
1

Week 5 – Music
Generation and
Algorithmic Composition

Roger B. Dannenberg
Professor of Computer Science and Art
Carnegie Mellon University

Overview

n Short Review of Probability Theory
n Markov Models
n Grammars
n Patterns
n Template-Based Music
n Suffix Trees
n Data Compression and Music Generation

2 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

2

Probability

n Automatic Music Generation/Composition
often uses probabilities

n Usual question: what's the most likely thing to
do?

n P(x) is the "probability of x"
n P(x|y) is the "probability of x given y"
n Example: given the previous pitch in a

melody, what is the probability of the next
one?

3 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

Markov Chains

n  One of the most basic sequence models
n  Markov Chain has:

n  Finite set of states
n  A designated start state
n  Transitions between states
n  Probability function for transitions

n  Probability of the next state depends only upon the
current state (1st-order Markov Chain)

n  Can be extended to higher orders by considering
previous N states in the next state probability.

4 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

3

Markov Chain as a Graph

n  Note that the sum of the
outgoing transition
probabilities is 1.

5

start
P=1

P=0.3 P=0.7

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

output a

output b

Nth-Order Markov Chain

n Next state depends on previous N states, but
you can always build an equivalent 1st-order
Markov Chain with mn states.

n P(a|aa) = 0.5, P(b|aa) = 0.5
n P(b|ab) = 1
n P(a|ba) = 1
n P(a|bb) = 0.5, P(b|bb) = 0.5

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 6

aa ab

ba bb

Equivalent to:

4

Estimating Probabilities

n  If a process obeys the Markov properties (or even if it
doesn’t), you can easily estimate transition
probabilities from sample data.

n  The more data, the better (law of large numbers)
n  Let

n  nA = no. of transitions observed from state A
n  nAB = transitions from state A to state B

n  Then
n  P(B|A) = estimated probability of a transition from state

A to state B = nAB/ nA

7 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

The Last Note Problem

n  Observations are always finite sequences
n  There must always be a “last” state
n  The last state may have no successor states (nlast_state = 0)
n  So P(B|A) = 0/0 = ?
n  Solutions:

n  Initialize all counts to 1 (in the absence of any observation,
all transition probabilities are equal), OR…

n  If there are no Nth-order counts, use (N-1)th-order counts,
e.g. estimate P(B|A) ≈ P(B) = nB/n, where n is total number
of observations, OR…

n  Pretend the successor state of the last state is the first state
-- now every state leads to at least one other.

8 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

5

Markov Algorithms for Music

n Some possible states
n  Pitch
n  Pitch Class
n  Pitch Interval
n  Duration
n  (pitch, duration) pairs
n  Chord types (Cmaj, Dmin, …)

9 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

Some Examples

n Training Data 1:
n  1st Order Markov Model Output:

n Training Data 2:
n  1st Order Markov Model Output:

10 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

6

Mathematical Systems

n Sierpinski’s Triangle

n  Music: start with one note. Divide into 3 parts, divide each part
into 3 parts, …. On each division into 3 parts, transpose the
pitch by 3 different values. Keep the original pitch as well, so we
have one long note and 3 short ones (each of which has 3
shorter notes, etc.)

11 Ⓒ 2019 by Roger B. Dannenberg Spring 2019

Mapping Natural Phenomena to
Music
n  Example: map image pixels to music

n  Sudden change in “red” -> start a note
n  Pitch comes from “blue”
n  Loudness comes from “green”

n  Repetitive structure because adjacent scan lines are
similar

Chromatic

Diatonic

Microtonal

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 12

7

David Temperley's Probabilistic
Melody Model
n  There are several probability distributions that might govern

melodic construction:
n  The voice has limited range: central pitches are more likely:

n  Large intervals are difficult and not so common, so we have
an interval distribution:

n  Different scale steps have different probabilities:

n  We can combine these probabilities by multiplication to get
relative probabilities of the next note

n  Distributions can be estimated from data.

Pitch
Prob.

Interval
Prob.

Prob.

