sum_{n=1}^{N} P(z(n) = j | x(n), \theta)}$$

Mixture of Gaussians applet

Go to: <u>http://www.socr.ucla.edu/htmls/SOCR_Charts.html</u> then go to Go to "Line Charts" \rightarrow SOCR EM Mixture Chart

- try it with 2 Gaussian mixture components ("kernels")
- try it with 4

What you should know about EM

- For learning from partly unobserved data
- MLE of θ = arg max log $P(data|\theta)$
- EM estimate: $\theta = \arg \max_{\theta} E_{Z|X,\theta}[\log P(X, Z|\theta)]$ Where X is observed part of data, Z is unobserved
- Nice case is Bayes net of boolean vars:
 - M step is like MLE, with with unobserved values replaced by their expected values, given the other observed values
- EM for training Bayes networks
- Can also develop MAP version of EM
- Can also derive your own EM algorithm for your own problem
 - write out expression for $E_{Z|X,\theta}[\log P(X,Z|\theta)]$
 - E step: for each training example X^k , calculate $P(Z^k | X^k, \theta)$
 - M step: chose new θ to maximize

Learning Bayes Net Structure

How can we learn Bayes Net graph structure?

In general case, open problem

- can require lots of data (else high risk of overfitting)
- can use Bayesian methods to constrain search

One key result:

- Chow-Liu algorithm: finds "best" tree-structured network
- What's best?
 - suppose P(**X**) is true distribution, T(**X**) is our tree-structured network, where $\mathbf{X} = \langle X_1, \dots, X_n \rangle$
 - Chow-Liu minimizes Kullback-Leibler divergence:

$$KL(P(\mathbf{X}) \parallel T(\mathbf{X})) \equiv \sum_{k} P(\mathbf{X} = k) \log \frac{P(\mathbf{X} = k)}{T(\mathbf{X} = k)}$$

Chow-Liu Algorithm

<u>Key result</u>: To minimize KL(P || T), it suffices to find the tree network T that maximizes the sum of mutual informations over its edges

Mutual information for an edge between variable A and B:

$$I(A,B) = \sum_{a} \sum_{b} P(a,b) \log \frac{P(a,b)}{P(a)P(b)}$$

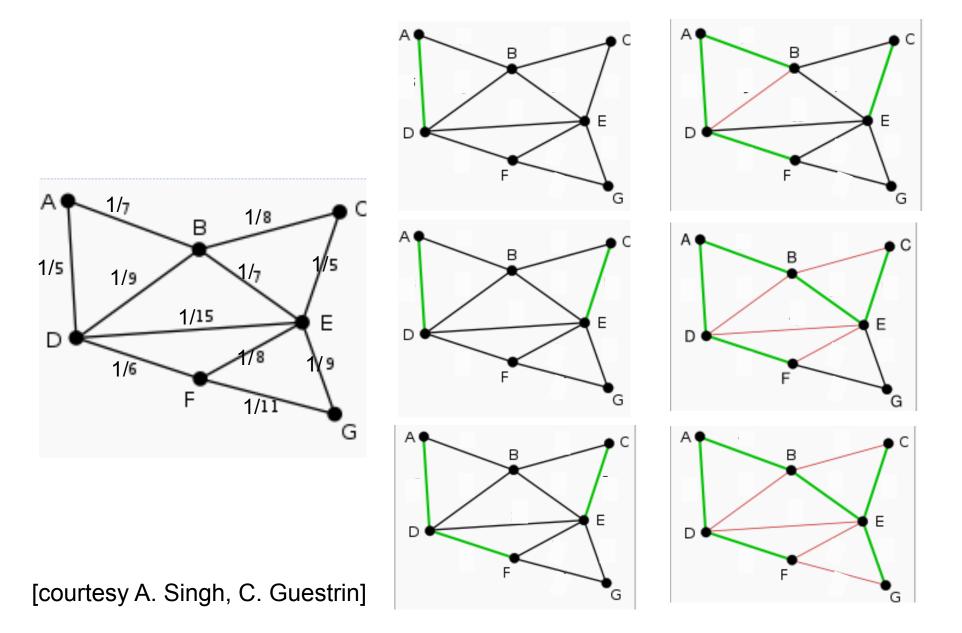
This works because for tree networks with nodes $X \equiv \langle X_1 \dots X_n \rangle$

