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Overview 

n Melody-Based Retrieval 
n Audio-Score Alignment 
n Music Fingerprinting 
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Metadata-based Retrieval 

n Title 
n Artist 
n Genre 
n Year 
n  Instrumentation 
n Etc. 

n What if we could search by content instead? 
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Melody-Based Retrieval 

n  Representations: 
n  Pitch sequence (not transposition invariant) 
n  Intervals (chromatic or diatonic) 
n  Approximate Intervals (unison, seconds, thirds, large) 
n  Up/Down/Same: sududdsududdsuddddusddud 

n  Rhythm can be encoded too: 
n  IOI = Inter-onset interval 
n  Duration sequences 
n  Duration ratio sequences 
n  Various quantization schemes 
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Indexing 

n Easily done, given exact, discrete keys* 
n Pitch-only index of incipits** 
n Manual / Printed index works if melody is 

transcribed without error 
 
*here, key is used in the CS sense of “Searching 

involves deciding whether a search key is present in 
the data” (as opposed to musical keys) 

** the initial notes of a musical work 
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Computer-Based Melodic Search 

n Dynamic Programming 
n Typical Problem Statement: find the best 

match in a database to a query 
n  Query is a sequence of pitches 
n  “best match” means some substring of some 

song in the database with minimum edit 
distance 

n  Query does not have to match beginning of song 
n  Query does not have to contain entire song 
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What Features to Match? 
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Absolute Pitch:     67           69   71    67 
Relative Pitch:               2         2     -4 
IOI:                            1          0.5   0.5   1 
IOI Ratio:                       0.5        1      2 
Log IOI Ratio:                -1         0      1 
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Dynamic Programming for Music 
Retrieval 

Initial Skip 
Cost is Zero 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
. 
. 
. 

-1  -2  -3  -4  -5  -6  -7   
Skip Cost for 
Query Notes 
is 1 (per note) 

Read off minimum 
value in last column 
to find best match. 
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Example 

ⓒ 2019 by Roger B. Dannenberg 9 

0 

0 

0 

0 

0 

0 

0 

0 

-1       -2        -3        -4 
A       G         F        C 

C 

D 

A 

G 

E 

C 

D 

G 

melody: 

key: 
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Example 
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Here, rather than 
classical edit 
distance, we are 
computing: 
#matches − 
#deletions − 
#insertions − 
#substitutions, so 
this is a measure of 
“similarity” rather 
than “distance”: 
larger is better. 
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Search Algorithm 

n For each melody in database: 
n  Compute the best match cost for the query 

n Report the melody with the lowest cost 

n  Linear in size of database and size of query 
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Themes 

n  In many projects, themes are entered by hand 
n  In MUSART, themes are extracted automatically from 

MIDI files 
n  Interesting research in its own right 
n  Colin Meek: themes are patterns that occur most 

often 
n  Encode n-grams as bit strings and sort 
n  Add some heuristics to emphasize “interesting” 

melodic material 
n  Validated by comparing to a published thematic index 
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How Do We Evaluate Searching? 

n Typically there is a match score for each 
document 

n Sort the documents according to scores 
n  “Percent in top 10”: Count number of 
“relevant”/correct documents ranked in the 
top 10 

n  “Mean Reciprocal Rank”: the mean value of 
1/rank, where rank is the lowest rank of a 
“correct” document. 1=perfect, worst à 0 

Carnegie Mellon University 

MRR Example 

n Test with 5 keys (example only, you really 
should test with many) 

n Each search returns a list of top picks. 
n  Let’s say the correct matches rank #3, #1, #2, 

#20, and #10 in the lists of top picks 
n Reciprocals: 1/3, 1/1, ½, 1/20, 1/10 =  

0.33, 1.0, 0.5, 0.05, 0.1 
n Sum = 1.98, divide by 5 -> 0.4 
n MRR = 0.4 
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Corpus 
Musical 
Abstraction 
Processing 

Representation 
Translation 

Search 
Techniques 

Theme 
Finding 
Chroma 
Analysis 
Melodic 
Pattern 

Style 
Classifier 

Vowel 
Classifier 

. . . 

Markov 
Representation 

Frame 
Representation 

. . . 
Markov 
Distance 
Contour 
Distance 
Viterbi 
Search . . . 