13 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

Grammars for Music Generation

n Reference: Curtis Roads, The Computer
Music Tutorial

n Formal Grammar Review
n  Set of tokens
n  The null token Ø
n  Vocabulary V = tokens U Ø
n  Token is either terminal or non-terminal
n  Root token
n  Rewrite Rules: α→β

14 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

8

Grammars (2)

n Context-Free Grammars
n  Left side of rule is a single non-terminal

n Context-Sensitive Grammars
n  Left side of rule can be a string of tokens, e.g.

AαA→AρB
BαC→BσC

n Grammars can be augmented with
procedures to express special cases,
additional language knowledge, etc.

15 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

Music and Parallelism

n Conventional (formal) grammars produce
1-dim strings

n Replacement is always in 1-dim (a → b c)
n Multidimensional grammars are simple

extension:
n  a → b,c —sequential combination
n  a → b|c —parallel combination

16 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

9

Non-Local Constraints

n This is a real limitation of grammars, e.g.
n  Making two voices (bass and treble) have

same duration
n  Making a call and response have same

duration
n  Expressing an upward gesture followed by a

downward gesture
n Procedural transformations and constraints

on selection are sometimes used

17 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

Probabilistic Temporal Graph
Grammars (D. Quick & P. Hudak)
n  Local constraints added with new type of rule:

let x = A in xBx
is not the same as ABA because x is
expanded once and used twice, whereas in
ABA, each A can be expanded
independently.

n Durations are handled with superscripts, e.g.
It → It/2 Vt/2

means that non-terminal I with duration t can
be expanded to I V, each with duration t/2.

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 18

10

Example

n Sd -> Sd Pd | Pd
n Pd -> let x = Qd in x x
n Qd -> Qd/2 Qd/2 | Bd | Rd
n where B is a beat, R is a rest

n  A problem(?): Average max

depth is ~8, but sensible limit
might be ~5 (thirty-second notes)

n  With 1/32 lower bound for d:

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 19

((R 0.125)	
 (B 0.015625)	
 (B 0.0078125)	
 (B 0.00390625)	
 (R 0.000976562)	
 (B 0.000976562)	
 (R 0.00195312)	
 (B 0.00390625)	
 (B 0.00390625)	
 (R 0.00390625)	
 (R 0.00195312)	
 (B 0.00195312)	
 (B 0.015625)	
 (B 0.0625)	
 (B 0.03125)	
 (B 0.0078125)	
 (R 0.0078125)	
 (B 0.00390625)	
 (R 0.00195312)	
 (R 0.00195312)	
 (B 0.0078125)	
 (B 0.03125)	
 (R 0.03125)	
 (R 0.0625)	
 (B 0.0625)	
 (R 0.25)	
 (R 0.25)	
 (R 0.125)	
 (B 0.015625)	
 (B 0.0078125)	
 (B 0.00390625)	
 (R 0.000976562)	
 (B 0.000976562)	
 (R 0.00195312)	
 (B 0.00390625)	
 (B 0.00390625)	
 (R 0.00390625)	
 (R 0.00195312)	
 (B 0.00195312)	
 (B 0.015625)	

 (B 0.0625)	
 (B 0.03125)	
 (B 0.0078125)	
 (R 0.0078125)	
 (B 0.00390625)	
 (R 0.00195312)	
 (R 0.00195312)	
 (B 0.0078125)	
 (B 0.03125)	
 (R 0.03125)	
 (R 0.0625)	
 (B 0.0625)	
 (R 0.25)	
 (R 0.25)	
 (R 1)	
 (R 1)	
 (B 0.25)	
 (R 0.25)	
 (B 0.0078125)	
 (B 0.00390625)	
 (R 0.00390625)	
 (B 0.015625)	
 (B 0.03125)	
 (B 0.0625)	
 (B 0.0625)	
 (R 0.0625)	
 (R 0.25)	
 (B 0.25)	
 (R 0.25)	
 (B 0.0078125)	
 (B 0.00390625)	
 (R 0.00390625)	
 (B 0.015625)	
 (B 0.03125)	
 (B 0.0625)	
 (B 0.0625)	
 (R 0.0625)	
 (R 0.25)	
 (B 0.5)	

