Bias, Variance and Error

Bias and Variance

given algorithm that outputs estimate θ for θ , we define:

the bias of the estimator: $E[\hat{\theta}] - \theta$

the <u>variance</u> of estimator: $E[(\hat{\theta} - E[\hat{\theta}])^2]$ e.g. $\hat{\theta}^{MLE}$ estimator for probability θ of heads, based on

n independent coin flips

what is its bias?

variance? $Var(\hat{\theta}^{MLE}) = \frac{\theta(1-\theta)}{n}$

Bias and Variance

given algorithm that outputs estimate $\hat{\theta}$ for θ , we define:

the bias of the estimator: $E[\hat{\theta}] - \theta$

the <u>variance</u> of estimator: $E[\ (\hat{\theta} - E[\hat{\theta}])^2\]$

which estimator has higher bias? higher variance?
$$\hat{\theta}^{MLE} = \frac{\alpha_1}{\alpha_1 + \alpha_0} \stackrel{\text{higher variance?}}{\text{var}} = \frac{\alpha_1 + \beta_1 - 1}{(\alpha_1 + \beta_1 - 1) + (\alpha_0 + \beta_0 + 1)} \stackrel{\text{higher variance?}}{\text{var}} = \frac{\alpha_1 + \beta_1 - 1}{(\alpha_1 + \beta_1 - 1) + (\alpha_0 + \beta_0 + 1)} \stackrel{\text{higher variance?}}{\text{var}} = \frac{\alpha_1 + \beta_1 - 1}{(\alpha_1 + \beta_1 - 1) + (\alpha_0 + \beta_0 + 1)} \stackrel{\text{higher variance?}}{\text{var}} = \frac{\alpha_1 + \beta_1 - 1}{(\alpha_1 + \beta_1 - 1) + (\alpha_0 + \beta_0 + 1)} \stackrel{\text{higher variance?}}{\text{var}} = \frac{\alpha_1 + \beta_1 - 1}{(\alpha_1 + \beta_1 - 1) + (\alpha_0 + \beta_0 + 1)} \stackrel{\text{higher variance?}}{\text{var}} = \frac{\alpha_1 + \beta_1 - 1}{(\alpha_1 + \beta_1 - 1) + (\alpha_0 + \beta_0 + 1)} \stackrel{\text{higher variance?}}{\text{var}} = \frac{\alpha_1 + \beta_1 - 1}{(\alpha_1 + \beta_1 - 1) + (\alpha_0 + \beta_0 + 1)} \stackrel{\text{higher variance?}}{\text{var}} = \frac{\alpha_1 + \beta_1 - 1}{(\alpha_1 + \beta_1 - 1) + (\alpha_0 + \beta_0 + 1)} \stackrel{\text{higher variance?}}{\text{var}} = \frac{\alpha_1 + \beta_1 - 1}{(\alpha_1 + \beta_1 - 1) + (\alpha_0 + \beta_0 + 1)} \stackrel{\text{higher variance?}}{\text{var}} = \frac{\alpha_1 + \beta_1 - 1}{(\alpha_1 + \beta_1 - 1) + (\alpha_0 + \beta_0 + 1)} \stackrel{\text{higher variance?}}{\text{var}} = \frac{\alpha_1 + \beta_1 - 1}{(\alpha_1 + \beta_1 - 1) + (\alpha_0 + \beta_0 + 1)} \stackrel{\text{higher variance?}}{\text{var}} = \frac{\alpha_1 + \beta_1 - 1}{(\alpha_1 + \beta_1 - 1) + (\alpha_0 + \beta_0 + 1)} \stackrel{\text{higher variance?}}{\text{var}} = \frac{\alpha_1 + \beta_1 - 1}{(\alpha_1 + \beta_1 - 1) + (\alpha_0 + \beta_0 + 1)} \stackrel{\text{higher variance?}}{\text{var}} = \frac{\alpha_1 + \beta_1 - 1}{(\alpha_1 + \beta_1 - 1) + (\alpha_0 + \beta_0 + 1)} \stackrel{\text{higher variance?}}{\text{var}} = \frac{\alpha_1 + \beta_1 - 1}{(\alpha_1 + \beta_1 - 1) + (\alpha_0 + \beta_0 + 1)} \stackrel{\text{higher variance?}}{\text{var}} = \frac{\alpha_1 + \beta_1 - 1}{(\alpha_1 + \beta_1 - 1) + (\alpha_0 + \beta_0 + 1)} \stackrel{\text{higher variance?}}{\text{var}} = \frac{\alpha_1 + \beta_1 - 1}{(\alpha_1 + \beta_1 - 1) + (\alpha_0 + \beta_0 + 1)} \stackrel{\text{higher variance?}}{\text{var}} = \frac{\alpha_1 + \beta_1 - 1}{(\alpha_1 + \beta_1 - 1) + (\alpha_0 + \beta_0 + 1)} \stackrel{\text{higher variance?}}{\text{var}} = \frac{\alpha_1 + \beta_1 - 1}{(\alpha_1 + \beta_1 - 1) + (\alpha_0 + \beta_0 + 1)} \stackrel{\text{higher variance?}}{\text{var}} = \frac{\alpha_1 + \beta_1 - 1}{(\alpha_1 + \beta_1 - 1) + (\alpha_0 + \beta_0 + 1)} \stackrel{\text{higher variance?}}{\text{var}} = \frac{\alpha_1 + \beta_1 - 1}{(\alpha_1 + \beta_1 - 1) + (\alpha_0 + \beta_0 + 1)} \stackrel{\text{higher variance?}}{\text{var}} = \frac{\alpha_1 + \beta_1 - 1}{(\alpha_1 + \beta_1 - 1) + (\alpha_1 + \beta_1 - 1)} \stackrel{\text{higher variance?}}{\text{var}} = \frac{\alpha_1 + \beta_1 - 1}{(\alpha_1 + \beta_1 - 1) + (\alpha_1 + \beta_1 - 1)} \stackrel{\text{high$$

