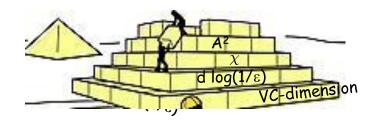

Machine Learning Theory Maria-Florina (Nina) Balcan February 9th, 2015

Goals of Machine Learning Theory

Develop & analyze models to understand:


- what kinds of tasks we can hope to learn, and from what kind of data; what are key resources involved (e.g., data, running time)
- prove guarantees for practically successful algs (when will they succeed, how long will they take?)
- develop new algs that provably meet desired criteria (within new learning paradigms)

Interesting tools & connections to other areas:

 Algorithms, Probability & Statistics, Optimization, Complexity Theory, Information Theory, Game Theory.

Very vibrant field:

- Conference on Learning Theory
- NIPS, ICML

Today's focus: Sample Complexity for Supervised Classification (Function Approximation)

- Statistical Learning Theory (Vapnik)
- PAC (Valiant)

- Recommended reading: Mitchell: Ch. 7
 - Suggested exercises: 7.1, 7.2, 7.7
- Additional resources: my learning theory course!

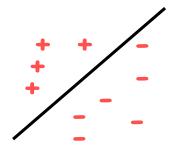
Supervised Classification

Decide which emails are spam and which are important.

Supervised classificati	ion						
Not spam	spam						
Gatech for ninamf@cs.cmu.edu - Thunderbird	SPAM for dbalcan@cs.cmu.edu - Thunderbird						
Get Mail Write Address Book Reply Reply All Forward Tag Delete Junk Print Book Forward Tag Delete Unk Print Book Forward Tag Delete							
All obels Re: Your upcoming visit to Georg Maria Florina Balcan 4/7/2008 1:5 All Idverse Interview Santosh S. Vempala 4/7/2008 1:2 All Idverse Interview Santosh S. Vempala 4/7/2008 1:2 All Idverse Interview Maria Florina Balcan 4/7/2008 1:2 All Idverse Interview Maria Florina Balcan 4/7/2008 1:2 Interview Idverse Idverse Santosh S. Vempala 4/7/2008 1:0 Interview Idverse Idverse Subject: interview Maria Florina Balcan 4/9/2008 1:0 Interview Idvisio Subject: interview From: Santosh S. Vempala Maria Florina Balcan 4/9/2008 1:0 Interview Idvisio EC Interview From: Santosh S. Vempala @cc.gatech.edu> Date: 4/7/2008 1:23 PM Interview Idvisio expedia Interview Interview Interview Interview Idvisio EC Interview Interview Interview Interview Idvisio EC Interview Interview Interview Interview	All Folders All Folders All F						
<pre>in f_coudate in f_coudate in feature in felowship interview 2 theoreticians, possibly 3, and you are one of interview 2 theoreticians, possibly 4, and you are one of interview 2 theoreticians, possibly 4, and you are one of interview 2 theoreticians, possibly 4, and you are one of interview 2 theoreticians, possibly 4, and you are one of interview 2 theoreticians, possibly 4, and you are one of interview 2 theoret</pre>	B JK To: davne@cs.cmu.edu ijobs jobs Junk Acceptable Unsecured Debt includes All Major Credit Cards, Imke No-collateral Bank Loans, Personal Loans, Ima Medical Bills etc. Ima http://www.baddebth.cn Imisions Local Folders						
Image: State of the s	Image: Second state Unread: 42 Total: 2665 ,;						

Goal: use emails seen so far to produce good prediction rule for future data.

Example: Supervised Classification


Represent each message by features. (e.g., keywords, spelling, etc.)

("money"	"pills"	"Mr."	bad spelling	known-sender	spam?	
_	Y	Ν	Y	Y	Ν	Y	_
	Ν	Ν	Ν	Y	Y	N	
	N	Y	Ν	Ν	Ν	Y	
exam	ple Y	Ν	Ν	Ν	Y	Ν	label
	Ν	Ν	Y	Ν	Y	N	
	Y	Ν	Ν	Y	Ν	Y	
	Ν	Ν	Y	Ν	Ν	N	
						1	

Reasonable RULES:

Predict SPAM if unknown AND (money OR pills)