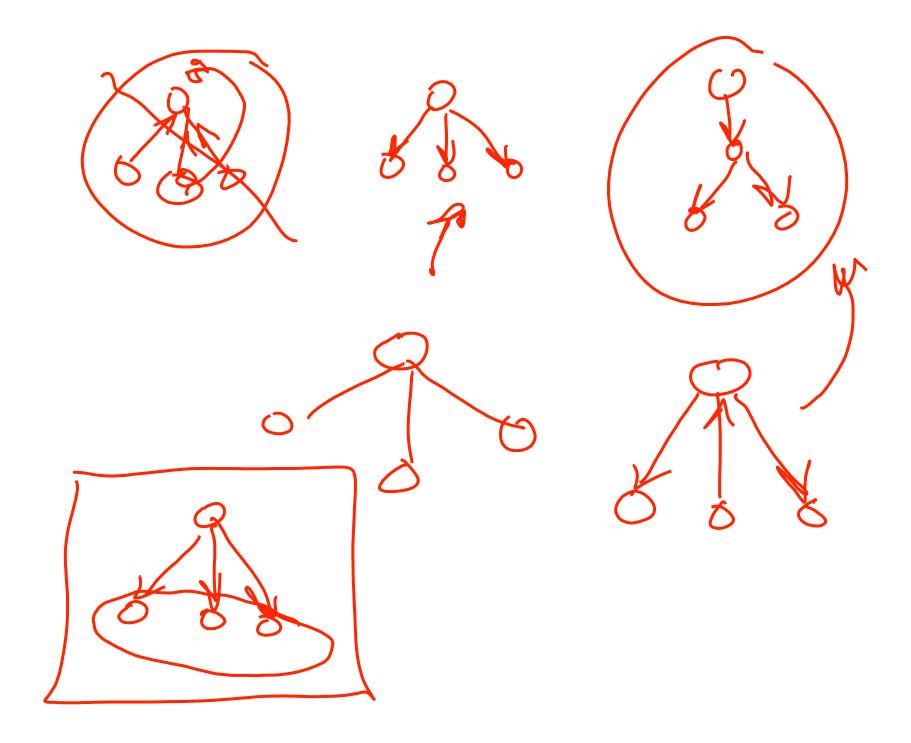
$$KL(P(\mathbf{X}) \parallel T(\mathbf{X})) \equiv \sum_{k} P(\mathbf{X} = k) \log \frac{P(\mathbf{X} = k)}{T(\mathbf{X} = k)}$$
$$= -\sum_{i} I(X_i, Pa(X_i)) + \sum_{i} H(X_i) - H(X_1 \dots X_n)$$

Chow-Liu Algorithm

- for each pair of vars A,B, use data to estimate P(A,B), P(A), P(B)
- 2. for each pair of vars A.B calculate mutual information $I(A,B) = \sum_{a} \sum_{b} P(a,b) \log \frac{P(a,b)}{P(a)P(b)}$
- 3. calculate the maximum spanning tree over the set of variables, using edge weights *I(A,B)* (given N vars, this costs only O(N²) time)
- 4. add arrows to edges to form a directed-acyclic graph
- 5. learn the CPD's for this graph

Chow-Liu algorithm example Greedy Algorithm to find Max-Spanning Tree





Bayes Nets – What You Should Know

- Representation
 - Bayes nets represent joint distribution as a DAG + Conditional Distributions
 - D-separation lets us decode conditional independence assumptions
- Inference
 - NP-hard in general
 - For some graphs, closed form inference is feasible
 - Approximate methods too, e.g., Monte Carlo methods, ...
- Learning
 - Easy for known graph, fully observed data (MLE's, MAP est.)
 - EM for partly observed data, known graph
 - Learning graph structure: Chow-Liu for tree-structured networks
 - Hardest when graph unknown, data incompletely observed