Bias – Variance decomposition of error Reading: Bishop chapter 9.1, 9.2

Consider simple regression problem f:X-Y

$$y = f(x) + \varepsilon \qquad h(x) = w, + w, \times,$$
noise N(0,\sigma)

deterministic

Define the expected prediction error:

$$E_D \left[\int_y \int_x (h(x) - f(x))^2 p(y|x) p(x) dy dx \right]$$
 expectation over training D learned estimate of f(x)

Sources of error

What if we have perfect learner, infinite data?

- Our learned h(x) satisfies h(x)=f(x)
- Still have remaining, *unavoidable error*

Sources of error

- What if we have only n training examples?
- What is our expected error
 - Taken over random training sets of size n, drawn from distribution D=p(x,y)

$$E_D\left[\int_y \int_x (h(x) - f(x))^2 p(y|x) p(x) dy dx\right]$$

Sources of error

$$y = f(x) + \varepsilon$$
noise N(0,\sigma)

deterministic

$$E_{D} \left[\int_{y} \int_{x} (h(x) - f(x))^{2} p(y|x) p(x) dy dx \right]$$

 $= unavoidableError + bias^2 + variance$

$$bias^2 = \int (E_D[h(x)] - f(x))^2 p(x) dx$$

$$variance = \int E_D[(h(x) - E_D[h(x)])^2]p(x)dx$$

L2 vs. L1 Regularization

$$W = \arg\max_{W} \ln P(W) + \sum_{l} \ln(P(Y^{l}|X^{l};W))$$

Gaussian P(W)

→ L2 regularization

Laplace P(W)

→ L1 regularization

$$\ln P(W) \propto \sum_i w_i^2 \qquad \qquad \ln P(W) \propto \sum_i |w_i|$$

$$\text{constant P(Data|W)}$$

$$\text{w1}$$

$$\text{constant P(W)}$$

Summary

- Bias of parameter estimators
- Variance of parameter estimators
- We can define analogous notions for estimators (learners) of functions
- Expected error in learned functions comes from
 - unavoidable error (invariant of training set size, due to noise)
 - bias (can be caused by incorrect modeling assumptions)
 - variance (decreases with training set size)
- MAP estimates generally more biased than MLE
 - but bias vanishes as training set size $\rightarrow \infty$
- Regularization corresponds to producing MAP estimates
 - L2 / Gaussian prior / leads to smaller weights
 - L1 / Laplace prior / leads to fewer non-zero weights