Predict SPAM if 2money + 3pills -5 known > 0

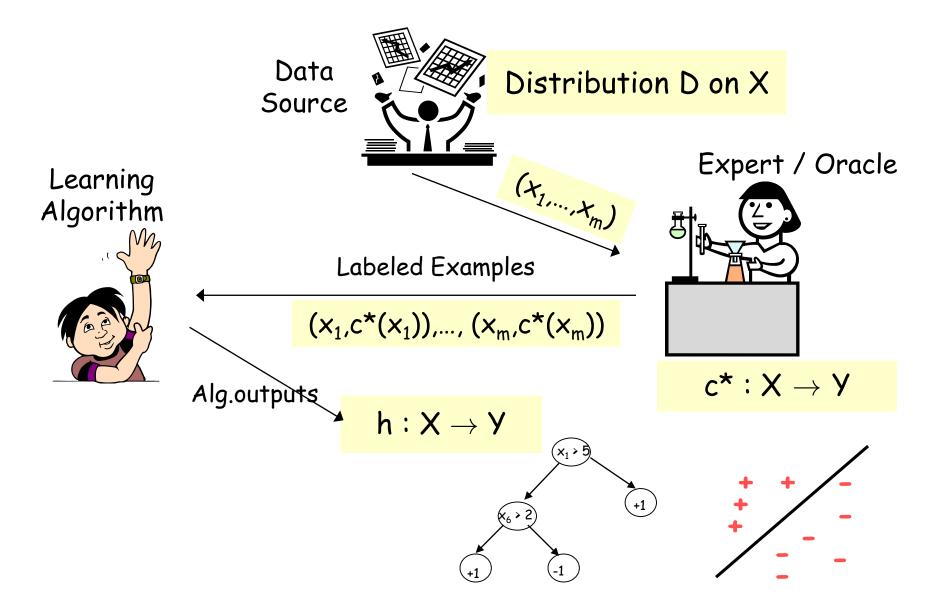
Linearly separable 5

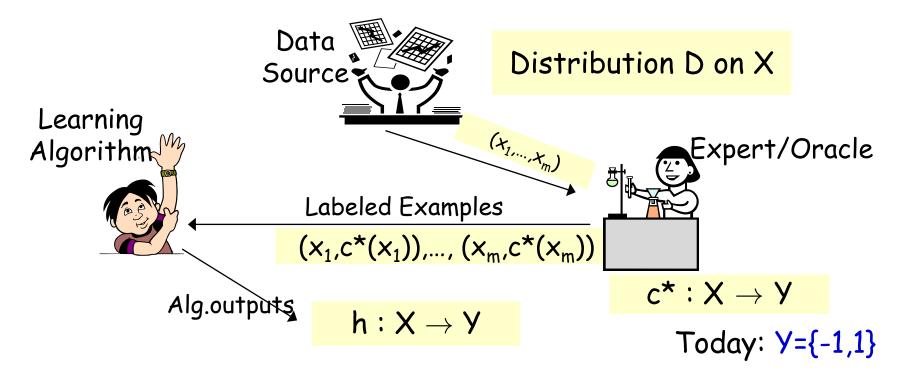
Two Core Aspects of Machine Learning

Algorithm Design. How to optimize?

Computation

Automatically generate rules that do well on observed data.

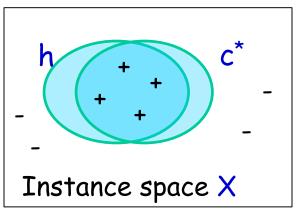

• E.g.: logistic regression, SVM, Adaboost, etc.

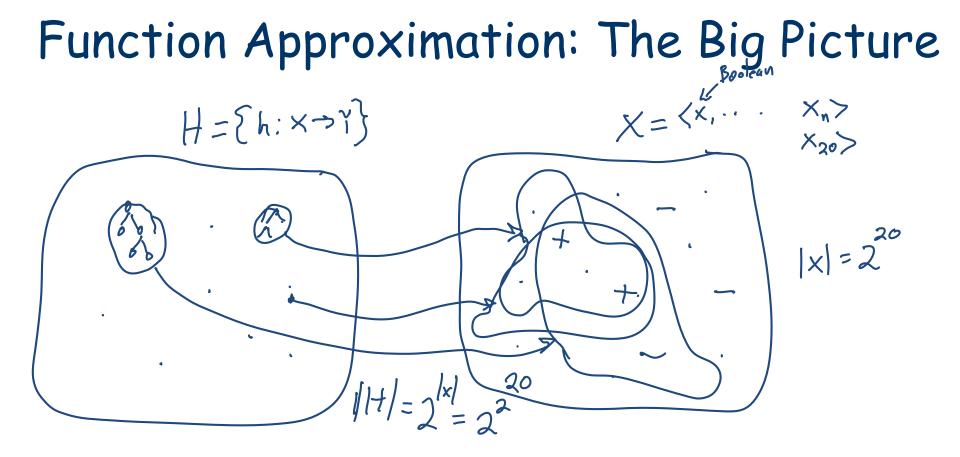

Confidence Bounds, Generalization

(Labeled) Data

Confidence for rule effectiveness on future data.

