
8803 Connections between Learning, Game Theory, and
Optimization

Maria-Florina Balcan Lecture 4: September 2nd, 2010

1 From External Regret to Swap Regret

1.1 Model and Preliminaries

We assume an adversarial online model where there are N available actions X = {1, . . . , N}.
At each time step t, an online algorithm H selects a distribution pt over the N actions.
After that, the adversary selects a loss vector ℓt ∈ [0, 1]N , where ℓti ∈ [0, 1] is the loss of the
i-th action at time t. In the full information model, the online algorithm H receives the loss
vector ℓt and experiences a loss ℓtH =

∑N
i=1 p

t
iℓ

t
i. (This can be viewed as an expected loss when

the online algorithm selects action i ∈ X with probability pti.) In the partial information
model, the online algorithm receives (ℓtkt , k

t), where kt is distributed according to pt, and
ℓtH = ℓtkt is its loss. The loss of the i-th action during the first T time steps is LT

i =
∑T

t=1 ℓ
t
i,

and the loss of H is LT
H =

∑T
t=1 ℓ

t
H .

The aim for the external regret setting is to design an online algorithm that will be able to
approach the performance of the best algorithm from a given class of algorithms G; namely,
to have a loss close to LT

G,min = ming∈G L
T
g . Formally we would like to minimize the external

regret RG = LT
H−LT

G,min, and G is called the comparison class. The most studied comparison
class G is the one that consists of all the single actions, i.e., G = X. In this context, we want
the online algorithm’s loss to be close to LT

min = mini L
T
i , and the external regret is defined

as R = LT
H − LT

min.

External regret uses a fixed comparison class G, but one can also envision a comparison
class that depends on the online algorithm’s actions. We can consider modification rules
that modify the actions selected by the online algorithm, producing an alternative strategy
which we will want to compete against. A modification rule F has as input the history
and the current action selected by the online procedure and outputs a (possibly different)
action. (We denote by F t the function F at time t, including any dependency on the
history.) Given a sequence of probability distributions pt used by an online algorithm H,
and a modification rule F , we define a new sequence of probability distributions f t = F t(pt),
where f t

i =
∑

j:F t(j)=i p
t
j. The loss of the modified sequence is LH,F =

∑
t

∑
i f

t
i ℓ

t
i. Note

that at time t the modification rule F shifts the probability that H assigned to action j to
action F t(j). This implies that the modification rule F generates a different distribution, as
a function of the online algorithm’s distribution pt.

We will focus on the case of a finite set F of memoryless modification rules (they do not
depend on history). Given a sequence of loss vectors, the regret of an online algorithm H

1



with respect to the modification rules F is

RF = max
F∈F

{LT
H − LT

H,F}.

Note that the external regret setting is equivalent to having a set F ex of N modification rules
Fi, where Fi always outputs action i. For internal regret, the set F in consists of N(N − 1)
modification rules Fi,j, where Fi,j(i) = j and Fi,j(i

′) = i′ for i′ ̸= i. That is, the internal
regret of H is

max
F∈Fin

{LT
H − LT

H,F} = max
i,j∈X

{
T∑
t=1

pti(ℓ
t
i − ℓtj)

}
.

A more general class of memoryless modification rules is swap regret defined by the class
F sw, which includes all NN functions F : {1, . . . , N} → {1, . . . , N}, where the function F
swaps the current online action i with F (i) (which can be the same or a different action).
That is, the swap regret of H is

max
F∈Fsw

{LT
H − LT

H,F} =
N∑
i=1

max
j∈X

{
T∑
t=1

pti(ℓ
t
i − ℓtj)

}
.

Note that since F ex ⊆ F sw and F in ⊆ F sw, both external and internal regret are upper-
bounded by swap regret.

1.2 Generic conversion from external to swap regret

In this section we give an elegant and very general black-box conversion showing how any
procedure A achieving good external regret can be used as a subroutine to achieve good
swap regret as well.

