
1

Week 6 –
Music Control and
Networks

Roger B. Dannenberg
Professor of Computer Science and Art & Music
Carnegie Mellon University

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 2

Introduction

n OSC
n Remote Music Control Protocol
n Clock Synchronization
n O2
n Network Music

2

Carnegie Mellon University

OPEN SOUND CONTROL

ⓒ 2019 by Roger B. Dannenberg 3

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 4

OSC – Open Sound Control

n Client/Server Architecture
n UDP and TCP
n Name Space
n Address Patterns
n Bundles and Atomicity
n Timestamps
n Applications
n Pros and Cons

3

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 5

Client/Server Architectures

n  Client initializes contact
n  Server waits on socket:

n  General server socket
n  Per-client socket

n  Frequently remote procedure
call based
n  Client issues call
n  Server executes function
n  Return results to client

n  Basis for web servers
n  HTTP is a client/server

protocol

Server

Client 1 Client 2

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 6

Server Implementation Sketch

sad.sin_family = AF_INET; // family = Internet
sad.sin_addr.s_addr = INADDR_ANY; // IP address
sad.sin_port = htons((u_short)portno); // port #
sd = socket(PF_INET, SOCK_STREAM, ptrp->p_proto);
bind(sd, (struct sockaddr *) &sad, sizeof(sad))
listen(sd, 5)
sd2 = accept(sd, (sockaddr_ptr) &cad, &alen);

sd = socket(PF_INET, SOCK_STREAM, TCP);
connect(sd, (struct sockaddr *) &sad, sizeof(sad))

n = recv(socket, buf, len, 0);
n = send(socket, buf, len, 0);

close(socket);

4

Carnegie Mellon University

Connection Protocol

ⓒ 2019 by Roger B. Dannenberg 7

Client Server
bind()
listen()

connect()

accept()

send()

recv()

send()

recv()

close()

close()

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 8

UDP vs TCP

n  UDP – “User Datagram Protocol”, which you might
think of as “unreliable data protocol”
n  Unreliable because no guarantees on delivery
n  Data in packets smaller than some limit
n  Order is not guaranteed either
n  Typical use on (wired) LAN very reliable

n  TCP – “Transmission Control Protocol”
n  Byte stream model
n  Data eventually reaches destination (in order)
n  Retained data, Ack msgs, Retransmission
n  Default setting will accumulate bytes into large packets

5

Carnegie Mellon University

What can go wrong with UDP?

n  Packets can be dropped
n  Long messages are split across packets, so all

packets have to arrive and be reassembled.
n  So usually, UDP systems send short messages

that are guaranteed to fit in one packet.
n  What’s a safe size? It surprising how many

answers you can find to such a fundamental
question. The answer seems to be around 500
bytes for the Internet, and around 1500 bytes for
local Ethernet.

ⓒ 2019 by Roger B. Dannenberg 9

Carnegie Mellon University

What can go wrong with TCP?

n  TCP sends an unlimited byte stream.
n  You must delineate messages, typically prefixing a length count.
n  TCP typically delays small writes in hopes of filling a packet with

additional data to achieve better throughput (more bytes/second)
n  You can send immediately by setting TCP_NODELAY option

n  When a packet is lost or dropped, nothing more gets through
until the sender discovers the loss and retransmits.
n  Thus, TCP stream can temporarily halt and wait, creating a

substantial latency.
n  For isolated messages, transmitter fails to get an

acknowledgement after a timeout period of several seconds and
retransmits.

n  For frequent messages, receiver quickly detects loss by noticing an
out-of-order packet (they have sequence numbers), but there’s still
a round-trip delay to request retransmission.

