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Today: 
•  Bayes Rule 
•  Estimating parameters 

•  MLE 
•  MAP 

Readings: 
 
Probability review 
•  Bishop Ch. 1 thru 1.2.3 
•  Bishop, Ch. 2 thru 2.2 
•  Andrew Moore’s online 

tutorial some of these slides are derived 
from William Cohen, Andrew 
Moore, Aarti Singh, Eric Xing, 
Carlos Guestrin.   - Thanks! 



Announcements 
•  Class is using Piazza for questions/discussions 

about homeworks, etc. 
–  see class website for Piazza address 
–  http://www.cs.cmu.edu/~ninamf/courses/601sp15/ 

•  Recitations thursdays 7-8pm, Wean 5409 
–  videos for future recitations (class website) 

•  HW1 was accepted to Sunday 5pm for full credit 
•  HW2 out today on class website, due in 1 week 
•  HW3 will involve programming (in Octave ) 



P(B|A) * P(A) 

P(B) 
P(A|B) = 

Bayes, Thomas (1763) An essay 
towards solving a problem in the doctrine 
of chances. Philosophical Transactions of 
the Royal Society of London, 53:370-418 

…by no means merely a curious speculation in the doctrine of chances, 
but necessary to be solved in order to a sure foundation for all our 
reasonings concerning past facts, and what is likely to be hereafter…. 
necessary to be considered by any that would give a clear account of the 
strength of analogical or inductive reasoning… 

Bayes’ rule 

we call P(A) the “prior” 
 
and P(A|B) the “posterior” 



Other Forms of Bayes Rule 
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P(B|A) * P(A) 

P(B) 
P(A|B) = 



Applying Bayes Rule 

€ 

P(A |B) =
P(B | A)P(A)

P(B | A)P(A) + P(B |~ A)P(~ A)

A = you have the flu,   B = you just coughed 
 
Assume: 
P(A) = 0.05 
P(B|A) = 0.80 
P(B| ~A) = 0.20 
 
what is P(flu | cough) = P(A|B)? 



what does all this have to do with 
function approximation? 

instead of  F: X àY, 
learn          P(Y | X) 



The Joint Distribution 

Recipe for making a joint 
distribution of M variables: 

[A. Moore]  

A B C Prob 
0 0 0 0.30 

0 0 1 0.05 

0 1 0 0.10 

0 1 1 0.05 

1 0 0 0.05 

1 0 1 0.10 

1 1 0 0.25 

1 1 1 0.10 

 
 
 

A 

B 

C 
0.05 

0.25 

0.10 0.05 0.05 

0.10 

0.10 
0.30 

Example: Boolean 
variables A, B, C 



The Joint Distribution 

Recipe for making a joint 
distribution of M variables: 

 
1.  Make a truth table listing all 

combinations of values (M 
Boolean variables à 2M rows). 
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The Joint Distribution 

Recipe for making a joint 
distribution of M variables: 

 
1.  Make a truth table listing all 

combinations of values (M 
Boolean variables à 2M rows). 

2.  For each combination of 
values, say how probable it is. 
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The Joint Distribution 

Recipe for making a joint 
distribution of M variables: 

 
1.  Make a truth table listing all 

combinations of values (M 
Boolean variables à 2M rows). 

2.  For each combination of 
values, say how probable it is. 

3.  If you subscribe to the axioms 
of probability, those 
probabilities must sum to 1. 

[A. Moore]  

A B C Prob 
0 0 0 0.30 

0 0 1 0.05 

0 1 0 0.10 

0 1 1 0.05 

1 0 0 0.05 

1 0 1 0.10 

1 1 0 0.25 

1 1 1 0.10 
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Example: Boolean 
variables A, B, C 



Using the 
Joint 
Distribution 

One you have the JD 
you can ask for the 
probability of any logical 
expression involving 
these variables 
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[A. Moore]  



Using the 
Joint 

P(Poor Male) = 0.4654 ∑=
E

PEP
 matching rows

)row()(

[A. Moore]  



Using the 
Joint 

P(Poor) = 0.7604 ∑=
E

PEP
 matching rows

)row()(

[A. Moore]  



Inference 
with the 
Joint 
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P(Male | Poor) = 0.4654 / 0.7604 = 0.612   

[A. Moore]  



Learning and 
the Joint 
Distribution 

Suppose we want to learn the function f: <G, H> à W 
 
Equivalently, P(W | G, H) 
 
Solution: learn joint distribution from data, calculate P(W | G, H) 
 
e.g., P(W=rich | G = female, H = 40.5- ) = 

[A. Moore]  



sounds like the solution to 
learning F: X àY, 

or P(Y | X). 
 