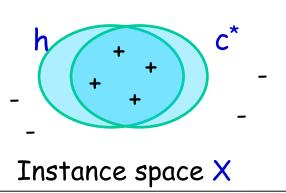
- Very well understood: Occam's bound, VC theory, etc.
- Note: to talk about these we need a precise model.




- Algo sees training sample S: $(x_1, c^*(x_1)), ..., (x_m, c^*(x_m)), x_i$ independently and identically distributed (i.i.d.) from D; labeled by c^*
- Does optimization over S, finds hypothesis h (e.g., a decision tree).
- Goal: h has small error over D.

- X feature or instance space; distribution D over X e.g., $X = R^d$ or $X = \{0,1\}^d$
- Algo sees training sample S: $(x_1, c^*(x_1)), \dots, (x_m, c^*(x_m)), x_i \text{ i.i.d. from } D$
 - labeled examples assumed to be drawn i.i.d. from some distr.
 D over X and labeled by some target concept c*
 - labels \in {-1,1} binary classification
 - Algo does optimization over S, find hypothesis h.
 - Goal: h has small error over D.

 $err_D(h) = \Pr_{x \sim D}(h(x) \neq c^*(x))$


Need a bias: no free lunch.

How many labeled examples are needed in order to determine which of the 2²⁰ hypotheses is the correct one? All 2° instances in X must be labeled There is no free lunch! Inductive inference - generalizing beyond the training data is impossible unless we add more assumptions (eg. priors over H)

- X feature or instance space; distribution D over X e.g., $X = R^d$ or $X = \{0,1\}^d$
- Algo sees training sample S: $(x_1, c^*(x_1)), \dots, (x_m, c^*(x_m)), x_i$ i.i.d. from D
 - labeled examples assumed to be drawn i.i.d. from some distr.
 D over X and labeled by some target concept c*
 - labels \in {-1,1} binary classification
 - Algo does optimization over S, find hypothesis h.
 - Goal: h has small error over D.

 $err_{D}(h) = \Pr_{x \sim D}(h(x) \neq c^{*}(x))$ Bias: Fix hypotheses space H. (whose complexity is not too large). Realizable: $c^{*} \in H$. Agnostic: c^{*} "close to" H.

- Algo sees training sample S: $(x_1, c^*(x_1)), \dots, (x_m, c^*(x_m)), x_i$ i.i.d. from D
- Does optimization over S, find hypothesis $h \in H$.
- Goal: h has small error over D.

True error: $err_D(h) = \Pr_{x \sim D}(h(x) \neq c^*(x))$ How often $h(x) \neq c^*(x)$ over future instances drawn at random from D

• But, can only measure:

Training error: $err_S(h) = \frac{1}{m} \sum_i I(h(x_i) \neq c^*(x_i))$

How often $h(x) \neq c^*(x)$ over training instances

Sample complexity: bound $err_D(h)$ in terms of $err_S(h)$

Consistent Learner

- Input: S: (x₁,c*(x₁)),..., (x_m,c*(x_m))
- Output: Find h in H consistent with the sample (if one exits).

Theorem

$$m \ge \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Contrapositive: if the target is in H, and we have an algo that can find consistent fns, then we only need this many examples to get generalization error $\leq \epsilon$ with prob. $\geq 1 - \delta$

Consistent Learner

- Input: S: (x₁,c*(x₁)),..., (x_m,c*(x_m))
- Output: Find h in H consistent with the sample (if one exits).

Theorem

Bound inversely linear in ϵ

$$m \geq \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$. Bound only logarithmic in |H|

- ϵ is called error parameter
 - D might place low weight on certain parts of the space
- δ is called confidence parameter
 - there is a small chance the examples we get are not representative of the distribution

Consistent Learner

- Input: S: (x₁,c*(x₁)),..., (x_m,c*(x_m))
- Output: Find h in H consistent with the sample (if one exits).

Theorem

$$m \ge \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Example: H is the class of conjunctions over $X = \{0,1\}^n$. $|H| = 3^n$ E.g., $h = x_1 \overline{x_3} x_5$ or $h = x_1 \overline{x_2} x_4 x_9$ Then $m \ge \frac{1}{\epsilon} \left[n \ln 3 + \ln \left(\frac{1}{\delta} \right) \right]$ suffice $n = 10, \epsilon = 0.1, \delta = 0.01$ then $m \ge 156$ suffice

Consistent Learner

- Input: S: (x₁,c*(x₁)),..., (x_m,c*(x_m))
- Output: Find h in H consistent with the sample (if one exits).

