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Introduction 

n OSC 
n Remote Music Control Protocol 
n Clock Synchronization 
n O2 
n Network Music 
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OPEN SOUND CONTROL 
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OSC – Open Sound Control 

n Client/Server Architecture 
n UDP and TCP 
n Name Space 
n Address Patterns 
n Bundles and Atomicity 
n Timestamps 
n Applications 
n Pros and Cons 
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Client/Server Architectures 

n  Client initializes contact 
n  Server waits on socket: 

n  General server socket 
n  Per-client socket 

n  Frequently remote procedure 
call based 
n  Client issues call 
n  Server executes function 
n  Return results to client 

n  Basis for web servers 
n  HTTP is a client/server 

protocol 

Server 

Client 1 Client 2 
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Server Implementation Sketch 

sad.sin_family = AF_INET; // family = Internet 
sad.sin_addr.s_addr = INADDR_ANY; // IP address 
sad.sin_port = htons((u_short)portno); // port # 
sd = socket(PF_INET, SOCK_STREAM, ptrp->p_proto); 
bind(sd, (struct sockaddr *) &sad, sizeof(sad)) 
listen(sd, 5) 
sd2 = accept(sd, (sockaddr_ptr) &cad, &alen); 
 
sd = socket(PF_INET, SOCK_STREAM, TCP); 
connect(sd, (struct sockaddr *) &sad, sizeof(sad)) 
 
n = recv(socket, buf, len, 0); 
n = send(socket, buf, len, 0); 
 
close(socket); 
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Connection Protocol 
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Client Server 
bind() 
listen() 

connect() 

accept() 

send() 

recv() 
 
 
 
send() 

recv() 

close() 

close() 
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UDP vs TCP 

n  UDP – “User Datagram Protocol”, which you might 
think of as “unreliable data protocol” 
n  Unreliable because no guarantees on delivery 
n  Data in packets smaller than some limit 
n  Order is not guaranteed either 
n  Typical use on (wired) LAN very reliable 

n  TCP – “Transmission Control Protocol” 
n  Byte stream model 
n  Data eventually reaches destination (in order) 
n  Retained data, Ack msgs, Retransmission 
n  Default setting will accumulate bytes into large packets 
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What can go wrong with UDP? 

n  Packets can be dropped 
n  Long messages are split across packets, so all 

packets have to arrive and be reassembled. 
n  So usually, UDP systems send short messages 

that are guaranteed to fit in one packet. 
n  What’s a safe size? It surprising how many 

answers you can find to such a fundamental 
question. The answer seems to be around 500 
bytes for the Internet, and around 1500 bytes for 
local Ethernet. 
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What can go wrong with TCP? 

n  TCP sends an unlimited byte stream. 
n  You must delineate messages, typically prefixing a length count. 
n  TCP typically delays small writes in hopes of filling a packet with 

additional data to achieve better throughput (more bytes/second) 
n  You can send immediately by setting TCP_NODELAY option 

n  When a packet is lost or dropped, nothing more gets through 
until the sender discovers the loss and retransmits. 
n  Thus, TCP stream can temporarily halt and wait, creating a 

substantial latency. 
n  For isolated messages, transmitter fails to get an 

acknowledgement after a timeout period of several seconds and 
retransmits. 

n  For frequent messages, receiver quickly detects loss by noticing an 
out-of-order packet (they have sequence numbers), but there’s still 
a round-trip delay to request retransmission. 
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OSC Messages 

n  Address Pattern 
n  /voice/3/freq 

n  Type Tag String 
n  Arguments 
n  Data Types: 

n  ASCII strings 
n  32-bit float 
n  32-bit int 
n  “BLOB” 

n  RGB color 
n  64-bit numbers 
n  Booleans 
n  … and more 
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Name Space 

n Tree-structured 
n Structure defined by server 

n  (not by a standard as in MIDI) 
n  Is this good or bad? 

n String names for nodes 
n  Note that strings are globally known and 

available at compile time 
n URL-like path names from root to message 

target 
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Address Patterns 

n  May contain pattern syntax: 
n  * – matches zero or more characters 
n  ? – matches any single character 
n   [characters] – matches characters 

n  Minus, e.g. [1-3] matches range of characters 
n  Leading !, e.g. [!0-9] negates the match 

n  {string1,string2,string3} – match a string in list 
n  If more than one destination matches address 

pattern: 
n  Send copy of message arguments to each node 
n  Fanout to unknown destinations 
n  For example: control all “voices” with volume pedal 
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Bundles and Atomicity 

n  Bundles are sequences of messages 
n  All messages in a bundle are delivered atomically 

n  Bundle ::= [Message | Bundle]* 
n  OSC_Packet ::= Message | Bundle 

n  In other words, bundles can hold a sequence, 
where each element is either a (nested) bundle 
or a messages 

n  The top-level packet holds 1 bundle or 1 
message 
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Timestamps 

n  Every bundle has a timestamp 
n  Server schedules message delivery 
n  An example of the Action Buffer or Forward 