The high-level idea is as follows (see also Fig. 1). We will instantiate N copies A1, . . . , AN

of the external-regret procedure. At each time step, these procedures will each give us a
probability vector, which we will combine in a particular way to produce our own probability
vector p. When we receive a loss vector ℓ, we will partition it among the N procedures, giving
procedure Ai a fraction pi (pi is our probability mass on action i), so that Ai’s belief about
the loss of action j is

∑
t p

t
iℓ

t
j, and matches the cost we would incur putting i’s probability

mass on j. In the proof, procedure Ai will in some sense be responsible for ensuring low
regret of the i → j variety.

The key to making this work is that we will be able to define the p’s so that the sum of the
losses of the procedures Ai on their own loss vectors matches our overall true loss.

To be specific, let us formalize what we mean by an external regret procedure.

Definition 1 An R external regret procedure A guarantees that for any sequence of T losses
ℓt and for any action j ∈ {1, . . . , N}, we have

LT
A =

T∑
t=1

ℓtA ≤
T∑
t=1

ℓtj +R = LT
j +R.

2



-

�

�

-
�

-
AN

A1

H

qt1

p1ℓ
t

ptnℓ
t

pt

ℓt

qtN

ee
e

Figure 1: The structure of the swap regret reduction.

Theorem 1 Given an R external regret procedure, the master online procedure H has the
following guarantee. For every function F : {1, . . . , N} → {1, . . . , N},

LH ≤ LH,F +NR ,

i.e., the swap regret of H is at most NR.

Proof: We assume we have N copies A1, . . . , AN of an R external regret procedure. We
combine the N procedures to one master procedure H as follows. At each time step t, each
procedure Ai outputs a distribution qti , where qti,j is the fraction it assigns action j. We
compute a single distribution pt such that

ptj =
∑
i

ptiq
t
i,j.

That is, pt = ptQt, where pt is our distribution and Qt is the matrix of qti,j. (We can view pt

as a stationary distribution of the Markov Process defined by Qt, and it is well known such
a pt exists and is efficiently computable.) For intuition into this choice of pt, notice that it
implies we can consider action selection in two equivalent ways. The first is simply using
the distribution pt to select action j with probability ptj. The second is to select procedure
Ai with probability pti and then to use Ai to select the action (which produces distribution
ptQt).

When the adversary returns the loss vector ℓt, we return to each Ai the loss vector piℓ
t. So,

procedure Ai experiences loss (p
t
iℓ

t) · qti = pti(q
t
i · ℓt).

Since Ai is an R external regret procedure, for any action j, we have,

T∑
t=1

pti(q
t
i · ℓt) ≤

T∑
t=1

ptiℓ
t
j +R (1)

3



If we sum the losses of the N procedures at a given time t, we get∑
i

pti(q
t
i · ℓt) = ptQtℓt,

where pt is the row-vector of our distribution, Qt is the matrix of qti,j, and ℓt is viewed as a
column-vector. By design of pt, we have ptQt = pt. So, the sum of the perceived losses of
the N procedures is equal to our actual loss ptℓt.

Therefore, summing equation (1) over allN procedures, the left-hand-side sums to LT
H , where

H is our master online procedure. Since the right-hand-side of equation (1) holds for any j,
we have that for any function F : {1, . . . , N} → {1, . . . , N},

LT
H ≤

N∑
i=1

T∑
t=1

ptiℓ
t
F (i) +NR = LT

H,F +NR,

as desired.

Using known guarantees about the randomized weighted majority algorithm we can imme-
diately derive the following corollary.

Corollary 1 There exists an online algorithm H such that for every function F : {1, . . . , N}
→ {1, . . . , N}, we have that

LH ≤ LH,F +O(N
√
T logN) ,

i.e., the swap regret of H is at most O(N
√
T logN).

Acknowledgment: The material in this lecture is from chapter “Learning, Regret Mini-
mization, and Equilibria” by Avrim Blum and Yishay Mansour.

4