Theorem

$$m \ge \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Example: H is the class of conjunctions over $X = \{0,1\}^n$.

Side HWK question: show that any conjunction can be represented by a small decision tree; also by a linear separator.

Theorem

$$m \geq \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Proof Assume k bad hypotheses $h_1, h_2, ..., h_k$ with $err_D(h_i) \ge \epsilon$

1) Fix h_i . Prob. h_i consistent with first training example is $\leq 1 - \epsilon$.

Prob. h_i consistent with first m training examples is $\leq (1 - \epsilon)^m$.

2) Prob. that at least one h_i consistent with first m training examples is $\leq k (1 - \epsilon)^m \leq |H| (1 - \epsilon)^m$.

3) Calculate value of m so that $|H|(1 - \epsilon)^m \le \delta$

3) Use the fact that $1 - x \le e^{-x}$, sufficient to set $|H| e^{-\epsilon m} \le \delta$

Sample Complexity: Finite Hypothesis Spaces

Realizable Case

Theorem

$$m \geq \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1-\delta$ all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Probability over different samples of m training examples

Sample Complexity: Finite Hypothesis Spaces Realizable Case

1) PAC: How many examples suffice to guarantee small error whp.

Theorem

$$m \geq \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

2) Statistical Learning Way:

With probability at least $1 - \delta$, for all $h \in H$ s.t. $err_{s}(h) = 0$ we have

$$\operatorname{err}_{\mathrm{D}}(\mathrm{h}) \leq \frac{1}{\mathrm{m}} \left(\ln |\mathrm{H}| + \ln \left(\frac{1}{\delta} \right) \right).$$

Supervised Learning: PAC model (Valiant)

- X instance space, e.g., $X = \{0,1\}^n$ or $X = R^n$
- S₁={(x_i, y_i)} labeled examples drawn i.i.d. from some distr. D over X and labeled by some target concept c^{*}
 - labels $\in \{-1,1\}$ binary classification
- Algorithm A PAC-learns concept class H if for any target c^* in H, any distrib. D over X, any ε , $\delta > 0$:
 - A uses at most $poly(n,1/\epsilon,1/\delta,size(c^*))$ examples and running time.
 - With probab. 1- δ , A produces h in H of error at $\leq \epsilon$.

Uniform Convergence

Theorem

$$m \geq \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

- This basic result only bounds the chance that a bad hypothesis looks perfect on the data. What if there is no perfect $h \in H$ (agnostic case)?
- What can we say if $c^* \notin H$?
- Can we say that whp all $h \in H$ satisfy $|err_D(h) err_S(h)| \le \epsilon$?
 - Called "uniform convergence".
 - Motivates optimizing over S, even if we can't find a perfect function.

Sample Complexity: Finite Hypothesis Spaces

Realizable Case

Theorem

$$m \geq \frac{1}{\varepsilon} \left[\ln(|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$

labeled examples are sufficient so that with prob. $1 - \delta$, all $h \in H$ with $err_D(h) \ge \varepsilon$ have $err_S(h) > 0$.

Agnostic Case

What if there is no perfect h?

Theorem After *m* examples, with probab. $\geq 1 - \delta$, all $h \in H$ have $|err_D(h) - err_S(h)| < \varepsilon$, for

$$m \ge \frac{1}{2\varepsilon^2} \left[\ln(|H|) + \ln\left(\frac{2}{\delta}\right) \right]$$

To prove bounds like this, need some good tail inequalities.

Hoeffding bounds

Consider coin of bias p flipped m times. Let N be the observed # heads. Let $\epsilon \in [0,1]$. Hoeffding bounds:

- $\Pr[N/m > p + \varepsilon] \le e^{-2m\varepsilon^2}$, and $\Pr[N/m < \rho \varepsilon] \le e^{-2m\varepsilon^2}$.

Exponentially decreasing tails

Tail inequality: bound probability mass in tail of distribution (how concentrated is a random variable around its expectation).

Sample Complexity: Finite Hypothesis Spaces Agnostic Case

Theorem After *m* examples, with probab. $\geq 1 - \delta$, all $h \in H$ have $|err_D(h) - err_S(h)| < \varepsilon$, for

$$m \ge \frac{1}{2\varepsilon^2} \left[\ln(|H|) + \ln\left(\frac{2}{\delta}\right) \right]$$

- Proof: Just apply Hoeffding.
 - Chance of failure at most $2|H|e^{-2|S|\epsilon^2}$.
 - Set to δ . Solve.
 - So, whp, best on sample is ϵ -best over D.
 - Note: this is worse than previous bound (1/ ϵ has become 1/ ϵ^2), because we are asking for something stronger.
 - Can also get bounds "between" these two.