Machine Learning 10-601

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

February 18, 2015

Today:

- Graphical models
- Bayes Nets:
 - Representing distributions
 - Conditional independencies
 - Simple inference
 - Simple learning

Readings:

Bishop chapter 8, through 8.2

Graphical Models

- Key Idea:
 - Conditional independence assumptions useful
 - but Naïve Bayes is extreme!
 - Graphical models express sets of conditional independence assumptions via graph structure
 - Graph structure plus associated parameters define joint probability distribution over set of variables

- Two types of graphical models:
 - Directed graphs (aka Bayesian Networks)
 - Undirected graphs (aka Markov Random Fields)

10-601

Graphical Models – Why Care?

- Among most important ML developments of the decade
- Graphical models allow combining:
 - Prior knowledge in form of dependencies/independencies
 - Prior knowledge in form of priors over parameters
 - Observed training data
- Principled and ~general methods for
 - Probabilistic inference
 - Learning
- Useful in practice
 - Diagnosis, help systems, text analysis, time series models, ...

Conditional Independence

Definition: X is conditionally independent of Y given Z, if the probability distribution governing X is independent of the value of Y, given the value of Z

$$(\forall i, j, k) P(X = x_i | Y = y_j, Z = z_k) = P(X = x_i | Z = z_k)$$

Which we often write P(X|Y,Z) = P(X|Z)

E.g., P(Thunder|Rain, Lightning) = P(Thunder|Lightning)

Marginal Independence

Definition: X is marginally independent of Y if

$$(\forall i, j) P(X = x_i, Y = y_j) = P(X = x_i) P(Y = y_j)$$

Equivalently, if

$$(\forall i, j) P(X = x_i | Y = y_j) = P(X = x_i)$$

Equivalently, if

$$(\forall i, j) P(Y = y_i | X = x_j) = P(Y = y_i)$$

Represent Joint Probability Distribution over Variables

Describe network of dependencies

Eric Xing

Bayes Nets define Joint Probability Distribution in terms of this graph, plus parameters

Benefits of Bayes Nets:

- Represent the full joint distribution in fewer parameters, using prior knowledge about dependencies
- Algorithms for inference and learning

Bayesian Networks Definition

A Bayes network represents the joint probability distribution over a collection of random variables

A Bayes network is a directed acyclic graph and a set of conditional probability distributions (CPD's)

- Each node denotes a random variable
- Edges denote dependencies
- For each node X_i its CPD defines P(X_i / Pa(X_i))
- The joint distribution over all variables is defined to be

$$P(X_1 ... X_n) = \prod_i P(X_i | Pa(X_i))$$

Pa(X) = immediate parents of X in the graph

Bayesian Network

Nodes = random variables

A conditional probability distribution (CPD) is associated with each node N, defining P(N | Parents(N))

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf

The joint distribution over all variables:

$$P(X_1 \dots X_n) = \prod_i P(X_i | Pa(X_i))$$

Bayesian Network

What can we say about conditional independencies in a Bayes Net?

One thing is this:

Each node is conditionally independent of its non-descendents, given only its immediate parents.

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf

Some helpful terminology

Parents = Pa(X) = immediate parents

Antecedents = parents, parents of parents, ...

Children = immediate children

Descendents = children, children of children, ...

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

Bayesian Networks

• CPD for each node X_i describes $P(X_i \mid Pa(X_i))$

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

Chain rule of probability says that in general:

$$P(S, L, R, T, W) = P(S)P(L|S)P(R|S, \mathcal{V})P(T|S, L, \mathcal{X})P(W|S, L, R, \mathcal{F})$$

But in a Bayes net:
$$P(X_1 ... X_n) = \prod_i P(X_i | Pa(X_i))$$

$$P(s, z, R, T, w) = P(s) P(z|s) P(z|s) P(z|s) P(z|z) P(w|z)$$

How Many Parameters?

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf

To define joint distribution in general?

To define joint distribution for this Bayes Net?

Inference in Bayes Nets

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf

$$P(S=1, L=0, R=1, T=0, W=1) =$$

Learning a Bayes Net

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf

Consider learning when graph structure is given, and data = { <s,l,r,t,w> } What is the MLE solution? MAP?