 (B 0.0625)	
 (B 0.03125)	
 (R 0.03125)	
 (B 0.0625)	
 (R 0.0625)	
 (B 0.25)	
 (B 0.5)	
 (B 0.0625)	
 (B 0.03125)	
 (R 0.03125)	
 (B 0.0625)	
 (R 0.0625)	
 (B 0.25)	
 (R 1)	
 (R 1))

Implementation of Grammars

n Remember, we’re talking about generative
grammars

n Maybe you learned about parsing languages
described by a formal grammar

n Generation is simpler than parsing
n Simplest way is by coding grammar rules as

subroutines

20 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

11

Implementation Example

n  A à A B
n  A à B
n  B à a
n  B à b

def A():
 if random() < pAB
 A()
 B()
 else
 B()
def B()
 if random() < pa
 output(“a”)
 else
 output(“b”)

21 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

Assessment

n  “Rewrite rules and the notion of context-
sensitivity are usually based on hierarchical
syntactic categories, whereas in music there
are innumerable nonhierarchical ways of
parsing music that are difficult to represent as
part of a grammar.” (Roads, 1996)

22 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

12

Pattern Generators

n Flexible way to generate musical data
n No formal learning, training, or modeling

procedure
n Most extensive implementations are probably

Common Music, a Common Lisp-based
music composition environment, and Nyquist
(familiar from my Intro to Computer Music
class)

23 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

Cycle

n  Input list: (A B C)
n Rule: repeat items in sequence
n Output: A B C A B C …

n Example:

24 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

13

Random

n  Input list: (A B C)
n Rule: select inputs at random with

replacement
n  Input items can have weights
n Output can have maximum/minimum repeat

counts
n Output: B A C A A B C C …
n Example: Example (12-tone):

25 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

Palindrome

n  Input list: (A B C)
n Rule: repeat items forwards and backwards
n Output: A B C B A B C B …
n Additional parameters tell whether to repeat

first and last items.
n Example:

26 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

14

Heap

n  Input list: (A B C)
n Rule: select items at random without

replacement (until empty)
n Output: A B C, B C A, C B A, …
n Example:

27 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

Markov

n  Input list: ((A -> B C) (B -> C) (C -> A B) …)
n Rule: generate a Markov chain
n Transitions may have weights
n Output: A B C A C B C B C A …

28 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

15

Nested Patterns

n Pattern items can be patterns, e.g.
n  Replace every element in a cycle pattern with

a random pattern.

n What’s the traversal order?

n  generate one period of items from sub-pattern
before advancing to the next item in the
pattern

29 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

Example

n  Every set of 4 pitches is a permutation of {C, D, x, G},
where x is randomly selected from E, F, A, Bb

n  Pick permutations of 4 and repeat them 4 times
n  (now we have units of 16 pitches: 4 repetitions of 4

pitches)
n  Every two units of 16 (i.e. every 32 notes), we apply the

next transposition from the sequence 0, 5, 7, 0
n  Here are 2 cycles of that (256 notes)
n  A picture of 1 cycle of 128:

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 30

16

Pattern Periods

n Pattern output is segmented into periods
n Typically, period length is the number of items

used to specify the pattern, e.g.
cycle([A, B, C, D]) has a period length = 4

n You can override period length:
cycle([A, B, C, D], len = 1)
n  Notice that this can effectively change the

traversal order
n Period length can be a pattern!

31 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

Patterns and Grammars

n  Nested Common Music patterns can (almost) be used to create
a context-free grammar.

n  Current semantics:
n  Each item is a value or a pattern object
n  If an item is a pattern, revisiting that item causes the pattern

object to continue its output generation
n  Alternative semantics:

n  Each item is a value or an pattern expression
n  If an item is a pattern expression, revisiting that item causes

the pattern expression to generate a new instance of a
pattern object and return one period

n  This would enable emulation of (context-free) grammars

32 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

17

Template-Based Music

n  Music can be constrained by templates, grids, scales,
harmony, etc.

n  Example: drum machine

Roland
CR-78 (1978)

33 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

Chord Templates

n Chords are just sets of pitches
n Can be described as set of pitch classes

n  If i is MIDI key number, PitchClass(i) = i mod 12
 C-major = {0, 4, 7} C-minor = {0, 3, 7}
 D-major = {2, 6, 9} D-minor = {2, 5, 9}
 E7-flat9 = {2, 4, 5, 8, 11}

n  The bottom-most or bass note is important, so usually
you also want to specify that too.