Query 
Interface 

Browsing 
Interface 

User 

Database 

From ISMIR 2001/2003 

MUSART 
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Queries                  Databases 

High Quality: 
160 queries, 2 singers, 
10 folk songs 

10,000 Folk songs 

Beatles (Set #1): 
131 queries, 10 singers, 
10 Beatles songs 

258 Beatles songs 
(2844 themes) 

Popular (Set #2): 
165 queries, various 
popular songs 

868 Popular songs 
(8926 themes) 
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Good Match

Partial Match

Out-of-order or
repetition
No Match

How good/bad are the queries? 
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Results 

Representations MRR 
Absolute Pitch & IOI 0.0194 
Absolute Pitch & IOIR 0.0452 
Absolute Pitch & LogIOIR 0.0516 
Relative Pith & IOI 0.1032 
Relative Pitch & IOIR 0.1355 
Relative Pitch & LogIOIR 0.2323 
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Insertion/Deletion Costs 

Cins : Cdel MRR 
0.5 : 0.5 0.1290 
1.0 : 1.0 0.1484 
2.0 : 2.0 0.1613 
1.0 : 0.5 0.1161 
1.5 : 1.0 0.1355 
2.0 : 1.0 0.1290 
0.5 : 1.0 0.1742 

 

Cins : Cdel MRR 
1.0 : 1.5 0.2000 
0.2 : 2.0 0.2194 
0.4 : 2.0 0.2323 
0.6 : 2.0 0.2323 
0.8 : 2.0 0.2258 
1.0 : 2.0 0.2129 
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Other Possibilities 

n  Indexing – not robust because of errors 
n N-gram indexing – also not very robust 
n Dynamic Time Warping 
n Hidden Markov Models 
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N-Grams 
n  G G A G C B G G … 
n  à GGA, GAG, AGC, GCB, CBG, BGG, … 
n  A common text search technique 
n  Rate documents by number of matches 
n  Fast search by index (from n-gram to documents containing the  

n-gram) 
n  Term Frequency Weighting 

n  tf =count or percentage of occurrences in document 
n  Inverse Document Frequency Weighting 

n  idf = log(#docs / #(docs with matches)) 
n  Does not work well (in our studies) with sung queries due to the 

high error rates:  
n  n-grams are either to short to be specific or 
n  n-grams are too long to get exact matches 

n  Need something with higher precision 
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Dynamic Time Warping 
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Dynamic Time Warping (2) 

60.1 60.2 65 64.9 … 

60 

60 

65 

65 

… 

Query Data 
Target 
Data 
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DP vs DTW 

n  Dynamic Time Warping (DTW) is a special case of 
dynamic programming 

n  (As is the LCS algorithm) 
n  DTW implies matching or alignment of time-series 

data that is sampled at equal time intervals 
n  Has some advantage for melody matching – no need 

to parse melody into discrete notes 
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Calculation Patterns for DTW 

a b 

c 
d 

d = max(a, b + deletecost, c + insertcost) + distance  

The slope of the path is between ½ and 2.  
This tends to make warping more plausible, 
but ultimately, you should test on real data 
rather than speculate about these things. 
(In our experiments, this really does help for 
query-by-humming searches.) 
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Hidden Markov Models 

n  Queries can have many types of errors: 
n  Local pitch errors 
n  Modulation errors 
n  Local rhythm errors 
n  Tempo change errors 
n  Insertion and deletion errors 

n  HMMs can encode errors as states and use current 
state (error type) to predict what will come next 

n  Best match is an “explanation” of errors including 
their probabilities 
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Dynamic Programming with 
Probabilities 

n What does DP compute? Path length, a sum 
of costs based on mismatches, skips, and 
deletions. 

n Probability of independent events:  
     P(a, b, c) = P(a)P(b)P(c) 

n  So, log(P(a, b, c)) = log(P(a)) + log(P(b)) + log(P(c)) 
n Therefore, DP computes the most likely path, 

where each branch in the path is 
independent, and where skip, delete, and 
match costs represent logs of probabilities. 
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Example for Melodic Matching 

n  Collect some “typical” vocal queries 
n  By hand, label the queries with correct pitches (what the singer 

was trying to sing, not what they actually sang) 
n  Get computer to transcribe the queries 
n  Construct a histogram of relative pitch error: 

n  With DP string matching, we added 1 for a match. With this 
approach, we add log(P(interval)). Skip and deletion costs are 
still ad-hoc. 

