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Tom M. Mitchell
Machine Learning Department
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January 21, 2015
Today: Readings:
 Bayes Rule
« Estimating parameters Probability review
. MLE - Bishop Ch. 1 thru 1.2.3
- MAP « Bishop, Ch. 2 thru 2.2
* Andrew Moore’s online
some of these slides are derived tutorial

from William Cohen, Andrew
Moore, Aarti Singh, Eric Xing,
Carlos Guestrin. - Thanks!



Announcements

* Class is using Piazza for questions/discussions
about homeworks, etc.

— see class website for Piazza address
— http://www.cs.cmu.edu/~ninamf/courses/601sp15/

* Recitations thursdays 7-8pm, Wean 5409
— videos for future recitations (class website)

 HW1 was accepted to Sunday Spm for full credit
 HW2 out today on class website, due in 1 week
 HW3 will involve programming (in Octave )




P(BIA) * P(A) :
P(AIB) = P(B) Bayes rule

we call P(A) the “prior”
Bayes, Thomas (1763) An essay
towards solving a problem in the doctrine

and P(AlB) the “posterior” of chances. Philosophical Transactions of
the Royal Society of London, 53:370-418

...by no means merely a curious speculation in the doctrine of chances,
but necessary to be solved in order to a sure foundation for all our
reasonings concerning past facts, and what is likely to be hereafter....
necessary to be considered by any that would give a clear account of the
strength of analogical or inductive reasoning...



P(BIA) ™ P(A)
P(B)

Other Forms of Bayes Rule p@B) =

P(B| A)P(A)
P(B| A)P(A) + P(B |~ A)P(~ A)

P(A1B) -

P(B|ANX)P(AAKX)

A ) = B 1)




Applying Bayes Rule

P(B|A)P(A)

PAB)- P(B1A)P(A)+ P(B I~ A)P(~ A)

A = you have the flu, B = you just coughed

Assume:

P(A) =0.05
P(B|A) = 0.80
P(B| ~A) =0.20

what is P(flu | cough) = P(A|B)?



what does all this have to do with
function approximation?

instead of F: X =2,
learn P(Y | X)



The Joint Distribution

Example: Boolean
variables A, B, C
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Recipe for making a joint
distribution of M variables:

Rk Rkl o|lolo|lo|p

== OO0 |=|=|O|O
= O|=|O|=|O|H=|O

[A. Moore]



The Joint Distribution

Example: Boolean
variables A, B, C

Recibe f " oint A B C Prob
ecipe for making a join 5 5 . 530
distribution of M variables: 0 0 1 0.05
0 1 0 0.10
1. Make a truth table listing all 0 1 1 0.95
. . 1 0 0 0.05
combinations of values (M - S n 1o
Boolean variables 2 2Mrows). [3 " 0 0.25
1 1 1 0.10

[A. Moore]



The Joint Distribution

Example: Boolean
variables A, B, C

Recipe for making a joint A 5 ¢ prob
P . _ g J ) 0 0 0 0.30
distribution of M variables: 0 0 1 0.05
0 1 0 0.10
1. Make a truth table listing all 0 1 1 0.05
. . 1 0 0 0.05
combinations of values (M - S n 1o
Boolean variables 2 2Mrows). [3 1 o 0.25
1 1 1 0.10

2. For each combination of
values, say how probable it is.

[A. Moore]



The Joint Distribution

Example: Boolean
variables A, B, C

Recipe for making a joint A 5 ¢ prob
P . _ g J ) 0 0 0 0.30
distribution of M variables: 0 0 1 0.05
0 1 0 0.10
1. Make a truth table listing all 0 1 1 0.05
. . 1 0 0 0.05
combinations of values (M - S n 1o
Boolean variables 2 2Mrows). [3 1 o 0.25
1 1 1 0.10