Synchronous paradigm 
n  Hides network latency 
n  Need clock synchronization: not fully worked out in 

current OSC systems (after many years) 
n  Timestamps are from Network Time Protocol: 

n  64 bit unsigned fixed-point 
n  32 integer bits: seconds since Jan 1, 1900 
n  32 fraction bits (200 picosecond resolution) 
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Applications 

n SuperCollider 
n  A software synthesis engine in two parts 

n  Server performs audio synthesis 
n  Client runs high-level control language 
n  Communication by OSC, allows multiple clients 

n  Server handles “start”, “stop”, “compile”, etc. 
n Open Sound World 

n  Another software synthesis system 
n  Implements queries so client can discover 

structure of the server’s name space 
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More Applications 

n  Interfaces for: 
n  Flash 
n  Director 
n  Perl, Python, SmallTalk 

n Various microcomputer sensor systems 
n Reactor – commercial synthesizer 
n Many installations, networked music systems 
n Serpent 
n TouchOSC 
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What’s Good About OSC 
(according to the authors) 

n Namespace makes the control points explicit 
n Uniform access to all functionality 
n Single, extensible access point 
n Migrate from single cpu to multiple cpu 
n Snapshots of system state automatable 
n Polyphonic control through patterns 
n Can represent input (controller) data 
n Suggests dynamic controller-to-synthesizer 

mapping 
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Some Drawbacks 

n  Client/Server is more restricted than general 
point-to-point or peer-to-peer system 

n  String processing/pattern matching overhead 
(although this does not seem to be a problem in 
practice) 

n  Location transparency not fully supported 
n  Manual entry of IP address, port number 
n  UDP or TCP: pick one 
n  Not fully designed and implemented: 

n  Query system 
n  Clock synchronization 
n  Audio streaming (not part of OSC) 

Carnegie Mellon University 

RMCP – REMOTE MUSIC 
CONTROL PROTOCOL 
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RMCP – Remote Music Control 
Protocol 

n  Integrates MIDI and Ethernet 
n UDP/IP over LAN 
n Supports broadcast-based sharing 
n Also has gateway program for WAN 
n C and Java, Windows and Linux 
n Client/Server Model 
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Servers and Clients 

n  Sound Server – 
messages to synth 

n  Display Server – 
animated piano view 

n  Animation Server – 
computer graphics 

n  Recorder – create file 
from messages 

n  MIDI Receiver – MIDI  
in, packets out 

n  MIDI Station – use 
computer keyboard and 
mouse in place of MIDI 

n  SMF Player – play 
standard MIDI file 

n  Player – play file 
created by Recorder 
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Connections (or not) 

n All servers receive from each client via 
broadcast messages 

n No acknowledgement 
n Small programs, reusable 
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RMCP Network 
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Time 

n Early packets held until their timestamps 
n Timestamps are optional 
n Clock synchronization – requires RMCP time 

synchronization server 
n Every time sync server computes table of 

time offsets for each machine 
n Every time sync server broadcasts table 

periodically 
n Every server listens for local time server’s 

table and uses it to adjust timestamps 
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Packet Types 

n MIDI 
n Beat info 
n Chord info 
n Animation info for transmitting computer 

graphics 
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CLOCK 
SYNCHRONIZATION 

Distribute timing for interactive music systems 
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Overview 

n Why clock synchronization? 
n Characterize the problem 
n Simple solution 
n Some more elaborate approaches 
n What next?  
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Why Clock Synchronization? 
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If you have  
low-latency 
communication, you 
do not need clock 
synchronization… 

PLAY 
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Why Clock Synchronization? (2) 

If network 
communication 
sometimes has 
high delays 
(latency), then 
event 
synchronization 
is difficult… 

PLAY 
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Why Clock Synchronization? (3) 

Scheduling 
according to 
timestamps can 
overcome some 
synchronization 
problems (but 
not latency 
problems)… 

PLAY 
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Why Clock Synchronization? (4) 

n Timestamps are only as good as the local 
clock… 

n …therefore the goal is: 
Synchronize clocks to a precision that is 
much better than network latency and jitter. 
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The Design Space 

n What do we synchronize to? 
n  Global consensus (internal synchronization) 
n  Master reference clock (external synch.) 