ⓒ 2019 by Roger B. Dannenberg 10

6

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 11

OSC Messages

n  Address Pattern
n  /voice/3/freq

n  Type Tag String
n  Arguments
n  Data Types:

n  ASCII strings
n  32-bit float
n  32-bit int
n  “BLOB”

n  RGB color
n  64-bit numbers
n  Booleans
n  … and more

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 12

Name Space

n Tree-structured
n Structure defined by server

n  (not by a standard as in MIDI)
n  Is this good or bad?

n String names for nodes
n  Note that strings are globally known and

available at compile time
n URL-like path names from root to message

target

7

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 13

Address Patterns

n  May contain pattern syntax:
n  * – matches zero or more characters
n  ? – matches any single character
n  [characters] – matches characters

n  Minus, e.g. [1-3] matches range of characters
n  Leading !, e.g. [!0-9] negates the match

n  {string1,string2,string3} – match a string in list
n  If more than one destination matches address

pattern:
n  Send copy of message arguments to each node
n  Fanout to unknown destinations
n  For example: control all “voices” with volume pedal

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 14

Bundles and Atomicity

n  Bundles are sequences of messages
n  All messages in a bundle are delivered atomically

n  Bundle ::= [Message | Bundle]*
n  OSC_Packet ::= Message | Bundle

n  In other words, bundles can hold a sequence,
where each element is either a (nested) bundle
or a messages

n  The top-level packet holds 1 bundle or 1
message

8

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 15

Timestamps

n  Every bundle has a timestamp
n  Server schedules message delivery
n  An example of the Action Buffer or Forward

Synchronous paradigm
n  Hides network latency
n  Need clock synchronization: not fully worked out in

current OSC systems (after many years)
n  Timestamps are from Network Time Protocol:

n  64 bit unsigned fixed-point
n  32 integer bits: seconds since Jan 1, 1900
n  32 fraction bits (200 picosecond resolution)

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 16

Applications

n SuperCollider
n  A software synthesis engine in two parts

n  Server performs audio synthesis
n  Client runs high-level control language
n  Communication by OSC, allows multiple clients

n  Server handles “start”, “stop”, “compile”, etc.
n Open Sound World

n  Another software synthesis system
n  Implements queries so client can discover

structure of the server’s name space

9

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 17

More Applications

n  Interfaces for:
n  Flash
n  Director
n  Perl, Python, SmallTalk

n Various microcomputer sensor systems
n Reactor – commercial synthesizer
n Many installations, networked music systems
n Serpent
n TouchOSC

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 18

What’s Good About OSC
(according to the authors)

n Namespace makes the control points explicit
n Uniform access to all functionality
n Single, extensible access point
n Migrate from single cpu to multiple cpu
n Snapshots of system state automatable
n Polyphonic control through patterns
n Can represent input (controller) data
n Suggests dynamic controller-to-synthesizer

mapping

10

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 19

Some Drawbacks

n  Client/Server is more restricted than general
point-to-point or peer-to-peer system

n  String processing/pattern matching overhead
(although this does not seem to be a problem in
practice)

n  Location transparency not fully supported
n  Manual entry of IP address, port number
n  UDP or TCP: pick one
n  Not fully designed and implemented:

n  Query system
n  Clock synchronization
n  Audio streaming (not part of OSC)

Carnegie Mellon University

RMCP – REMOTE MUSIC
CONTROL PROTOCOL

ⓒ 2019 by Roger B. Dannenberg 20

11

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 21

RMCP – Remote Music Control
Protocol

n  Integrates MIDI and Ethernet
n UDP/IP over LAN
n Supports broadcast-based sharing
n Also has gateway program for WAN
n C and Java, Windows and Linux
n Client/Server Model

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 22

Servers and Clients

n  Sound Server –
messages to synth

n  Display Server –
animated piano view

n  Animation Server –
computer graphics

n  Recorder – create file
from messages

n  MIDI Receiver – MIDI
in, packets out

n  MIDI Station – use
computer keyboard and
mouse in place of MIDI

n  SMF Player – play
standard MIDI file

n  Player – play file
created by Recorder

12

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 23

Connections (or not)

n All servers receive from each client via
broadcast messages

n No acknowledgement
n Small programs, reusable

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 24

RMCP Network

13

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 25

Time

n Early packets held until their timestamps
n Timestamps are optional
n Clock synchronization – requires RMCP time