34 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

18

Bass Lines

n Chords often specify which note is the lowest
(bass) note

n Common to use the root or 3rd of the chord
n Bass often “outlines” the chord

n  E.g. alternate root and fifth, or
n  Root, third, fifth, third pattern, etc.

n Use templates as in drums and chord
patterns.

n Apply rules from harmony, counterpoint, jazz,
rock, …

35 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

Arpeggiators

n Cycle through chord tones
n  E.g. C-major = {0, 4, 7}, so play 0, 4, 7, 0, 4, 7
n  or 0, 4, 7, 4, 0, 4, 7, …
n  or 0, 4, 7, 12, 0, 4, 7, 12, …

Examples from Jim Aiken, secrets-of-the-arpeggiator.html

Example from http://www.ucapps.de/howto_sid_wavetables_3.html

36 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

19

Melody

n  Very prominent aspect of music, therefore difficult
n  Chords imply scales:

n  Simple chords have 3 or 4 pitch classes (out of 12)
n  Scales are typically 7 pitch classes

n  do, re, mi, fa, so, la, ti, (do)
n  Constrain melody to scale

n  Intervals are typically small -- stepwise motion
n  Can use histogram for interval selection
n  Or Markov chain for pitch sequence generation

n  Rhythm is important too:
n  Markov Chain
n  Templates
n  Maybe 4-bar rhythm patterns from a database

37 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

Practical Algorithm Music Generation

n  We've seen some interesting theory
n  How does this all work in practice?
n  Assume: goal is to generate "popular" music: rock,

techno, jazz, dance, etc.
n  "experimental" music has fewer normative rules and

more focus on new sounds, new structures, new
concepts

n  "classical" music often includes development,
transformations, themes and variation, which are very
challenging

n  Let's look at a direct rule- and probability-based
method based on Friberg and Elowsson

n  THIS IS NOT THE ONLY WAY!

38 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

Elowsson and Friberg, “Algorithmic Composition of Popular Music,” 2012.

20

Algorithm Overview

n Make a structural plan: phrases, repetitions,
similar rhythms

n Work phrase-by-phrase:
n  Compute rhythm track
n  Compute chords
n  Compute melody

n Add a little bit of search and evaluations
n Almost everything is a random weighted

choice based on conditional probabilities

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 39

1. Overall Structure

n  Currently, overall structure is simply selected
n  A “little language” is used to express structure:

n  Same letter means high probability of the same
melodic contour (same intervals)

n  A number means copy the rhythm and accents of
the numbered phrase

n  E.g. AB1CCAB means B mirrors rhythm of A
(phrase 1), C repeats, and the final A and B
mirrors the first A and B

n  Duration of each phrase can be 2 or 4 measures.

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 40

21

2. Rhythmic Structure

n All measures in 4/4 time
n Represented as an array of 16th notes
n E.g. a 4 measure phrase is array(4 * 16)
n Kick (bass) drum every 2 beats,
n Pick some extra kick drum beats and add

them

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 41

3. Chord Structure

n Only C major, D and E minor, F and G major,
and A minor chords are generated

n Markov Model
CHORD_TRANSITION = [
C Dm Em F G Am
 [24, 35, 0, 20, 70, 5], # to C
 [2, 2, 5, 1, 1, 5], # to Dm
 [2, 1, 0, 1, 2, 1], # to Em
 [39, 4, 85, 1, 13, 49], # to F
 [20, 86, 2, 76, 1, 39], # to G
 [35, 4, 8, 1, 14, 1]] # to Am

n Final chord is C major

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 42

22

4. Melodic Structure

n Compute both pitch and duration: computes
probability for each combination of 15 pitches
and 16 durations (1 to 16).

