Bias, Variance and Error



Bias and Variance

given algorithm that outputs estimate é for 6 , we define:

A

the bias of the estimator: E[f] — 6

the variance of es/ttimator: B (é E[é]) ]
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Bias and Variance

given algorithm that outputs estimate é for 6 , we define:

A

the bias of the estimator: E[f] — 6

A ¢

the variance of estimator: F| (9 — E[Q])Z ]

which estimator has higher bias? higher variance?
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Bias — Variance d Iy f error
( Reading: Bishop chapter 9.1, 9.2

« Consider simple regression problem f:X-=2>Y

y =f(x) + ¢ (n(“)’-—y'-‘”/o"w"‘/

‘ noise N(0,0)

deterministic

Define the expected prediction error:
Ep [ / / (h(x) — f(x))*p(y|z)p(x)dyde
t gL

expectation
over learned

training D estimate of f(X)



= f
Sources of error y =10)

noise N(0,0)

deterministic

What if we have perfect learner, intinite data?
— Qur learned h(x) satisfies h(x)=f(x)
— Still have remaining, unavoidable error




Sources of error

« What if we have only n training examples?
 What is our expected error
— Taken over random training sets of size n,

drawn from distribution D=p(x,y)

[ (@ = r@)p(l)p(@)dyda




Sources of error

Ep

| | [ )

o

y =f(x) + ¢

~— —
noise N(0,0)
y deterministic
2
~F(2))2p(y|2)p(e)dyda
2 .

— unavoidable Error + bias? -+ variance

vias? = [(Eplh(@)] - f(2))?p(x)de

variance = /ED[(h(:B) — Ep[h(z)])?]p(z)dx



L2 vs. L1 Regularization

W = arg g max InPW)+ Y In(PY'|X"W)

Gaussian P(W)
- L2 regularization

Laplace P(W)
- L1 regularization

In P (‘V) X Z ’UJ;-Z In P (‘/V) X Z |’lU,’|




Summary

« Bias of parameter estimators
« Variance of parameter estimators

* We can define analogous notions for estimators
(learners) of functions

« Expected error in learned functions comes from
— unavoidable error (invariant of training set size, due to noise)
— bias (can be caused by incorrect modeling assumptions)
— variance (decreases with training set size)

 MAP estimates generally more biased than MLE
— but bias vanishes as training set size > OO

* Regularization corresponds to producing MAP estimates
— L2 / Gaussian prior / leads to smaller weights
— L1/ Laplace prior / leads to fewer non-zero weights
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Today: Readings:
« Graphical models « Bishop chapter 8, through 8.2
 Bayes Nets:

* Representing
distributions

« Conditional
independencies

« Simple inference
« Simple learning




Graphical Models

* Key ldea:
— Conditional independence assumptions useful
— but Naive Bayes is extreme!

— Graphical models express sets of conditional
iIndependence assumptions via graph structure

— Graph structure plus associated parameters define
joint probability distribution over set of variables

_ 10-601
* Two types of graphical models: S

— Directed graphs (aka Bayesian Networks)
— Undirected graphs (aka Markov Random Fields)



Graphical Models — Why Care?

Among most important ML developments of the decade

Graphical models allow combining:

— Prior knowledge in form of dependencies/independencies
— Prior knowledge in form of priors over parameters

— Observed training data

Principled and ~general methods for
— Probabilistic inference
— Learning

Useful in practice
— Diagnosis, help systems, text analysis, time series models, ...



Conditional Independence

Definition: X is conditionally independent of Y given Z, if the
probability distribution governing X is independent of the value
of Y, given the value of Z

(Vi,5,k)P(X = z;|Y = y;, Z = 2z,) = P(X = ;| Z = z)

Which we often write P(X|Y,Z) = P(X|Z)

E.g9.. P(Thunder|Rain, Lightning) = P(Thunder|Lightning)




Marginal Independence

Definition: X is marginally independent of Y if

(Vi, ) P(X = z;,Y = y;) = P(X = x;) P(Y = y;)

Equivalently, if

Vi, )) P(X = z;|Y = y;) = P(X = ;)

Equivalently, if
(Vi,7)P(Y = y|X = x;) = P(Y = y;)