synchronization server
n Every time sync server computes table of

time offsets for each machine
n Every time sync server broadcasts table

periodically
n Every server listens for local time server’s

table and uses it to adjust timestamps

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 26

Packet Types

n MIDI
n Beat info
n Chord info
n Animation info for transmitting computer

graphics

14

Carnegie Mellon University

CLOCK
SYNCHRONIZATION

Distribute timing for interactive music systems

ⓒ 2019 by Roger B. Dannenberg 27

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 28

Overview

n Why clock synchronization?
n Characterize the problem
n Simple solution
n Some more elaborate approaches
n What next?

15

Carnegie Mellon University

Why Clock Synchronization?

ⓒ 2019 by Roger B. Dannenberg 29

If you have
low-latency
communication, you
do not need clock
synchronization…

PLAY

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 30

Why Clock Synchronization? (2)

If network
communication
sometimes has
high delays
(latency), then
event
synchronization
is difficult…

PLAY

16

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 31

Why Clock Synchronization? (3)

Scheduling
according to
timestamps can
overcome some
synchronization
problems (but
not latency
problems)…

PLAY

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 32

Why Clock Synchronization? (4)

n Timestamps are only as good as the local
clock…

n …therefore the goal is:
Synchronize clocks to a precision that is
much better than network latency and jitter.

17

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 33

The Design Space

n What do we synchronize to?
n  Global consensus (internal synchronization)
n  Master reference clock (external synch.)

n Who’s in charge?
n  No one (symmetric)
n  Master (asymmetric, master-controlled)
n  Slave (asymmetric, slave-controlled)

n Special synchronization hardware?
n  Yes: hardware synchronization
n  No: software synchronization

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 34

Clock and Network Characteristics

n Crystal clock accuracy: +/-0.02%
n Frequency drift: low
n Network latency: <1ms
n Network jitter: long tail (0.5s)
n  Jitter reading clock or frame #: <1ms

n This should be easy…

18

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 35

Network Latency and Jitter

n  Interactive music systems
n  not compute bound
n  short or empty network and task queues
n  Messages usually get through quickly

n To read remote system time:
n  send message; wait for reply
n  quick reply => low latency and jitter
n  add half of transit time to compensate for latency
n  result should be well below 1ms error

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 36

Logical Clock Model

n Assume that time is a linear function of the
local clock or sample count:

LogicalTime = offset + rate * LocalTime
n Clock synchronization amounts to updating

offset and rate.

19

Carnegie Mellon University

Simple Solution

n Periodically read remote “master” clock
n If reply returns quickly, update local time

n An excellent, robust method:
n  Poll the master clock 10 or so times
n  Find the minimum round-trip time
n  Update based on that single round trip

n Otherwise, continue with previous
model until next period.

ⓒ 2019 by Roger B. Dannenberg 37

Carnegie Mellon University

Simple Solution

ⓒ 2019 by Roger B. Dannenberg 38

master

slave
s0 s1

t1

At slave’s local time s, slave estimates master
time to be s + t1 - (s0 + s1)/2

Estimated slave time that
t1 was read = (s0 + s1)/2

20

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 39

More Elaborate Approaches

n Dominique Fober:
n  Use window of recent timestamp messages
n  Reject outliers, estimate offset and rate
n  Use exponential smoothing

n Brandt and Dannenberg:
n  Treat logical clock as feedback control system
n  In simulation, achieved 1.1ms clock error with

5ms error reading sample clock.

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 40

Clock adjustment

n  In O2:
n  If off by >1s, just set the time (local time jumps)
n  Otherwise, run 10% faster or slower until

convergence
n  No “right” answer: either you introduce more

absolute error or more “jumps” – both are bad.
n How do you deal with unmatched sample

rates?
n  Resample?
n  Ignore it and work at control level?