n For each of 15*16 pitch/duration combinations:
n  p = 1
n  For each ith melody rule:

n  p = p * Pi(pitch, duration)

n Then select according to computed
probabilities

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 43

An Aside: Weighted Selection

n Given an array weights, choose an index, the
likelihood of which is proportional to the
weight

n The algorithm as a picture:

n  In serpent:
require "prob”
print pr_weighted_choice([2, 3, 1.5, 0.1, …])

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 44

1 2 3 4 5

Pick a random point between 0 and sum sum = Σwi 0

23

4b. Summary of Melody Rules 1

n Ambitus: discourage extremes of pitch range
n Harmonic: Is the note compatible with chord?
HARMONIZATION = [
// C D E F G A B
 [0.94, 0.30, 0.95, 0.16, 0.87, 0.26, 0.15], // C

 [0.20, 0.90, 0.26, 0.86, 0.24, 0.88, 0.02], // Dm
 [0.01, 0.18, 0.87, 0.09, 0.89, 0.24, 0.83], // Em
 [0.90, 0.26, 0.18, 0.82, 0.29, 0.99, 0.01], // F
 [0.28, 0.92, 0.28, 0.27, 0.95, 0.30, 0.75], // G
 [0.92, 0.28, 0.85, 0.03, 0.25, 0.91, 0.20]] // Am

n  Interval:
INTERVAL_PROB = [0.2, 0.5, 0.3, 0.2, 0.15, 0.12, 0.03, 0.06]

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 45

4b. Summary of Melody Rules 2

n  Interval Harmonic:
n  Prefer that larger intervals go up, prefer

smaller going down
n  Avoid “unusual” intervals – e.g. 7th
n  Avoid intervals larger than 2nds with no chord

tone
n  Larger intervals should be in the chord

n Duration:
n  Avoid 16th notes at fast tempo
n  Shorter durations favored over larger ones

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 46

24

4b. Summary of Melody Rules 3

n Position/Duration: do not start and end on an
odd 16th note beat position

n Harmonic Compliance/Duration:
n  Shorter notes favor dissonance
n  Longer notes favor consonance (with chord)

n  Interval/Duration: larger intervals imply longer
durations

n Phrase Arch: overall melodic contour (not
implemented yet)

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 47

4b. Summary of Melody Rules 3

n Melodic Resolution: melody should approach
final note with small intervals

n Resolve to Tonic: melody should end with C
n Metrical Salience: favor notes on strong

metrical positions
n Mirror Intervals: if structure dictates a “mirror”

phrase, e.g. “AABA”, all the “A”s should have
similar interval sequences.

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 48

25

Constraints, Context, Form

Form, Repetition

Harmony Generation

Bass Melody Chords,
Voicing

Plan:
•  determine form from top down
•  generate harmony for different sections
•  fill in bass, chords, melody according to harmony

49 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

Grammar-based Form Generation

n  Plan:
n  Generate form from grammar
n  Control copies at different levels

n  S = A1 A2 B A2
n  A1 = C R1
n  A2 = C R1'
n  B = tr(B1, 9) tr(B1, 7) |

 tr(B2, x) tr(B2, x) tr(B2, y) tr(B2, 5)
n  A1, A2 are 8 measures,
n  B1 is 4 measures, B2 is 2 measures

50 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

26

Representation

n  Time in beats
n  Easy to append and merge
n  [time-origin, duration, data-type, event-array]

n  data-type: 'chord', 'note'
n  Chord: [time-offset, duration, array-of-pcs]
n  Note: [time-offset, duration, pitch]

n  Notes:
[0, 4, 'note', [[0, 1, 60], [1, 1, 62], [2, 1, 64]]]

n  Chords:
[0, 4, 'chord', [[0, 2, [0, 4, 7]], [2, 2, [0, 3, 7]]]]

51 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

Representation

n  [0, 4, 'note', [[0, 1, 60], [1, 1, 62], [2, 1, 64]]]

Duration
Start

Explicit start/duration allows us to represent
measures that are not completely full, silence, or
even measures where notes extend into the next
block

