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1 VC-dimension and Learnability

Definition 1 The Vapnik-Chervonenkis dimension of C, denoted as V Cdim(C), is the car-
dinality of the largest set S shattered by C. If arbitrarily large finite sets can be shattered by C,
then V Cdim(C) = ∞.

Given a classH, define the class MAJk(H) to be the class of functions achievable by taking majority
votes over k functions in H. For example, if H is the class of conjunctions and k = 3 then a typical
function in MAJk(H) might be “f(x) = 1 if x satisfies at least two out of three of x1x4x5, x2x3x4,
and x3x7.” Let’s say we allow repetitions.

Claim 1 Let MAJk(H) is the class of functions achievable by taking majority votes over k functions
in H. If the hypothesis class H has VC-dimension d, then the class MAJk(H) has VC-dimension
O(kd log kd).

Proof: Let D be the VC-dimension of MAJk(H), so by definition, there must exist a set S of D
points shattered by MAJk(H). We know by Sauer’s lemma that there are at most Dd ways of
partitioning the points in S using functions in H.

Now, since each function h in MAJk(H) is determined by some k functions h1, h2, . . . , hk in H, this
means that the partitioning of S induced by h is determined by the partitioning of S induced by
h1, . . . , hk. Since there are at most (Dd)k = Ddk ways of selecting k partitions of S consistent with
H (possibly with repetitions), this means there are at most Dkd ways of partitioning the points in
S using functions in MAJk(H).

On the other hand, since S is shattered by MAJk(H), we know all 2D partitionings are possible.
We therefore must have 2D ≤ Dkd, and so D ≤ 2kd log (kd) (for kd ≥ 4).

A General Upper Bound on the Sample Complexity

In previous lectures we have shown that the VC-dimension of a concept class gives an upper bound
on the number of samples needed to learn concepts from the class.

For example, we have shown:

Theorem 1 Let C be an arbitrary hypothesis space of VC-dimension d. Let D be an arbitrary
unknown probability distribution over the instance space and let c∗ be an arbitrary unknown target
function. For any ϵ, δ > 0, if we draw a sample S from D of size m satisfying
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then with probability at least 1− δ, all the hypotheses in C with errD(h) > ϵ are inconsistent with
the data, i.e., errS(h) ̸= 0.

So it is possible to PAC-learn a class C of VC-dimension d with parameters δ and ϵ given that the

number of samples m is at least m ≥ c
(
d
ϵ log

1
ϵ +

1
ϵ log

1
δ

)
where c is a fixed constant. So, as long as

V Cdim(C) is finite, it is possible to PAC-learn concepts from C even though C might be infinite.

A Lower Bound on the Sample Complexity

We show that this sample complexity result is tight within a factor of O(log(1/ϵ)).

Theorem 2 Any algorithm for PAC-learning a concept class of VC dimension d with parameters
ϵ and δ ≤ 1/15 must use more than (d− 1)/(64ϵ) examples in the worst case.

Proof: Consider a concept class C with VC dimension d. Let X = {x1, . . . , xd} be shattered by
C. To show a lower bound we construct a particular distribution that forces any PAC algorithm
to take that many examples. The support of this probability distribution is X, so we can assume
WLOG that C = C(X), so C is a finite class, |C| = 2d. Note that we have arranged things such
that for all possible labelings of the points in X, there is exactly one concept in C that induces that
labeling. Thus, choosing the target concept uniformly at random from C is equivalent to flipping
a fair coin d times to determine the labeling induced by c on X.

Let m = (d − 1)/(64ϵ), and A be an algorithm that uses at most m i.i.d. examples and then
produces a hypothesis h. We need to show that there exist a distribution D on X and a concept
c ∈ C such that the er(h) > ϵ with probability at least 1/15.

We first define D independently of A:

p(x1) = 1− 16ϵ

p(x2) = p(x3) = · · · = p(xd) =
16ϵ

d− 1

In the following we assume that S is a random i.i.d sample from D of size m. We want to establish
that there is a c so that PrS [er(h) > ϵ] > 1

15 .

Let X ′ = {x2, . . . , xd}. For any fixed c ∈ C and hypothesis h, let

er′(h) = Pr[c(x) ̸= h(x) ∧ x ∈ X ′].

For technical reasons, it is easier to prove that PrS [er
′(h) > ϵ] > 1/15, which is enough since

er′(h) ≤ er(h).

We pick a random c ∈ C and show that with positive probability c is hard to learn for A, thereby
showing that there must be some fixed c that is hard to learn for A.

Let us now define the event:

B : S contains less than (d− 1)/2 points in X ′.
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We have:

PrS [B] ≥ 1/2 (1)

To see this, let Z be the number of points in S that are from X ′. Clearly, E[Z] = 16ϵm = (d−1)/4.
We have PrS [B] ≥ 1 − Pr[Z ≥ (d − 1)/2] ≥ 1/2, since by Markov’s inequality we have Pr[Z ≥
(d− 1)/2] ≤ 1/2.

We can also show:

Ec,S [ er
′(h) | B ] > 4ϵ (2)

Let S be the set of points that A gets. Choosing a random c is equivalent to flipping a fair coin
for each point in X to determine its label. Since h is independent of the labeling of X ′ − S, the
contribution to er′(h) is expected to be 16ϵ/(2(d − 1)) for each point in X ′ − S. When B occurs,
we have |X ′ − S| > (d− 1)/2; thus the expected value of er′(h) given B is strictly greater than 4ϵ.

Using (1) and (2) we get a lower bound on Ec,S [er
′(h)].

Ec,S [er
′(h)] ≥ Pr

S
[B] · Ec,S [ er

′(h) | B ] >
1

2
· 4ϵ = 2ϵ.

So there must exist some c∗ ∈ C such that ES [er
′(h)] > 2ϵ. We take c∗ as the target concept and

show that A is likely to produce a hypothesis with high error rate.

Using the fact that for any h we have er′(h) ≤ Pr[x ∈ X ′] = 16ϵ we note that

ES [ er
′(h) | er′(h) > ϵ ] ≤ 16ϵ for any fixed c. (3)

We have:

2ϵ < ES [er
′(h)]

= PrS [er
′(h) > ϵ] · ES [ er

′(h) | er′(h) > ϵ ]

+(1− PrS [er
′(h) > ϵ]) · ES [ er

′(h) | er′(h) ≤ ϵ ].

Next we apply (3) to get

2ϵ < ES [er
′(h)] ≤ PrS [er

′(h) > ϵ] · 16ϵ+ (1− PrS [er
′(h) > ϵ]) · ϵ

= 15ϵPrS [er
′(h) > ϵ] + ϵ,

which implies PrS [er
′(h) > ϵ] > 1/15, as desired.
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