Represent Joint Probability Distribution over Variables

[ Visit to Asia ] X, [ Smoking ] X,

[ Tuberculosis] X; [Lung Cancer] X, [ Bronchitis X

Tuberculosis
Xs
or Cancer

XRay Result ] X; [ Dyspnea X

Eric Xing

"o




Describe network of dependencies

I_ _______ ]
i [ Visit to Asia ] X, [ Smoking ] X, i
e S Patient Information
E [ Tuberculosis] X; [Lung Cancer ] X, [ Bronchitis ] Xs
Tuberculosis X
or Cancer 6
i [ XRay Result] ) & [ Dyspnea X, i

Eric Xing 4




Bayes Nets define Joint Probability Distribution
in terms of this graph, plus parameters

P (_“\']) *\v_h ‘\'3, 4\'49 *\vja ‘\vb', 4\'?’ —\:9)

= P(X,) P(X,) P(X,| X)) P(X,| X,) P(X{| X))
P(X) X, X,) P(X,) X)) P(X,| X,, X,)

Benefits of Bayes Nets:

* Represent the full joint distribution in fewer
parameters, using prior knowledge about
dependencies

 Algorithms for inference and learning



Bayesian Networks Definition

A Bayes network represents the joint probability distribution
over a collection of random variables

A Bayes network is a directed acyclic graph and a set of
conditional probability distributions (CPD’s)

« Each node denotes a random variable

* Edges denote dependencies

» For each node X, its CPD defines P(X; ! Pa(X.))

* The joint distribution over all variables is defined to be

P(X1...Xn) = [[ P(Xj|Pa(X)))

Pa(X) = immediate parents of X in the graph



Bayesian Network

Nodes = random variables

A conditional probability distribution (CPD)
Is associated with each node N, defining
P(N | Parents(N))

Parents P(W|Pa) P(~W|Pa)
L, R 0 1.0
Lightning L, =R 0 1.0
L, R 0.2 0.8
L, 7R 0.9 0.1

v v WindSurf
@ WindSurf
The joint distribution over all variables:

P(Xq1...Xpn) = H P(X;|Pa(X;))



Bayesian Network

Lightning

A 4

A 4

WindSurf

What can we say about conditional
independencies in a Bayes Net?

One thing is this:

Each node is conditionally independent of

its non-descendents, given only its
iImmediate parents.

Parents P(W|Pa) P(~W|Pa)
L, R 0 1.0
L, "R 0 1.0
L, R 0.2 0.8
L, 7R 0.9 0.1

WindSurf




Some helpful terminology

Parents = Pa(X) = immediate parents
Antecedents = parents, parents of parents, ...
Children = immediate children

Descendents = children, children of children, ...

Parents P(W|Pa) P(-W/|Pa)

L, R 0 1.0
L, ~R 0 1.0
L, R 0.2 0.8

-L, =R 0.9 0.1




Parents P(W|Pa) P(-W/|Pa)

Bayesian Networks 2D

« CPD for each node X, - o S TR T

describes P(X; ! Pa(X,))
SPRED

Chain rule of probability says that in general:
P —
(S,L,R,T,W) P(S)P(L|S)P(R|S}4WP(W|$(L,R,?)
S ‘,w/anS
Butin a Bayes net: P(Xx;...X,) =[] P(X;|Pa(X;))

Pes, LR T0) = P PCL]s) i’z(kr[>‘> F(TTL) PlwlLR)
)
2




Lightning

A 4

To define joint distribution in general?

A 4

WindSurf

How Many Parameters?

Parents P(W|Pa) P(~W|Pa)
L, R 0 1.0
L, "R 0 1.0
L, R 0.2 0.8
L, 7R 0.9 0.1

WindSurf

To define joint distribution for this Bayes Net?




Lightning

A 4

P(S=1, L=0, R=1, T=0, W=1) =

A 4

WindSurf

Inference in Bayes Nets

Parents P(W|Pa) P(~W|Pa)
L, R 0 1.0
L, "R 0 1.0
L, R 0.2 0.8
L, 7R 0.9 0.1

WindSurf




Lightning

A 4

A 4

WindSurf

Learning a Bayes Net

Parents P(W|Pa) P(~W|Pa)
L, R 0 1.0
L, "R 0 1.0
L, R 0.2 0.8
L, 7R 0.9 0.1

WindSurf

Consider learning when graph structure is given, and data = { <s,l,r,t,w> }

What is the MLE solution? MAP?