52 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

27

Manipulation: Code Example

// note: be sure to understand shallow vs deep copy
def sc_shift(s, shift)
 var events = []
 for e in sc_events(s)
 events.append([e[0] + shift, e[1], e[2]])
 return [s[0] + shift, s[1], s[2], events]

def sc_merge(a, b)
 sc_check_compatible(a, b)
 var start = min(sc_time(a), sc_time(b))
 var end = max(sc_end(a), sc_end(b))
 return [start, end - start, a[2],
 (sc_events(a) + sc_events(b)).sort()]

def sc_append(a, b)
 sc_merge(a, sc_shift(b, sc_end(a) - sc_time(b)))

53 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

Example: Generating Repeating Chord
Progression

one = [0, 2, 'chord', [[0, 2, [0, 4, 7]]]]
two = [0, 2, [2, 5, 9]]
three = [0, 2, [4, 7, 11]]
four = [0, 2, [5, 9, 0]]
five = [0, 2, [7, 11, 2, 5]]
six = [0, 2, [9, 0, 4]]
seven = [0, 2, [11, 2, 5]]
progression = one
for i = 1 to 6
 progression = sc_append(progression, pick_next())
progression = sc_append(sc_append(progression, one), one)
score = sc_append(progression, progression)

54 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

28

Example: Influence melody with chord
tones

n  Imagine a set of prior probabilities for chosing
a pitch class at time b: prior[i]

n Given a chord score s, let's make chord-tones
twice as likely:
var pcs = sc_pitches_at(s, b)
for pc in pcs
 prior[pc] = prior[pc] * 2

n Pick a pitch class:
var pc = index_choice(prior)

55 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

Summary

n  Markov Models
n  Easy to learn from examples
n  Only very local context

n  Grammars
n  Recursive
n  Can generate concurrent structures
n  (Mostly) very local context

n  Patterns
n  Expressive way to create abstract hierarchical structure

n  Structure + Probability example
n  for popular music
n  Music production (instrumentation, texture, “arrangement”) is

lacking

56 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

29

Summary 2

n  “Algorithmic Music” (Markov, Grammars,
Patterns, etc.)
n  Creates very interesting, specific music material
n  Often one develops a new “algorithm” or

algorithmic materials for each composition
n  Strong impact on artistic thinking, 20th-21st C.

n  AI techniques
n  More general,
n  Too homogeneous to be really interesting (IMO)
n  Catching popular and researcher’s imagination

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 57

Suffix Trees and Music

n Markov Chains use fixed number of previous
states to determine probability of next state

n Standard implementation is a (sparse) matrix
n What if you could consider prefixes of length

1, 2, 3, … N for a fairly large N?
n Suffix tries and trees: fast access to next

states given previous states

58 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

30

What’s a Trie?

n See Wikipedia for an excellent overview
n An ordered tree structure
n Useful as an associative array
n Keys are strings
n Whole keys are not stored;
n  Instead, key is a path from the root of the trie
n  “Trie” from retrieval, pronounced either

“tree” or “try” (I’ll use “try”).

59 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

Suffix Trie

(from http://www.dogma.net/markn/articles/suffixt/suffixt.htm)

60 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

31

Suffix Tree

n Eliminate nodes with single descendent
n Represent nodes as <start, stop> index pair

(from http://www.dogma.net/markn/articles/suffixt/suffixt.htm)

61 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

Why Suffix Trees?

n Allows fast search for pattern in string:
n  O(n) preprocessing, where n is length of string

n  Note: the tree construction is non-trivial. Naïve
construction is O(n2).

n  O(m) per pattern search, where m is length of
pattern

62 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

32

Related Structure for Markov-Like
Learning & Generation

n Consider: A B C A C B A
n First-Order Markov Chain requires that we

look to previous state
n Second-Order MC: look to previous 2 states
n Third-Order MC: 3 states
n Suppose we look to previous 1, then 2, then

3, until the data becomes too sparse to be
reliable

n Alternatively, maybe we want overfitting to
echo what we’ve heard in the past

63 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

Suffix Trie with Limited Depth and
Counts at Each Node

1st Order

2nd Order

3rd Order

:13

A:2 B:10 C:1

B:2 A:5 C:3 B:1 A:1 B:1

A:2 C:2 B:1 C:3 C:2 C:1 B:1 A:1

Assume that so far, we’ve generated: B A A B C C B, we can search:
•  second order: C B (next state is A)
•  first order: B (next states and weights are A:5, B:2, C:3)
•  zero order: (next states and weights are A:2, B:10, C:1)

