8803 Machine Learning Theory

Maria-Florina Balcan Lecture 6: September 8, 2011

1 Relating the Mistake Bound and PAC models

We can relate the mistake bound and PAC models as follows:

Theorem 1 If algorithm A learns a concept class C' in the mistake bound model, then A
also learns C' in the probably approximately correct model.

Proof: In proving this we would like to assume that an algorithm is conservative (or lazy),
meaning that the algorithm only changes its state (its state is its current hypothesis) when
it makes a mistake. We can insure that it does this by taking a snapshot of its state before
giving it an example; if the algorithm predicts correctly, we will restore the state it had
before the prediction. In this case the algorithm will behave as it would were it only given
examples on which it makes mistakes, so the number of mistakes is still bounded. Thus,
given A learning C' in the mistake bound model we can construct A" also learning C' in the
mistake bound model but only changing its hypothesis when it makes a mistake.

Transforming the algorithm to a lazy one is not strictly necessary, but it makes the proof
simpler.

From A" we can construct the following algorithm Apac (where M is the mistake bound,
which is bounded by a polynomial in n and the size of c¢):

Run A’ on the data seen, halting if any hypothesis i survives for more than
éln(%) subsequent examples. Return h as the hypothesis of the algorithm.

Note that since the number of mistakes made is bounded by M, the algorithm will terminate
within 2 In(2) examples.

The probability that the algorithm accepts a hypothesis with error greater than € is at most

M(1—€)e™C5) < Meme™(F) = Mz\é/[=6

So the chance that an algorithm accepts a good hypothesis (of error at most €) is at least
1 —9; hence Apyc learns in the PAC model. N

2 The Halving Algorithm

If we do not care about computation time or the hypothesis space H, and if C' is a finite
set, then we can achieve a mistake bound of Ig |C|. This is achieved by the following method
called the “halving algorithm”:

1. Initialize V to C. (V is called the version space.)
2. Given example z, predict according to the majority of the concepts in V.
3. Remove from V all the concepts in C' that predicted wrongly.

4. Return to step 2.
Since with each mistake at least half of the version space V is removed, the number of
mistakes is bounded by log|C.

Clearly this is a very nice general algorithm to learn an arbitrary concept space in both the
mistake bound model and the PAC model. Unfortunately, though, storing V' and predicting
according to the majority of the concepts in V' is likely to be hard.

3 Summary of Learning Models for the Realizable Case

So far we have focused on the realizable case — the algorithm gets a sample that is consistent
with a function in a fixed concept class C. The table below summarizes some of the classes
that are learnable or not learnable in the learning models we have discussed so far.

Table 1: Learnable/not learnable in polynomial time; k is assumed to be constant.

Consistency model | Mistake Bound Model PAC model
Disjunctions Yes Yes Yes
Conjunctions Yes Yes Yes
k-CNF Yes Yes Yes
k-term DNF | No (vp # rP assumption) Yes Yes
k-Decision Lists Yes Yes Yes
Linear separators Yes Yes Yes
Blum’91 Yes NO (crypto assumption) Yes

poly size circuits Yes NO (erypto assumption) NO (erypto assumption)
Decision Trees Yes Not known Not known
DNF Yes Not known Not known

We have also seen some general relationships between these models. For example, if C' is
learnable in the consistency model and In(C') is poly(n), then C' is learnable in the PAC
model. If C is learnable in the mistake bound model, then C' is learnable in the PAC model.

2

If C is the class of linear separators of “large” L, margin (i.e., Ly margin is at least 1/poly(n)),
then C' is learnable in the mistake bound model via the Perceptron algorithm. If C' is the
class of linear separators of “large” L; margin, then C' is learnable in the mistake bound
model via the Winnow algorithm. The general class of linear separators is learnable via an
ellipsoid style algorithm in the mistake bound model.

Under crypto assumptions, there exist classes that are learnable in the PAC model, but not
in the mistake bound model. One example is the Blum’91 class. The rough idea of this
construction is that the target c is negative except for a special subset X; = {z!, 2%, ..., 2™}
of 0,1™ with the following special property:

1. the example z* contains inside it enough information to determine the value c(z7) for
all 7 > 4, but without giving away c(z7) for any j < 1.

2. it is easy to determine in poly time whether an example belongs to X; or not (and if
so, which one it is in the ordering).

So, in the mistake bound model, if the adversary presents the examples in reverse order z™,
a™~ 1 .., then the poor algorithm can’t figure anything out. But, in the PAC model, given
any distribution, we can just look at the one of smallest index j in X* and this tells us what
c is on all larger index examples (so the only region of uncertainty is x!, ..., 2771).