n Who’s in charge? 
n  No one (symmetric) 
n  Master (asymmetric, master-controlled) 
n  Slave (asymmetric, slave-controlled) 

n Special synchronization hardware? 
n  Yes: hardware synchronization 
n  No: software synchronization 
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Clock and Network Characteristics 

n Crystal clock accuracy: +/-0.02% 
n Frequency drift: low 
n Network latency: <1ms 
n Network jitter: long tail (0.5s) 
n  Jitter reading clock or frame #: <1ms 

n This should be easy… 



18 

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 35 

Network Latency and Jitter 

n  Interactive music systems 
n  not compute bound 
n  short or empty network and task queues 
n  Messages usually get through quickly 

n To read remote system time: 
n  send message; wait for reply 
n  quick reply => low latency and jitter 
n  add half of transit time to compensate for latency 
n  result should be well below 1ms error 
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Logical Clock Model 

n Assume that time is a linear function of the 
local clock or sample count: 

LogicalTime = offset + rate * LocalTime 
n Clock synchronization amounts to updating 

offset  and rate. 
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Simple Solution 

n Periodically read remote “master” clock 
n If reply returns quickly, update local time 

n An excellent, robust method:  
n  Poll the master clock 10 or so times 
n  Find the minimum round-trip time 
n  Update based on that single round trip 

n Otherwise, continue with previous 
model until next period. 
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Simple Solution 
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master 

slave 
s0 s1 

t1 

At slave’s local time s, slave estimates master 
time to be s + t1 - (s0 + s1)/2  

Estimated slave time that 
t1 was read = (s0 + s1)/2 
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More Elaborate Approaches 

n Dominique Fober: 
n  Use window of recent timestamp messages 
n  Reject outliers, estimate offset and rate 
n  Use exponential smoothing 

n Brandt and Dannenberg: 
n  Treat logical clock as feedback control system 
n  In simulation, achieved 1.1ms clock error with 

5ms error reading sample clock. 
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Clock adjustment 

n  In O2: 
n  If off by >1s, just set the time (local time jumps) 
n  Otherwise, run 10% faster or slower until 

convergence 
n  No “right” answer: either  you introduce more 

absolute error or more “jumps” – both are bad. 
n How do you deal with unmatched sample 

rates? 
n  Resample? 
n  Ignore it and work at control level? 
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Conclusions 

n Clock synchronization is critical for 
networked interactive systems 
n Assuming that network latency is 

significant! 
n Clocks and networks have almost ideal 

properties. 
n Simple approaches work well to ~1ms. 
n Advanced techniques can achieve near-

frame accuracy over ordinary networks. 

Carnegie Mellon University 

O2 

Extending Open Sound Control to IP-based Networks 
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Why O2? 

n  OSC has been very successful – clearly a need for 
communication support 

n  OSC designed for flexibility and low-cost: 
n  Designers did not want to make assumptions about 

underlying transport mechanism 
n  Result is that OSC cannot take advantage of TCP, 

message broadcast, other IP capabilities 
n  Computing has advanced: 

n  Even phones run IP 
n  $10 for a low-powered linux computer! 
n  WiFi is everywhere 

n  OSC shortcomings… 
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Main Advantages of O2 

n Clock synchronization and accurately timed 
delivery (as an option) 

n Choice of reliable delivery vs. lowest latency 
best effort 

n Named “services” instead of IP address and 
Port number 

n Also: 
n  O2 has a scheduler that applications can use 
n  O2 has OSC compatibility options 
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O2 Addresses 

n  In OSC, you form an address, such as 
  /voice/3/freq 

and you deliver it by sending a packet to an IP 
address, e.g. 128.2.42.57 and port number, e.g. 
8001 

n  In O2, you prefix the address with a “service 
name”, e.g. 

  /synth/voice/3/freq 

n  O2 automatically “discovers” the “synth” service  
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O2 API in Serpent 

n  o2_initialize("test", o2_debug_flag) – join the “test” 
application (all applications have a name to avoid interference with 
other O2 applications sharing the network); the debug flag is currently 
ignored 

n  o2_service_new("server") – create a local service named 
“server”. Messages beginning with /server will be delivered here.

n  o2_method_new("/server/fn", "i", 'sv_fn', t) – add a 
handler for ”/server/pitch” messages. The messages will contain one 
integer (“i”), and sv_fn will be called to handle the message. t means 
coerce non-integer parameter, e.g. if sender sends a float, it will be 
coerced to an int before calling sv_fn. 