 

Are we done? 



sounds like the solution to 
learning F: X àY, 

or P(Y | X). 
 
 Main problem: learning P(Y|X)  

can require more data than we have 

consider learning Joint Dist. with 100 attributes 
# of rows in this table?  
# of people on earth? 
fraction of rows with 0 training examples? 



What to do? 
1.  Be smart about how we estimate 

probabilities from sparse data 
–  maximum likelihood estimates 
–  maximum a posteriori estimates 

2.  Be smart about how to represent joint 
distributions 

–  Bayes networks, graphical models 



1. Be smart about how we    
    estimate probabilities  



Estimating Probability of Heads 
X=1 X=0 



Estimating θ = P(X=1) 
Test A:  
  100 flips: 51 Heads (X=1), 49 Tails (X=0) 
 
 
Test B:  
  3 flips:  2 Heads (X=1), 1 Tails (X=0) 

X=1 X=0 



Case C: (online learning) 
•  keep flipping, want single learning algorithm 

that gives reasonable estimate after each flip 

X=1 X=0 

Estimating θ = P(X=1) 



Principles for Estimating Probabilities 

Principle 1 (maximum likelihood): 
•  choose parameters θ that maximize P(data | θ) 
•  e.g.,  
 
 
Principle 2 (maximum a posteriori prob.): 
•  choose parameters θ that maximize P(θ | data) 
•  e.g. 
 
 



Maximum Likelihood Estimation 
P(X=1) = θ        P(X=0) = (1-θ) 
 
Data D:  
 
 
 
 
Flips produce data D with        heads,        tails 
•  flips are independent, identically distributed 1’s and 0’s 

(Bernoulli) 
•        and        are counts that sum these outcomes (Binomial) 

X=1 X=0 



Maximum Likelihood Estimate for Θ 

[C. Guestrin]  



hint: 



Summary:  
Maximum Likelihood Estimate 

X=1 X=0 
P(X=1) = θ 

P(X=0) = 1-θ 
(Bernoulli) 

 



Principles for Estimating Probabilities 
 
Principle 1 (maximum likelihood): 
•  choose parameters θ that maximize  

P(data | θ) 
 
Principle 2 (maximum a posteriori prob.): 
•  choose parameters θ that maximize 
   P(θ | data) = P(data | θ) P(θ) 
                              P(data) 
 



Beta prior distribution – P(θ) 



Beta prior distribution – P(θ) 

[C. Guestrin]  



and MAP estimate is therefore  



and MAP estimate is therefore  



Some terminology 
•  Likelihood function:  P(data | θ) 
•  Prior: P(θ) 
•  Posterior: P(θ | data) 

•  Conjugate prior: P(θ) is the conjugate 
prior for likelihood function P(data | θ) if 
the forms of P(θ) and P(θ | data) are the 
same. 



You should know 

•  Probability basics 
–  random variables, conditional probs, … 
–  Bayes rule 
–  Joint probability distributions 
–  calculating probabilities from the joint distribution 

•  Estimating parameters from data 
–  maximum likelihood estimates 
–  maximum a posteriori estimates 
–  distributions – binomial, Beta, Dirichlet, … 
–  conjugate priors 
 



Extra slides 



Independent Events 
•  Definition: two events A and B are 

independent if   P(A ^ B)=P(A)*P(B) 
•  Intuition: knowing A tells us nothing 

about the value of B (and vice versa) 



Picture “A independent of B” 



Expected values 
Given a discrete random variable X, the expected value 

of X, written E[X] is 
 
 
 
Example: 
 
 
 
 

X P(X) 
0 0.3 
1 0.2 
2 0.5 



Expected values 
Given discrete random variable X, the expected value of 

X, written E[X] is 
 
 
 
 
We also can talk about the expected value of functions 

of X 



Covariance 
Given two discrete r.v.’s X and Y, we define the 

covariance of X and Y as 
 
 
e.g., X=gender, Y=playsFootball 
or     X=gender, Y=leftHanded 
 
 
Remember: 


