
Bias, Variance and Error 



Bias and Variance 
given algorithm that outputs estimate     for     , we define: 

 the bias of the estimator:  

 the variance of estimator: 
 
e.g.,          estimator for probability     of heads, based on 

             n independent coin flips 
                     
 
what is its bias? 
 
variance? 



Bias and Variance 
given algorithm that outputs estimate     for     , we define: 

 the bias of the estimator:  

 the variance of estimator: 
 
which estimator has higher bias?   higher variance? 



•  Consider simple regression problem f:XàY  
y = f(x) + ε

Define the expected prediction error: 
  

noise N(0,σ) 

deterministic 

Bias – Variance decomposition of error  
Reading: Bishop chapter 9.1, 9.2 

learned 
estimate of f(x)  

expectation 
over 

training D 



Sources of error 
 
 
What if we have perfect learner, infinite data? 

– Our learned h(x) satisfies h(x)=f(x) 
– Still have remaining, unavoidable error 
                                
                                 σ2 



Sources of error 
•  What if we have only n training examples? 
•  What is our expected error 

– Taken over random training sets of size n, 
drawn from distribution D=p(x,y)

 



Sources of error 



L2 vs. L1 Regularization 

constant P(W) 

constant P(Data|W) 

Gaussian P(W) 
à L2 regularization 

Laplace P(W) 
à L1 regularization 

w1 w1 

w2 w2 



Summary 
•  Bias of parameter estimators 
•  Variance of parameter estimators 
•  We can define analogous notions for estimators 

(learners) of functions 
•  Expected error in learned functions comes from 

–  unavoidable error (invariant of training set size, due to noise) 
–  bias (can be caused by incorrect modeling assumptions) 
–  variance (decreases with training set size) 

•  MAP estimates generally more biased than MLE 
–  but bias vanishes as training set size à  

•  Regularization corresponds to producing MAP estimates 
–  L2 / Gaussian prior / leads to smaller weights 
–  L1 / Laplace prior / leads to fewer non-zero weights 



Machine Learning 10-601 
 Tom M. Mitchell 

Machine Learning Department 
Carnegie Mellon University 

 
February 18, 2015 

Today: 

•  Graphical models 
•  Bayes Nets: 

•  Representing 
distributions 

•  Conditional 
independencies   

•  Simple inference 
•  Simple learning 

Readings: 
 
•  Bishop chapter 8, through 8.2 
 



Graphical Models 
•  Key Idea:  

–  Conditional independence assumptions useful   
–  but Naïve Bayes is extreme! 
–  Graphical models express sets of conditional 

independence assumptions via graph structure 
–  Graph structure plus associated parameters define 

joint probability distribution over set of variables 

•  Two types of graphical models: 
–  Directed graphs (aka Bayesian Networks) 
–  Undirected graphs (aka Markov Random Fields) 

10-601 



Graphical Models – Why Care? 
•  Among most important ML developments of the decade 
  
•  Graphical models allow combining: 

–  Prior knowledge in form of dependencies/independencies 
–  Prior knowledge in form of priors over parameters 
–  Observed training data 

•  Principled and ~general methods for 
–  Probabilistic inference 
–  Learning 

•  Useful in practice 
–  Diagnosis, help systems, text analysis, time series models, ... 



Conditional Independence   
Definition: X is conditionally independent of Y given Z, if the 

probability distribution governing X is independent of the value 
of Y, given the value of Z 

 
 
 
 
Which we often write  
 
 
 
E.g.,  
 
 
 
 



Marginal Independence  
Definition: X is marginally independent of Y if 
 
 
 
 
 

Equivalently, if  
 
 
 
 
 Equivalently, if  
 
 
 
 
 



Represent Joint Probability Distribution over Variables 



Describe network of dependencies 



Bayes Nets define Joint Probability Distribution 
in terms of this graph, plus parameters 

Benefits of Bayes Nets: 
•  Represent the full joint distribution in fewer 

parameters, using prior knowledge about 
dependencies 

•  Algorithms for inference and learning 



Bayesian Networks Definition 

A Bayes network represents the joint probability distribution 
over a collection of random variables 

 
A Bayes network is a directed acyclic graph and a set of 

conditional probability distributions (CPD’s) 
•  Each node denotes a random variable 
•  Edges denote dependencies 
•  For each node Xi its CPD defines P(Xi | Pa(Xi))
•  The joint distribution over all variables is defined to be 

Pa(X) = immediate parents of X in the graph 



Bayesian Network 

StormClouds 

Lightning Rain 

Thunder WindSurf 

Nodes = random variables 

A conditional probability distribution (CPD) 
is associated with each node N, defining   
P(N | Parents(N)) 

 

 

 

 

 

 

The joint distribution over all variables: 

Parents P(W|Pa) P(¬W|Pa) 

L, R  0 1.0 

L, ¬R 0 1.0 

¬L, R 0.2 0.8 

¬L, ¬R 0.9 0.1 

WindSurf 



Bayesian Network 

StormClouds 

Lightning Rain 

Thunder WindSurf 

What can we say about conditional 
independencies in a Bayes Net? 

One thing is this: 

Each node is conditionally independent of 
its non-descendents, given only its 
immediate parents. 

  
Parents P(W|Pa) P(¬W|Pa) 

L, R  0 1.0 

L, ¬R 0 1.0 

¬L, R 0.2 0.8 

¬L, ¬R 0.9 0.1 

WindSurf 



Some helpful terminology 
Parents = Pa(X) = immediate parents 

Antecedents = parents, parents of parents, ... 

Children = immediate children 

Descendents = children, children of children, ... 



Bayesian Networks 

•  CPD for each node Xi 
describes P(Xi | Pa(Xi)) 

 
Chain rule of probability says that in general: 

 
But in a Bayes net: 



StormClouds 

Lightning Rain 

Thunder WindSurf 

Parents P(W|Pa) P(¬W|Pa) 

L, R  0 1.0 

L, ¬R 0 1.0 

¬L, R 0.2 0.8 

¬L, ¬R 0.9 0.1 

WindSurf 

How Many Parameters? 

To define joint distribution in general? 

To define joint distribution for this Bayes Net? 



StormClouds 

Lightning Rain 

Thunder WindSurf 

Parents P(W|Pa) P(¬W|Pa) 

L, R  0 1.0 

L, ¬R 0 1.0 

¬L, R 0.2 0.8 

¬L, ¬R 0.9 0.1 

WindSurf 

Inference in Bayes Nets 

P(S=1, L=0, R=1, T=0, W=1)  = 



StormClouds 

Lightning Rain 

Thunder WindSurf 

Parents P(W|Pa) P(¬W|Pa) 

L, R  0 1.0 

L, ¬R 0 1.0 

¬L, R 0.2 0.8 

¬L, ¬R 0.9 0.1 

WindSurf 

Learning a Bayes Net 

Consider learning when graph structure is given, and data = { <s,l,r,t,w> } 

What is the MLE solution?  MAP? 