n  o2_clock_set() – become the clock “master”. One host running O2 
should do this to establish a global clock. 

n  o2_poll() – must be called frequently to handle O2 protocols and 
dispatch timed message delivery. Automatic in sched if you set 
sched_o2_enabled = t
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Sending Messages 

n  o2_send_start() – begin constructing an O2 
message 

n  o2_add_int32(i) – add an integer parameter 
n  … you can add more parameters here … 
n  o2_send_finish(time, "/server/fn”, tcp_flag) – 

send the message with timestamp (0 means as soon 
as possible) to address. Tcp_flag is true for reliable 
(TCP) delivery. 

n  Address can begin with “!”, e.g. “!server/fn”, if there 
are no wildcards in the address – bypasses pattern 
matching at the server 
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O2 clock and service setup 

n O2 is not immediately fully operational after 
o2_initialize() – needs clock sync and service 
discovery. 

n Here’s a cheap-and-dirty “wait for setup” loop 
that, as a client, waits until we have clock 
sync and discover the service named 
“server”: 

    // poll until client is ready to go
    while o2_status("server") < O2_REMOTE
        o2_poll() // run o2 while waiting
        time_sleep(0.01)
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OSC compatibility 

n  o2_osc_delegate(service, ip, port, tcp_flag) - 
Create an O2 service, named by the string service, that 
forwards O2 messages to an OSC server defined by the string 
ip (IP address or "localhost"), the integer port (port number), and 
the boolean tcp_flag which specifies whether to connect via 
UDP or TCP.  (Now O2 processes can send to “service” to 
reach the OSC server at ip:port.) 

n  o2_osc_port_new(service, port, tcp_flag) - Create 
an OSC server that forwards incoming messages to the O2 
service named by the string service. The service is offered on 
the port given by the integer port, and the port will receive 
messages via UDP unless tcp_flag is non-nil, in which case 
TCP is used. (Now OSC clients can send to this host’s ip 
address at the given port to deliver O2 messages to service.) 
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INTERCONNECTED MUSIC 
NETWORKS 
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Taking a Step Back: Why 
Networks? 
n  We could talk about esthetics of: 

n  Acoustics vs. computer/electronics 
n  Computer/algorithmic composition 
n  Fixed recordings vs. live performance 

n  But I picked Networks for several reasons: 
n  We’re talking about network technology 
n  We’re aiming for a networked orchestra performance 
n  Networks highlight latency and timing issues and 

concepts which have wide application 
n  Networks are one way to enable modular systems, e.g. 

using TouchOSC, Synthesis servers, etc. – again with 
wide applications to music, art installations, etc. 
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Interconnected Music Networks 

n A fundamental aesthetic concept in IMNs is 
the computer’s role as a supporter and 
enhancer of live musical interaction with its 
surprise, immediacy, and flexibility. 
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See G. Weinberg, “The Aesthetics, History, and Future 
Challenges of Interconnected Music Networks” 



27 

Carnegie Mellon University 

Cage and Imaginary Landscape No. 4 

n  “Process” Music 
n  A reaction to formal structure in 20th C. 
n  A precursor to algorithmic composition 

n Cage gives instructions to performers, but 
sound is indeterminate radio broadcasts 

n   Chance operations further remove Cage 
from direct control over sound 
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League of Automatic Music 
Composers and The Hub 

n Pioneering work in the 1970’s 
n  Interconnected microcomputers 
n Each computer ran a program to generate 

sound 
n  Parameters of the generation process were 

transmitted to other computers 
n  Incoming parameters from other computers 

affected the generation process 
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League of Automatic Music 
Composers and The Hub 
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The Bridge Approach   

n Network for communication 
n Usually video and audio 
n Sometimes MIDI 
n Used for master classes, rehearsals 
n Often latency is a big concern 
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The Shaper Approach 

n Users manipulate parameters that control 
music generation 

n Music reflects collective input of everyone 
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Construction Kit Approach 

n Users download musical materials, 
n Work on the material, and  
n Upload results of manipulation 

n Sergi Jorda’s Faust Music Online is an 
important example 
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peerSynth 

n Transmit 
control info only 

n  Local synthesis 
n Treats latency 

as synthesis 
modulation 
parameter 
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peerSynth 
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Listening to Examples 

n  https://www.youtube.com/watch?v=oPfwrFl1FHM (Cage) 
n  http://www.youtube.com/watch?v=6APygFQ6BAo (Jorda) 
n  http://www.youtube.com/watch?v=czV9sSGpeyk (LOL) 
n  http://www.youtube.com/watch?v=eqGo7qRaDZ0 (Oliveros) 
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