2. For each combination of
values, say how probable it is.

3. If you subscribe to the axioms
of probability, those
probabilities must sum to 1.

[A. Moore]



gender hours_worked wealth

USlng the Female v0:40.5- poor 0253122 NG

rich  0.0245895 |}

J OI nt v1:40.5+ poor 0.0421768 |}

D- tb t rich  0.0116293 ||
IStrioution Male  v0:40.5- poor 0331313 (G

rich  0.0971295 N
v1:40.5+ poor 0.134106 |G
rich  0.105933 [

One you have the JD P(E) = EP(row)
you can ask for the rows matching E

probability of any logical
expression involving
these variables

[A. Moore]



gender hours_worked wealth

. Female v0:40.5- poor 0.253122 NG
USlng the rich  0.0245895 |}

- v1:40.5+ poor 0.0421768 |}
Joint

rich  0.0116293 |

ale  v0:40.5- oor 0.331313 NG
rich  0.0971295 |

v1:40.5+ poor  0.134106 NN
rich  0.105933 |

P(Poor Male) = 0.4654 P(E)= ) P(row)

rows matching £

[A. Moore]



Using the
Joint

P(Poor) = 0.7604

gender hours_worked wealth

[Female v0:405-  poor 0253122 INEEGGGGEGEGE
rich  0.0245895 |}
w1405+  poor 0.0421765 Ml
rich  0.0116293 |
ale  v0:40.5- oor _ 0.331313 NG
rich  0.0971295 |
v1:40.5+ poor  0.134106 NN
rich  0.105933 [N
P(E) = E P(row)

rows matching £

[A. Moore]




Inference
with the

Joint

P(E, | Ey) =

gender hours_worked wealth

(Female v0:405-  poor 0.253122 GGG

rich  0.0245895 |}

£ vi405+  poor 0.0421768 Ml
rich  0.0116293 |

S ——
——

ale v0:40.5- oor 0.331313

rich  0.0971295 |

( v1:40.5+ poor 0.134106 —

rich  0.105933 |

P(row)
P(El A Ez) _ rows matchng £, and E,

P(E)) E P(row)

rows matching £,

P(Male | Poor) = 0.4654 / 0.7604 = 0.612

[A. Moore]



gender hours_worked wealth
. Female v0:40.5- poor
Learning and e
the JOInt v1:40.5+ :::r
DlStrlbUtlon Male  v0:40.5- poor
rich
v1:40.5+ poor
rich

0.253122 [

0.0245895 |}
0.0421768 ||}
0.0116293 ||

0331313 I
0.0971295 N

0.134106 [|NEGN

0.105933 |G

Suppose we want to learn the function f: <G, H> > W

Equivalently, P(W | G, H)

Solution: learn joint distribution from data, calculate P(W | G, H)

e.g., P(W=rich | G =female, H=40.5-) =

[A. Moore]




sounds like the solution to
learning F: X =2,
or P(Y | X).

Are we done?



sounds like the solution to
learning F: X =2,
or P(Y | X).

Main problem: learning P(Y|X)
can require more data than we have

consider learning Joint Dist. with 100 attributes
# of rows in this table?

# of people on earth?

fraction of rows with O training examples?



What to do?

1. Be smart about how we estimate
probabilities from sparse data

— maximum likelihood estimates
— maximum a posteriori estimates

2. Be smart about how to represent joint
distributions

— Bayes networks, graphical models



1. Be smart about how we
estimate probabilities



Estimating Probability of Heads

e | show you the above coin X, and hire you to estimate
the probability that it will turn up heads (X = 1) or
tails (X = 0)

e You flip it repeatedly, observing

— 1t turns up heads oy times

— 1t turns up tails o times

e Your estimate for P(X = 1) is....7



Estimating 6 = P(X=1)

Test A:
100 flips: 51 Heads (X=1), 49 Talls (X=0)

Test B:
3 flips: 2 Heads (X=1), 1 Tails (X=0)



Estimating 0 = P(X=1)

Case C: (online learning)

« keep flipping, want single learning algorithm
that gives reasonable estimate after each flip




Principles for Estimating Probabilities

Principle 1 (maximum likelihood):
* choose parameters 0 that maximize P(data | 0)
* e.g., HAMLE _ X1

1 +

Principle 2 (maximum a posteriori prob.):
« choose parameters 0 that maximize P(0 | data)
* e.qg.