21

Carnegie Mellon University ⓒ 2019 by Roger B. Dannenberg 41

Conclusions

n Clock synchronization is critical for
networked interactive systems
n Assuming that network latency is

significant!
n Clocks and networks have almost ideal

properties.
n Simple approaches work well to ~1ms.
n Advanced techniques can achieve near-

frame accuracy over ordinary networks.

Carnegie Mellon University

O2

Extending Open Sound Control to IP-based Networks

ⓒ 2019 by Roger B. Dannenberg 42

22

Carnegie Mellon University

Why O2?

n  OSC has been very successful – clearly a need for
communication support

n  OSC designed for flexibility and low-cost:
n  Designers did not want to make assumptions about

underlying transport mechanism
n  Result is that OSC cannot take advantage of TCP,

message broadcast, other IP capabilities
n  Computing has advanced:

n  Even phones run IP
n  $10 for a low-powered linux computer!
n  WiFi is everywhere

n  OSC shortcomings…

ⓒ 2019 by Roger B. Dannenberg 43

Carnegie Mellon University

Main Advantages of O2

n Clock synchronization and accurately timed
delivery (as an option)

n Choice of reliable delivery vs. lowest latency
best effort

n Named “services” instead of IP address and
Port number

n Also:
n  O2 has a scheduler that applications can use
n  O2 has OSC compatibility options

ⓒ 2019 by Roger B. Dannenberg 44

23

Carnegie Mellon University

O2 Addresses

n  In OSC, you form an address, such as
 /voice/3/freq

and you deliver it by sending a packet to an IP
address, e.g. 128.2.42.57 and port number, e.g.
8001

n  In O2, you prefix the address with a “service
name”, e.g.

 /synth/voice/3/freq

n  O2 automatically “discovers” the “synth” service

ⓒ 2019 by Roger B. Dannenberg 45

Carnegie Mellon University

O2 API in Serpent

n  o2_initialize("test", o2_debug_flag) – join the “test”
application (all applications have a name to avoid interference with
other O2 applications sharing the network); the debug flag is currently
ignored

n  o2_service_new("server") – create a local service named
“server”. Messages beginning with /server will be delivered here.

n  o2_method_new("/server/fn", "i", 'sv_fn', t) – add a
handler for ”/server/pitch” messages. The messages will contain one
integer (“i”), and sv_fn will be called to handle the message. t means
coerce non-integer parameter, e.g. if sender sends a float, it will be
coerced to an int before calling sv_fn.

n  o2_clock_set() – become the clock “master”. One host running O2
should do this to establish a global clock.

n  o2_poll() – must be called frequently to handle O2 protocols and
dispatch timed message delivery. Automatic in sched if you set
sched_o2_enabled = t

ⓒ 2019 by Roger B. Dannenberg 46

24

Carnegie Mellon University

Sending Messages

n  o2_send_start() – begin constructing an O2
message

n  o2_add_int32(i) – add an integer parameter
n  … you can add more parameters here …
n  o2_send_finish(time, "/server/fn”, tcp_flag) –

send the message with timestamp (0 means as soon
as possible) to address. Tcp_flag is true for reliable
(TCP) delivery.

n  Address can begin with “!”, e.g. “!server/fn”, if there
are no wildcards in the address – bypasses pattern
matching at the server

ⓒ 2019 by Roger B. Dannenberg 47

Carnegie Mellon University

O2 clock and service setup

n O2 is not immediately fully operational after
o2_initialize() – needs clock sync and service
discovery.

n Here’s a cheap-and-dirty “wait for setup” loop
that, as a client, waits until we have clock
sync and discover the service named
“server”:

 // poll until client is ready to go
 while o2_status("server") < O2_REMOTE
 o2_poll() // run o2 while waiting
 time_sleep(0.01)

ⓒ 2019 by Roger B. Dannenberg 48

25

Carnegie Mellon University

OSC compatibility

n  o2_osc_delegate(service, ip, port, tcp_flag) -
Create an O2 service, named by the string service, that
forwards O2 messages to an OSC server defined by the string
ip (IP address or "localhost"), the integer port (port number), and
the boolean tcp_flag which specifies whether to connect via
UDP or TCP. (Now O2 processes can send to “service” to
reach the OSC server at ip:port.)

n  o2_osc_port_new(service, port, tcp_flag) - Create
an OSC server that forwards incoming messages to the O2
service named by the string service. The service is offered on
the port given by the integer port, and the port will receive
messages via UDP unless tcp_flag is non-nil, in which case
TCP is used. (Now OSC clients can send to this host’s ip
address at the given port to deliver O2 messages to service.)

