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Maria-Florina Balcan Lecture 13: October 5, 2010

Reading: Algorithmic Game Theory book, Chapters 17, 18 and 19.

Price of Anarchy and Price of Staility

We assume a (finite) game with n players, where player i’s set of possible strategies is Si.
We let s = (s1, . . . , sn) denote the (joint) vector of strategies selected by players in the space
S = S1 × · · · × Sn of joint actions.

The game assigns utilities ui : S → R or costs ui : S → R to any player i at any joint action
s ∈ S: any player maximizes his utility ui(s) or minimizes his cost ci(s).

As we recall from the introductory lectures, any finite game has a mixed Nash equilibrium
(NE), but a finite game may or may not have pure Nash equilibria.

Today we focus on games with pure NE. Some NE are “better” than others, which we
formalize via a social objective function f : S → R. Two classic social objectives are:

sum social welfare f(s) =
∑

i ui(s) measures social welfare – we make sure that the av-
erage satisfaction of the population is high

maxmin social utility f(s) = mini ui(s) measures the satisfaction of the most unsatisfied
player

A social objective function quantifies the efficiency of each strategy profile. We can now
measure how efficient a Nash equilibrium is in a specific game. Since a game may have many
NE we have at least two natural measures, corresponding to the best and the worst NE.

We first define the best possible solution in a game

Definition 1. Given a social objective f and a game inducing utilities, we define the optimal
solution to be OPT = maxs∈S f(s) (for a game inducing costs, the optimal solution is the
minimum of the costs).

Definition 2. The Price of Anarchy (PoA) of a game G with respect to social function f is

mins NE f(s)

OPT
for utilities and

maxs NE f(s)

OPT
for costs

In both cases, the price of anarchy is the ratio between the quality of the worst NE to the
quality of the optimal solution.
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If PoA is (close to) 1 then any stable state (i.e. NE) reached by players is socially good.

Definition 3. The Price of Stability (PoS) of a game G with respect to social function f is

maxs NE f(s)

OPT
for utilities and

mins NE f(s)

OPT
for costs

In both cases, the price of stability is the ratio between the quality of the best NE to the
quality of the optimal solution.

PoS is relevant for games with some objective authority that can influence players a bit, and
maybe help them “converge” to a good NE.

Congestion Games and Potential Games

We now define a class of games modeling many real world phenomena that has been exten-
sively studied in Algorithmic Game Theory.

Definition 4. A congestion game is defined by a group of resources E and a group of players.
A strategy for player i is to use a subset of resources. Thus Si ⊆ 2E. For each resource e ∈ E
there is a cost (as perceived by a player) ce : N → R such that ce(x) is the cost of resource e
when x players are using it.

The cost function for each player is ci(s) =
∑

e∈si ce(xe) where xe is the number of players
using e in s. The social function is often the sum social function

For example, in a fair cost sharing game (a well-studied congestion game), each resource e ∈
E has some base cost Ce that is shared fairly among the players that use it, i.e. ce(x) =

Ce

x
.

We now define a different class of games that we show to be equivalent to congestion games.

Definition 5. A game G is an exact potential game inducing costs c1, . . . , cn if there exists
an exact potential function Φ : S → R such that for every player i, strategy profile s =
(si, s−i) and strategy s′i, we have

ci(si, s−i)− ci(s
′
i, s−i) = Φ(si, s−i)− Φ(s′i, s−i)

In other words, an exact potential game has a potential function which maps joint actions to
real numbers such that when player i deviates from si to s′i, the change in the player’s cost
is exactly the same as the change in the potential function.

There is an alternate definition for an ordinal potential game which is a bit weaker

Definition 6. A game G inducing costs c1, . . . , cn is an ordinal potential game if there
exists an ordinal potential function Φ : S → R such that for every player i, strategy profile
s = (si, s−i) and strategy s′i, we have

ci(si, s−i) > ci(s
′
i, s−i) ⇐⇒ Φ(si, s−i) > Φ(s′i, s−i)

In other words, player i decreases its cost by deviating from si to s′i if and only if the ordinal
potential function also decreases (but not necessarily by the same amount).
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Clearly, any exact potential game is an ordinal potential game but not the other way around.

A first appealing property of ordinal potential games is that they always have pure NE.

Theorem 1. Every (ordinal) potential game has at least a pure Nash equilibrium, namely
any joint strategy s minimizing Φ(s).

Proof: Let s be a joint strategy minimizing Φ(s), that must exist since S is finite. If s was
not an NE then there would exist some player i that can strictly lower its cost and thus
strictly lowers Φ, contradiction.

A more powerful property is the convergence of best-response dynamics

Theorem 2. In any finite potential game, best response dynamics always converge to a NE.

Proof: The pure NE of a potential game coincide with the local minima of its potential Φ
and improving moves decrease Φ.

Monderer and Shapley proved in 1996 that exact potential games and congestion games are
equivalent. We prove just one direction.

Theorem 3. Every congestion game is an exact potential game.

Proof: Given a congestion game G, we will construct an exact potential function Φ for it.
The difference in Φ must match the difference in any player i’s utility when deviating from
si to s′i (assuming a fixed strategy vector s−i for the other players).

Let E+ = {e ∈ E : e ∈ s′i, e ̸∈ si} and E− = {e ∈ E : e ̸∈ s′i, e ∈ si}.
Since resources in both or none of E+ and E− do not affect cost,

ci(s
′
i, s−i)− ci(si, s−i) =

∑
e∈E+

ce(xe + 1)−
∑
e∈E−

ce(xe)

We define Φ(s) =
∑

e∈E
∑xe

j=1 ce(j) and we can see that the difference in Φ matches the
difference in payoffs of player i when switching from si to s′i.

We use a potential function argument to upper bound the PoS of fair cost sharing games

Theorem 4. The price of stability of fair cost sharing is H(n) = 1+ 1
2
+ · · ·+ 1

n
= Θ(log n).

Proof: Iterate best-response dynamics starting from an optimal solution s∗: while there is a
player that can improve, pick an arbitrary such player and let him do best-response. Note
that the potential always decreases and since there are finitely many states, we must reach
a pure NE sT . Since Φ(s) =

∑
e∈E used

∑ne(s)
j=1

Ce

j
, it is immediate to show that cost(s) ≤

Φ(s) ≤ cost(s)Hn, ∀ s i.e.

cost(sT ) ≤ Φ(sT ) ≤ Φ(s∗) ≤ cost(s∗)Hn

One can show that this upper bound is tight, i.e. that there exists a fair cost sharing game
in which the cost of the best NE is a Θ(log n) factor higher than that of the optimum.

One can also show that in fair cost sharing games, the price of anarchy is Θ(logn).
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