

Learning to detect objects in images

(Prof. H. Schneiderman)

Machine Learning 10-601 website: www.cs.cmu.edu/~ninamf/courses/601sp15 Faculty See webpage for Maria Balcan Office hours Tom Mitchell Syllabus details Recitation sessions TA's Grading policy Travis Dick Honesty policy Kirsten Early Late homework policy Ahmed Hefny Piazza pointers Micol Marchetti-Bowick • ... Willie Neiswanger Abu Saparov

Highlights of Course Logistics

On the wait list?

- Hang in there for first few weeks Homework 1
- Available now, due friday

Course assistantSharon Cavlovich

Grading:

- 30% homeworks (~5-6)
- 20% course project
- 25% first midterm (March 2)
- 25% final midterm (April 29)

Academic integrity:

 Cheating → Fail class, be expelled from CMU

Late homework:

- full credit when due
- half credit next 48 hrs
- zero credit after that
- we'll delete your lowest HW score
- <u>must</u> turn in at least n-1 of the n homeworks, even if late

Being present at exams:

- You <u>must</u> be there plan now.
- Two in-class exams, no other final

- How can knowledge about the world help computers understand natural language?
- What kinds of machine learning tools are needed to understand sentences?

"Carolyn ate the cake with a fork."

person_eats_food		
consumer	Carolyn	
food	cake	
instrument	fork	

"Carolyn	ate the	cake with	vanilla.'
----------	---------	-----------	-----------

person_eats_food			
consumer	Carolyn		
food	cake		
	topping	vanilla	

Function approximation

Problem Setting:

- Set of possible instances X
- Unknown target function $f: X \rightarrow Y$
- Set of function hypotheses $H=\{h \mid h : X \rightarrow Y\}$

Input:

superscript: ith training example

• Training examples {<*x*^(*i*),*y*^(*i*)>} of unknown target function *f*

Output:

• Hypothesis $h \in H$ that best approximates target function f

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Decision Tree Learning

Problem Setting:

- Set of possible instances X
 - each instance x in X is a feature vector $x = \langle x_1, x_2 \dots x_n \rangle$
- Unknown target function $f: X \rightarrow Y$ - Y is discrete-valued
- Set of function hypotheses $H=\{h \mid h : X \rightarrow Y\}$
 - each hypothesis h is a decision tree

Input:

Training examples {<x⁽ⁱ⁾,y⁽ⁱ⁾>} of unknown target function *f*

Output:

• Hypothesis $h \in H$ that best approximates target function f

Entropy H(X) of a random variable X $f(X) = -\sum_{i=1}^{n} P(X = i) \log_2 P(X = i)$ H(X) is the expected number of bits needed to encode a randomly drawn value of X (under most efficient code)Why? Information theory: • Most efficient possible code assigns $-\log_2 P(X=i)$ bits to encode the message X=i• So, expected number of bits to code one random X is: $\sum_{i=1}^{n} P(X = i)(-\log_2 P(X = i))$

Entropy *H*(*X*) of a random variable *X* $H(X) = -\sum_{i=1}^{n} P(X = i) \log_2 P(X = i)$ Specific conditional entropy *H*(*X*/*Y*=*v*) of *X* given *Y*=*v* : $H(X|Y = v) = -\sum_{i=1}^{n} P(X = i|Y = v) \log_2 P(X = i|Y = v)$ Conditional entropy *H*(*X*/*Y*) of *X* given *Y* : $H(X|Y) = \sum_{v \in values(Y)} P(Y = v)H(X|Y = v)$ Mutual information (aka Information Gain) of *X* and *Y* : I(X,Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)

Day	Outlook	Temperature	Humidit	y Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Reduced-Error Pruning

Split data into training and validation set

Create tree that classifies *training* set correctly Do until further pruning is harmful:

- 1. Evaluate impact on *validation* set of pruning each possible node (plus those below it)
- 2. Greedily remove the one that most improves *validation* set accuracy
- produces smallest version of most accurate subtree
- What if data is limited?

Continuous Valued Attributes

Create a discrete attribute to test continuous

- Temperature = 82.5
- (Temperature > 72.3) = t, f

Temperature: 40 48 60 72 80 90 PlayTennis: No No Yes Yes Yes No

Attributes with Many Values

Problem:

- If attribute has many values, Gain will select it
- Imagine using $Date = Jun_3_1996$ as attribute

One approach: use *GainRatio* instead

- $GainRatio(S,A) \equiv \frac{Gain(S,A)}{SplitInformation(S,A)}$
- $SplitInformation(S, A) \equiv -\sum_{i=1}^{c} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$

where S_i is subset of S for which A has value v_i

You should know:

- Well posed function approximation problems:
 - Instance space, X
 - Sample of labeled training data { <x(i), y(i)>}
 - Hypothesis space, H = { f: $X \rightarrow Y$ }
- · Learning is a search/optimization problem over H
 - Various objective functions
 - minimize training error (0-1 loss)
 - among hypotheses that minimize training error, select smallest (?)
- · Decision tree learning
 - Greedy top-down learning of decision trees (ID3, C4.5, ...)
 - Overfitting and tree/rule post-pruning
 - Extensions...

