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1 From External Regret to Swap Regret

1.1 Model and Preliminaries

We assume an adversarial online model where there are N available actions X = {1,..., N}.
At each time step ¢, an online algorithm H selects a distribution p! over the N actions.
After that, the adversary selects a loss vector £¢ € [0, 1]V, where ¢ € [0,1] is the loss of the
i-th action at time t. In the full information model, the online algorithm H receives the loss
vector £* and experiences a loss £4, = SN | pift. (This can be viewed as an expected loss when
the online algorithm selects action i € X with probability pt.) In the partial information
model, the online algorithm receives (¢%., k"), where k' is distributed according to p’, and
¢t = ¢, is its loss. The loss of the i-th action during the first T’ time steps is LT = 37, ¢,
and the loss of H is LY, = YT 04,

The aim for the external regret setting is to design an online algorithm that will be able to
approach the performance of the best algorithm from a given class of algorithms G; namely,
to have a loss close to L ,;,, = mingeg Ly . Formally we would like to minimize the external
regret Rg = L1, — Lgmm, and G is called the comparison class. The most studied comparison
class G is the one that consists of all the single actions, i.e., G = X. In this context, we want
the online algorithm’s loss to be close to LT. = min; LT, and the external regret is defined
as R=LL, - LT, .

External regret uses a fixed comparison class G, but one can also envision a comparison
class that depends on the online algorithm’s actions. We can consider modification rules
that modify the actions selected by the online algorithm, producing an alternative strategy
which we will want to compete against. A modification rule F' has as input the history
and the current action selected by the online procedure and outputs a (possibly different)
action. (We denote by F' the function F' at time ¢, including any dependency on the
history.) Given a sequence of probability distributions p’ used by an online algorithm H,
and a modification rule F', we define a new sequence of probability distributions f* = F*(p'),
where ff = Y, ;)= Pj. The loss of the modified sequence is Ly r = 3,3, fi¢j. Note
that at time ¢ the modification rule I’ shifts the probability that H assigned to action j to
action F*(j). This implies that the modification rule F' generates a different distribution, as
a function of the online algorithm’s distribution p’.

We will focus on the case of a finite set F of memoryless modification rules (they do not
depend on history). Given a sequence of loss vectors, the regret of an online algorithm H
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with respect to the modification rules F is

Ry = max{Ly — Ly 1},

Note that the external regret setting is equivalent to having a set F¢* of N modification rules
F;, where F; always outputs action i. For internal regret, the set F™ consists of N(N — 1)
modification rules F;;, where F;;(i) = j and Fj;(i') = ¢ for ¢’ # 4. That is, the internal
regret of H is
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A more general class of memoryless modification rules is swap regret defined by the class
F5v which includes all NV functions F : {1,...,N} — {1,..., N}, where the function F
swaps the current online action ¢ with F(i) (which can be the same or a different action).
That is, the swap regret of H is

N T
T[Ty = (g
max {Lj; — Ly p} ;rjng{;pz(& f])}.

Note that since F* C F* and F™ C F*%, both external and internal regret are upper-
bounded by swap regret.

1.2 Generic conversion from external to swap regret

In this section we give an elegant and very general black-box conversion showing how any
procedure A achieving good external regret can be used as a subroutine to achieve good
swap regret as well.

The high-level idea is as follows (see also Fig. 1). We will instantiate N copies A;,..., Ay
of the external-regret procedure. At each time step, these procedures will each give us a
probability vector, which we will combine in a particular way to produce our own probability
vector p. When we receive a loss vector £, we will partition it among the NV procedures, giving
procedure A; a fraction p; (p; is our probability mass on action i), so that A;’s belief about
the loss of action j is >, p%;-, and matches the cost we would incur putting ¢’s probability
mass on j. In the proof, procedure A; will in some sense be responsible for ensuring low
regret of the ¢ — j variety.

The key to making this work is that we will be able to define the p’s so that the sum of the
losses of the procedures A; on their own loss vectors matches our overall true loss.

To be specific, let us formalize what we mean by an external regret procedure.

Definition 1 An R external regret procedure A guarantees that for any sequence of T' losses
¢ and for any action j € {1,..., N}, we have
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Figure 1: The structure of the swap regret reduction.

Theorem 1 Given an R external regret procedure, the master online procedure H has the
following guarantee. For every function F:{1,... , N} —{1,...,N},

Ly <Lygr+NR,
i.€., the swap regret of H is at most NR.

Proof: We assume we have N copies A;,..., Ay of an R external regret procedure. We
combine the N procedures to one master procedure H as follows. At each time step ¢, each
procedure A; outputs a distribution ¢!, where quj is the fraction it assigns action j. We
compute a single distribution p* such that

Py =D _Pill;-

That is, p* = p'Q", where p' is our distribution and Q" is the matrix of ¢j ;. (We can view p’
as a stationary distribution of the Markov Process defined by @', and it is well known such
a p' exists and is efficiently computable.) For intuition into this choice of p‘, notice that it
implies we can consider action selection in two equivalent ways. The first is simply using
the distribution p’ to select action j with probability pg-. The second is to select procedure
A; with probability p! and then to use A; to select the action (which produces distribution
p'Q’).

When the adversary returns the loss vector £¢, we return to each A; the loss vector p;f*. So,
procedure A; experiences loss (pil?) - ¢t = pt(q! - 0%).

Since A; is an R external regret procedure, for any action j, we have,
T T
> pilgi-0) < > pil;+R (1)
t=1 t=1

3



If we sum the losses of the N procedures at a given time ¢, we get
> pilg - 1) =p'Q'L,

where p' is the row-vector of our distribution, Q" is the matrix of ¢f ;, and ¢ is viewed as a
column-vector. By design of p', we have p'Q' = p'. So, the sum of the perceived losses of
the N procedures is equal to our actual loss p'/t.

Therefore, summing equation (1) over all N procedures, the left-hand-side sums to L%, where
H is our master online procedure. Since the right-hand-side of equation (1) holds for any j,
we have that for any function F': {1,...,N} — {1,..., N},

N T
Ly <% Py + NR= Ly p+ NR,
i=1t=1
as desired. N

Using known guarantees about the randomized weighted majority algorithm we can imme-
diately derive the following corollary.

Corollary 1 There exists an online algorithm H such that for every function F : {1,... N}
—{1,..., N}, we have that

LH S LH,F + O(N TlOgN),

i.e., the swap regret of H is at most O(N+/T log N).

Acknowledgment: The material in this lecture is from chapter “Learning, Regret Mini-
mization, and Equilibria” by Avrim Blum and Yishay Mansour.