0 12 
(octave error) 

-12 
(octave error) 
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Audio to Score Alignment

Ning Hu, Roger B. Dannenberg and George 
Tzanetakis

Carnegie Mellon University 

Carnegie Mellon University 
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Music Representations 

n  Symbolic 
Representation 
n  easy to manipulate 
n  “flat” performance 

n  Audio Representation 
n  expressive 

performance 
n  opaque & unstructured 
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Music Representations 

n  Symbolic 
Representation 
n  easy to manipulate 
n  “flat” performance 
 

n  Audio Representation 
n  expressive 

performance 
n  opaque & unstructured 

    Align 
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Motivation 

n Query-by-Humming: find audio file from sung 
query 

n Where do we get a database of melodies 
(can’t extract melody from general audio)? 

n Melodies can be extracted from MIDI files 
n Can we then match the MIDI files to audio 

files? 
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Alignment to Audio 

n Related work: please see paper & ISMIR03 
n Obtain features from audio and from score 

n  Chromagram 
n  Pitch Histogram 
n  Mel Frequency Cepstral Coefficients (MFCC) 

n Use DTW to align feature strings 
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Acoustic Features – Chromagram 

n  Sequence of 12-element Chroma vectors 
n  Each element represents spectral energy 

corresponding to one pitch class (C, C#, D, …) 
n  Computing process: 

 

n  Advantages: 
n  Sensitive to prominent pitches and chords 
n  Insensitive to spectral shape 

Audio data 
(0.25s per frame,  
non-overlapping) 

FFT 
Collapse into 

one octave  
(12 pitch classes) 

Average  
Magnitude  
of FFT bins 

Chroma 
Vectors 
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Chromagram Representation 
 

35 

Spectrum 

Linear frequency to log frequency: 
"Semi vector": one bin per semitone 

Projection to pitch classes: "Chroma vector" 
C1+C2+C3+C4+C5+C6+C7, 
C#1+C#2+C#3+C#4+C#5+C#6+C#7, etc. 

"Distance Function": Euclidean, Cosine, etc. 
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Alignment         

Audio File 
MIDI File 

Analysis Analysis 

Frame 
Sequence 

MIDIàAudio 

Frame 
Sequence 

DTW Alignment Path 
Average Frame Distance  
     In Path 
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Comparing & Matching Chroma 

n Two sequences of chroma vectors 
n  Audio from MIDI (using Timidity renderer)   
n  Acoustic recording 

n Chroma comparison 
n  Normalize chroma vectors (µ = 0, σ = 1) 
n  Calculate Euclidean distance between vectors 

n  Distance = 0 ⇒ perfect agreement 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 38 

Locate Optimal Alignment Path 

n Dynamic Time Warping (DTW) algorithm 

n  The calculation pattern for cell (i,j) in the matrix 

C D 

A B 

D =  M i,j =  min(A,B,C)+dist(i,j) 

i 

j 
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Similarity Matrix 

Similarity Matrix for Beethoven’s 5th Symphony, first 
movement  

(Duration: 6:17) 

(D
ur

at
io

n:
 7

:4
9)
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Similarity Matrix 

Similarity Matrix for Beethoven’s 5th Symphony, first 
movement  

Optimal 
Alignment 

Path 

Oboe solo: 
• Acoustic Recording 
• Audio from MIDI 

(Duration: 6:17) 

(D
ur

at
io

n:
 7

:4
9)
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Optimization 

n  Chroma is not sensitive to timbre 

n  Avoid MIDI synthesizing & extracting chroma vectors 
n  Map each pitch to a chroma vector 
n  Sum vectors & then normalize 

MIDI synthesized using original 
symphonic instrumentation 

MIDI synthesized using only 
piano sound 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 42 

Alignment         

Audio File 
MIDI File 

Analysis Analysis 

Frame 
Sequence 

MIDIàAudio 

Frame 
Sequence 

DTW Alignment Path 
Average Frame Distance  
     In Path 
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Alignment Successful Even With 
Vocals 

