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Passive supervised Learning. The non-realizable case

In the general case, the target function might not be in the class of functions we consider.
Formally, in the non-realizable or agnostic passive supervised learning setting, we assume that
the input to a learning algorithm is a set S of labeled examples S = {(x1, y1), . . . , (xm, ym)}.
We assume that these examples are drawn i.i.d. from some fixed but unknown distribution
D over the the instance space X and that they are labeled by some target concept c∗. So
yi = c∗(xi). The goal is just as in the realizable case to do optimization over the given sample
S in order to find a hypothesis h : X → {0, 1} of small error over whole distribution D. The
error of h is defined as

err(h) = Pr
x∼D

(h(x) ̸= c∗(x)).

We denote by
errS(h) = Pr

x∼S
(h(x) ̸= c∗(x))

the empirical error over the sample. Technically, our goal is to compete with the best function
(the function of smallest true error rate) in some concept class C.

A natural hope is that picking a concept c with a small observed error rate gives us small
true error rate. It is therefore useful to find a relationship between observed error rate for a
sample and the true error rate.

Concentration Inequalities

Consider a hypothesis with true error rate p (or a coin of bias p) observed on m examples
(the coin is flipped m times). Let S be the number of observed errors (the number of heads
seen) so S/m is the observed error rate.

Hoeffding bounds state that for any ϵ ∈ [0, 1],

1. Pr[ S
m

> p+ ϵ] ≤ e−2mϵ2 , and

2. Pr[ S
m

< p− ϵ] ≤ e−2mϵ2 .

Chernoff bounds state that under the same conditions,

1. Pr[ S
m

> p(1 + ϵ)] ≤ e−mpϵ2/3, and

2. Pr[ S
m

< p(1− ϵ)] ≤ e−mpϵ2/2.
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Simple sample complexity results for finite hypotheses spaces

We can use the Hoeffding bounds to show the following:

Theorem 1 Let C be a finite hypothesis space. Let D be an arbitrary, fixed unknown prob-
ability distribution over X and let c∗ be an arbitrary unknown target function. For any ϵ,
δ > 0, if we draw a sample S from D of size

m ≥ 1

2ϵ2

(
ln(|C|) + ln

(
2

δ

))
,

then probability at least (1− δ), all hypotheses h in C have

|err(h)− errS(h)| ≤ ϵ. (1)

Proof: Let us fix a hypothesis h. By Hoeffding, we get that the probability that its observed
error is not within ϵ of its true error is at most 2e−2mϵ2 . By union bound over all h in C, we
get that the probability that there exists a hypothesis h ∈ C with |err(h)− errS(h)| > ϵ is
at most 2|C|e−2mϵ2 . By setting this to δ, we get the desired result.

Note 1 A statement of type (1) is called a uniform convergence result. It implies that
the hypothesis that minimizes the empirical error rate will be very close in generalization
error to the best hypothesis in the class. In particular if ĥ = argminh∈CerrS(h) we have

err(ĥ) ≤ err(h∗) + 2ϵ, where h∗ ∈ C is a hypothesis in C of smallest true error rate.

Note 2 The sample size grows quadratically with 1/ϵ. Recall that the learning sample size
in the realizable (PAC) case grew only linearly with 1/ϵ.

Note 3 Another way to write the bound in Theorem 1 is as follows:

For any ϵ, δ > 0, if we draw a sample from D of size m then with probability at least 1− δ,
all hypotheses h in C have

err(h) ≤ errS(h) +

√√√√ ln(|C|) + ln
(
2
δ

)
2m

This is the more “statistical learning theory style” way of writing the same bound.

If we believe that the best hypothesis h∗ ∈ C has a low error rate, then we can get rid of
that pesky ϵ2 by relaxing our goal, to say that for hypotheses whose true error is greater
than ϵ, we are satisfied if their observed error comes just within a factor of 2. Specifically:
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Theorem 2 Let C be a finite hypothesis space. Let D be an arbitrary, fixed unknown prob-
ability distribution over X and let c∗ be an arbitrary unknown target function. For any ϵ,
δ > 0, if we draw a sample S from D of size

m ≥ 6

ϵ

(
ln(|C|) + ln

(
1

δ

))
then with probability at least 1 − δ, all h ∈ C with err(h) > 2ϵ have errS(h) > ϵ, and all
h ∈ C with err(h) ≤ ϵ/2 have errS(h) ≤ ϵ.