ⓒ 2019 by Roger B. Dannenberg 49

Carnegie Mellon University

INTERCONNECTED MUSIC
NETWORKS

ⓒ 2019 by Roger B. Dannenberg 50

26

Carnegie Mellon University

Taking a Step Back: Why
Networks?
n  We could talk about esthetics of:

n  Acoustics vs. computer/electronics
n  Computer/algorithmic composition
n  Fixed recordings vs. live performance

n  But I picked Networks for several reasons:
n  We’re talking about network technology
n  We’re aiming for a networked orchestra performance
n  Networks highlight latency and timing issues and

concepts which have wide application
n  Networks are one way to enable modular systems, e.g.

using TouchOSC, Synthesis servers, etc. – again with
wide applications to music, art installations, etc.

ⓒ 2019 by Roger B. Dannenberg 51

Carnegie Mellon University

Interconnected Music Networks

n A fundamental aesthetic concept in IMNs is
the computer’s role as a supporter and
enhancer of live musical interaction with its
surprise, immediacy, and flexibility.

ⓒ 2019 by Roger B. Dannenberg 52

See G. Weinberg, “The Aesthetics, History, and Future
Challenges of Interconnected Music Networks”

27

Carnegie Mellon University

Cage and Imaginary Landscape No. 4

n  “Process” Music
n  A reaction to formal structure in 20th C.
n  A precursor to algorithmic composition

n Cage gives instructions to performers, but
sound is indeterminate radio broadcasts

n  Chance operations further remove Cage
from direct control over sound

ⓒ 2019 by Roger B. Dannenberg 53

Carnegie Mellon University

League of Automatic Music
Composers and The Hub

n Pioneering work in the 1970’s
n  Interconnected microcomputers
n Each computer ran a program to generate

sound
n  Parameters of the generation process were

transmitted to other computers
n  Incoming parameters from other computers

affected the generation process

ⓒ 2019 by Roger B. Dannenberg 54

28

Carnegie Mellon University

League of Automatic Music
Composers and The Hub

ⓒ 2019 by Roger B. Dannenberg 55

Carnegie Mellon University

The Bridge Approach

n Network for communication
n Usually video and audio
n Sometimes MIDI
n Used for master classes, rehearsals
n Often latency is a big concern

ⓒ 2019 by Roger B. Dannenberg 56

29

Carnegie Mellon University

The Shaper Approach

n Users manipulate parameters that control
music generation

n Music reflects collective input of everyone

ⓒ 2019 by Roger B. Dannenberg 57

Carnegie Mellon University

Construction Kit Approach

n Users download musical materials,
n Work on the material, and
n Upload results of manipulation

n Sergi Jorda’s Faust Music Online is an
important example

ⓒ 2019 by Roger B. Dannenberg 58

30

Carnegie Mellon University

peerSynth

n Transmit
control info only

n  Local synthesis
n Treats latency

as synthesis
modulation
parameter

ⓒ 2019 by Roger B. Dannenberg 59

Carnegie Mellon University

peerSynth

ⓒ 2019 by Roger B. Dannenberg 60

31

Carnegie Mellon University

Listening to Examples

n  https://www.youtube.com/watch?v=oPfwrFl1FHM (Cage)
n  http://www.youtube.com/watch?v=6APygFQ6BAo (Jorda)
n  http://www.youtube.com/watch?v=czV9sSGpeyk (LOL)
n  http://www.youtube.com/watch?v=eqGo7qRaDZ0 (Oliveros)

ⓒ 2019 by Roger B. Dannenberg 61