“Let It Be” with vocals matched 
with MIDI data 
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Intelligent Audio Editor Mock-up 
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Summary & Conclusions  
(on Audio to Score Alignment) 

n  How to align MIDI to Audio 
n  Simple computation – no learning, few parameters to 

tune 
n  Evaluated several different features 
n  Investigated searching for MIDI files given audio 
n  Building a bridge between signal and symbol 

representations 
n  In many cases, serves as a replacement for 

polyphonic music transcription 

Music Fingerprinting 

photo by Philips 
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Music Fingerprinting 

n Motivation: How do you… 
n … find the title of a song playing in a club 
n … or on the radio 
n … generate playlists from radio broadcasts for 

royalty distribution 
n … detect copies of songs 
n … find original work, given a copy 

n Note: recordings and copies have many kinds 
of distortion and time stretching 
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Audio Fingerprinting 
Problem Statement 

n Given: a partial copy of a music recording 
(usually about 10 or 15 seconds), 

n with some distortion 
n  E.g. cell phone audio 
n  Radio stations often shorten songs 

n Given: a database of original, high-quality 
audio 

n Find: audio in database that is, with high 
probability, the original recording 
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How It Works (General) 

n Find some unique audio features that survive 
distortion and transformation with high 
probability 

n Build an index from (quantized) features to 
database 

n Search: 
n  Calculate (many) features from query 
n  Look up matching songs in database 
n  Output song(s) with sufficient number of 

matches 
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Features: Spectral Flux 

n Philips system uses spectral flux: 

n Output is stream of 32-bit words 
n Each word is indexed 
n Search looks for a number of exact matches 

that indicate a roughly constant time stretch 

 

FFT 

derivative 
derivative 
derivative 
derivative 
derivative 
derivative 

quantize 
quantize 
quantize 
quantize 
quantize 
quantize 

0 
1 
1 
0 
0 
1 

audio 
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Comparing Fingerprints 
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Features: Spectral Peaks 

n  Shazam uses pairs of spectral peaks: 
 
 
 
 
 

n  Peaks are likely to survive any distortion and time 
stretch 

n  Pairs are unique enough to serve as a good index 

. . ..
. . ..

.. .
... .

.. .
... .

.. .
... .

Spectrogram 
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Performance and Business 

n  Shazam: >10M tunes, 30s retrieval by cell phone 
n  Gracenote bought Philips’ technology (Gracenote is 

behind CDDB). Says 28M songs (wikipedia). Mobil 
Music ID - phone in song to buy matching ringtone. 

n  NTT and others announced systems in the past 
n  Echo Nest (bought by Spotify) 
n  Last.fm 
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Query-By-Humming with Audio 
Database 

n Problem: given an audio database, find songs 
that match a sung audio query 

n So far, extracting melody from audio is quite 
difficult and error prone. 

n QBH with symbolic data is already pretty 
marginal 

n A few systems have been built – 
SoundHound, Midomi – but results are not 
nearly as strong as with music fingerprinting 
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Finding “Covers” 

n  A cover is a performance of a song by someone other 
than the “original” artist 

n  Finding covers in a database, given the original 
recording is similar to music fingerprinting, but… 

n  Music Fingerprinting uses distinctive acoustic 
features, 

n  Not high-level semantic features that are shared 
between originals and covers 

n  Some success matching chromagram features 
computed at very low (1 second) rates – averages 
almost all but chord/key change/very prominent 
melodic material. 
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Music Information Retrieval Summary 

n Query-By-Humming: 
n Techniques 

n String matching techniques 
n Dynamic Time Warping 
n Hidden Markov Models 
n N-Grams 

n Representation is critical 
n Tie DP & DTW to (log) probabilities 
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Music Information Retrieval Summary (2) 

n Audio to Score Matching 
n  Chromagram representation is very successful 
n  Robust enough for real-world applications now 

n Audio Fingerprinting 
n  Key is to find robust and distinctive acoustic 

features 
n  Indexing used for fast retrieval 
n  Some post processing to select songs with 

multiple consistent hits 
n  Already a big business 

Carnegie Mellon University 

Summary 

n Music Fingerprinting works by forming an 
index of features that are highly reproducible 
from (re)recorded audio 

n Audio-to-Symbolic Music Alignment works 
well, at least with limited temporal precision 

n Other MIR tasks: Query by Humming and 
Cover Song Detection are much more 
difficult; no general and robust solutions exist. 
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