GMAP _ a1 + #hallucinated_1s
(1 + #hallucinated_1s) + (¢ + #hallucinated_0s)



Maximum Likelihood Estimation
P(X=1)=10 P(X=0) = (1-6)

Data D:

Flips produce data D with (X1 heads, (X tails

 flips are independent, identically distributed 1’s and O’s
(Bernoulli)

« (X1 and (X(y are counts that sum these outcomes (Binomial)

P(D|0) = P(a, olf) = 0°1(1 — )0



Maximum Likelihood Estimate for ©

" _
0 = argmgnx nP(D|0)

= arg mgax nNO“H (1 —0)T

m Set derivative to zero: | ¢ | P(D|0) =0

[C. Guestrin]



<>

arg max In P(D|0)

arg max In [0“1(1

m Set derivative to zero:

— 9)&()]

d
— InP(D]0)=0
=5 NP(D|0)

-~ 51119_1
hint: 90 0




Summary:
Maximum Likelihood Estimate

P(X=1)=0
P(X=0)=1-0
(Bernoulli)

e FEach flip yields boolean value for X
X ~ Bernoulli: P(X) = 6X(1 —6)1—%)

e Data set D of independent, identically distributed (iid) flips pro-
duces aq ones, aq zeros (Binomial)

P<D|9> — P(()él,Oé()w) — 9041(1 — 9)040

OMLE — argmaxy P(D|6) = —

a1+



Principles for Estimating Probabilities

Principle 1 (maximum likelihood):

* choose parameters 0 that maximize
P(data | )

Principle 2 (maximum a posteriori prob.):
* choose parameters 0 that maximize
P(6 | data) = P(data | ©) P(6)
P(data)




Beta prior distribution — P(0)
| 00—1(1 — g)Br-1
BBy, Br1)
m Likelihood function: P(D|0) =0“H(1—6)°T
m Posterior: P(0 | D) « P(D|0)P(0)

P(0) = ~ Beta(By, Br)




Bata pdf
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Beta prior distribution — P(0)
' 00H—1(1 — g)Br-1
B(/BHaﬂT)

P(0) = ~ Beta(By, Br)
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[C. Guestrin]



Eg. 1 Coin flip problem

Likelihood is ™ Binomial
P(D|0) =0%H(1 —0)"T
If prior is Beta distribution,
9Pu—1(1 — g)Pr—1
B(By,Br)
Then posterior is Beta distribution
P(0|D) ~ Beta(ay + B,y + By)
and MAP estimate is therefore
GMAP _ o + P — 1
(ag + By — 1) + (ap + fr — 1)

P(0) = ~ Beta(By, Br)




Eg. 2 Dice roll problem (6 outcomes instead of 2)
Likelihood is ~ Multinomial(0 = {0, 0,, ..., 0,})
P(D|0) = 671652...0,*

If prior is Dirichlet distribution,
0y 0 ... 0"

P() ==
© B(b, -, Bk)
Then posterior is Dirichlet distribution

P(Q‘D) ~ Dil’iCh|et(ﬁ1 + a1, ... ,,Bk -+ O%)
and MAP estimate is therefore

AMAP_ az"‘ﬁz_l

j :
> il + 5 — 1)

~ Dirichlet(5, . ..



Some terminology

 Likelihood function: P(data | 6)
* Prior: P(0)
» Posterior: P(0 | data)

« Conjugate prior: P(0) is the conjugate
prior for likelihood function P(data | 0) if
the forms of P(0) and P(6 | data) are the

Same.



You should know

* Probability basics
— random variables, conditional probs, ...
— Bayes rule
— Joint probability distributions
— calculating probabilities from the joint distribution

« Estimating parameters from data
— maximum likelihood estimates
— maximum a posteriori estimates
— distributions — binomial, Beta, Dirichlet, ...
— conjugate priors



Extra slides



Independent Events

 Definition: two events A and B are
independent if P(A " B)=P(A)*P(B)

* Intuition: knowing A tells us nothing
about the value of B (and vice versa)



Picture “A independent of B”



Expected values

Given a discrete random variable X, the expected value
of X, written E[X] is

EX]=) zP(X =z)

TeEX
Example: X P(X)
0 0.3
1 0.2
2 0.5




Expected values

Given discrete random variable X, the expected value of
X, written E[X] is

EX]=) zP(X =)

TEX

We also can talk about the expected value of functions
of X

E[f(X) =) f(z)P(X =z)

TeX



Covariance

Given two discrete r.v.”s X and Y, we define the
covariance of Xand Y as

Cov(X,Y)=E|(X — E(X))(Y — E(Y))]

e.g., X=gender, Y=playsFootball
or X=gender, Y=leftHanded

Remember: E[X] =) zP(X

TEX