Thus, if the hypothesis h∗ of minimum true error has err(h∗) ≤ ϵ/2 then the hypothesis ĥ of
minimum empirical error has err(ĥ) ≤ 2ϵ.

Proof: Using Chernoff bounds, we calculate as follows. Let δ′ = δ/|C|. Fix h with err(h) =
p ≥ 2ϵ; it is enough to ensure that the empirical error errS(h) is at least p/2 ≥ ϵ with
confidence 1 − δ′. By Chernoff it is enough to ensure that e−mp/8 ≤ δ′. To get this it is
enough to ensure that e−mϵ/4 ≤ δ′, which is true as long as m ≥ 6

ϵ

(
ln(|C|) + ln

(
1
δ

))
.

On the other hand, if err(h) = p ≤ ϵ/2, we we want to ensure that with confidence 1 − δ′

the observed error errS(h) is no more than ϵ
2
(1 + 1). The worst case occurs for h̃ such

that err(h̃) = ϵ/2; by Chernoff, we have the probability that errS(h̃) ≥ 2err(h̃) is at most

e−m·err(h̃)/3 = e−mϵ/6 which is at most δ′ for m ≥ 6
ϵ
ln(1/δ′), as desired .

Or, to be analogous to Note 3, givenm examples, with probability at least 1−δ, all h ∈ C with
err(h) > 12

m
ln(2|C|/δ) satisfy errS(h) ≥ err(h)/2 and all h ∈ C with err(h) < 3

m
ln(2|C|/δ)

satisfy errS(h) <
6
m
ln(2|C|/δ).

Sample complexity results for infinite hypothesis spaces

Let C be a concept class over an instance space X, i.e. a set of functions functions from X to
{0, 1} (where both C and X may be infinite). For any S ⊆ X, let’s denote by C (S) the set of
all behaviors or dichotomies on S that are induced or realized by C, i.e. if S = {x1, · · · , xm},
then C (S) ⊆ {0, 1}m and

C (S) = {(c (x1) , · · · , c (xm)) ; c ∈ C} .

Also, for any natural number m, we consider C [m] to be the maximum number of ways to
split m points using concepts in C, that is

C [m] = max {|C (S)| ; |S| = m,S ⊆ X} .

With these conventions we have the following two results:
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Theorem 3 Let C be an arbitrary hypothesis space. Let D be an arbitrary, fixed unknown
probability distribution over X and let c∗ be an arbitrary unknown target function. For any
ϵ, δ > 0, if we draw a sample S from D of size

m >
2

ϵ
·
[
log2 (2 · C[2m]) + log2

(
1

δ

)]
(2)

then with probability (1− δ), all bad hypothesis in C (with error > ϵ with respect to c∗ and
D) are inconsistent with the data.

Theorem 4 Let C be an arbitrary hypothesis space. Let D be an arbitrary, fixed unknown
probability distribution over X and let c∗ be an arbitrary unknown target function. For any
ϵ, δ > 0, if we draw a sample S from D of size m > (8/ϵ2)[ln(2C[2m]) + ln(1/δ)] then with
probability 1− δ, all h in C have |errD(h)− errS(h)| < ϵ.

If C is the class of thresholds, then C[m] = m + 1; if C is the class of intervals, then
C[m] = O(m2),

Definition 1 If |C (S) | = 2|S| then S is shattered by C.

Definition 2 The Vapnik-Chervonenkis dimension of C, denoted V CDIM(C), is the
largest cardinality d such that there exists a sample set of that cardinality |S| = d that is
shattered by C. If no largest cardinality exists then V CDIM(C) = ∞.

In general if C has VC-dimension d, then C[m] = O(md), so if we solve for example Equa-
tion 2 we get that

m >
2

ϵ
·
[
d log2

(
1

ϵ

)
+ log2

(
1

δ

)]
is sufficient to show that then with probability 1 − δ, all hypotheses/functions in C with
error ≥ ϵ are inconsistent with the data.
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