64 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

33

Pruning the Tree

n  Defn: Empirical probability
n  the number of times pattern appears divided by

number of times it could possibly appear.
n  E.g. in “aabaaab”, P(“aa”) = 3/6 = 0.5

n  “Benefit of Context”
n  The empirical conditional probability is greater (by

some factor) when the context is longer
n  E.g. P(“b”|“aa”) = 2/3, P(“b”|“a”) = 2/5; The ratio

is 5/3 (the benefit of knowing “aa” vs. “a”)

Based on: Dubnov, Assayag, Lartillot, Bejerano. “Using Machine-Learning Methods for Musical Style
Modeling.” IEEE Computer, August 2003.

65 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

Pruning the Tree (2)

n So tree retains only nodes where:
n  Pattern length < L
n  Empirical Probability > Pmin
n  Benefit of Context > r

n Smoothing: combine probabilities based on
all matching patterns.
n  E.g. the next symbol x after “aabc” would

combine P(x | “aabc”), P(x | “abc”), P(x |
“bc”), P(x | “c”) and P(x), omitting P’s where
context is not in the pruned tree.

66 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

34

Example

n  Piano improvisation using variable order Markov Chain
n  Analysis:

n  Reduce polyphony to sequence of “compound events”
n  States are (pitch class sets) x (log duration). [212�5 states]

n  0 if <0.1, 1 if <0.2, 2 if <0.4, 3 if <0.8, 4 if >0.8
n  Create transition counts tables for 1st and 2nd order Markov Chains,

using 12 different transpositions of the input data
n  Remember “real” performances (durations, velocity) for each state

n  Generation:
n  Using the last state or last 2 states depending on choices and

mode.
n  Pick a next state
n  Append a “real” performance of that state.

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 67

More Examples
n  http://www.ircam.fr/equipes/repmus/MachineImpro
n  Example 1

n  1.1 Original improvisation by Chick Corea Listen to Corea (mp3)
n  1.2 Three machine improvisations generated after learning 1.1
n  Listen to Impro 1 (mp3) Listen to Impro 2 (mp3) Listen to Impro 3 (mp3)

n  Example 2
n  One machine improvisation generated on "Donna Lee" by Charlie Parker
n  Listen to Impro (mp3)
Comment : From a midifile containing an arrangement of this standard (theme exposition plus

chorus). Took only the sax and bass channels. The strange bass rhythm behavior is due to a
bug in the quantization algorithm, we kept it because the somewhat free style that results in
an interesting remainder of some jazz tendencies in the sixties.

The machine impro begins with a recombinant variant of the theme, then dives into a bop style
chorus.

n  Example 3
n  One machine improvisation generated after learning J.S. Bach Ricercar
n  Listen to Impro (mp3)
n  Comment : Bach's ricercar is a six voice fugue. The information is extremely constrained, so

the analysis/generation algorithm has very few choices for continuations. It tends to
reproduce the original. But if you listen carefully, you'll hear that there are discrete
bifurcations where it recombines differently from the original.

68 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

35

Examples (2)
n  Example 4

n  A study in the style of Jazz guitarist Pat Martino. Here's an idea of the original
style (Blue Bossa) :

n  Listen to Pat Martino (mp3)
n  The learning process was based on a Midifile containing a transcription of Martino chorusing

on Blue Bossa. After generating a few machine choruses, and choosing carefully a one that
would fit, we mixed it back into Martino's audio recording, in a place where only the rhythmic
section was playing (plus some piano). The machine impro is played with an (ugly) synthetic
Midi Sax sound.

n  Listen to Mix (mp3)
n  Comment : That experience was done in order to evaluate if the techniques used could make

sense in a performance situation, with a musician playing with his clone. The result is
encourageing, but in a real-time experiment, we would have to extract the beat and the
harmony in order to control what's happening. In this case, we just inserted the machine
impro by hand, tuning the tempo so it would fit with the audio.

n  Example 5
n  A Real-Time performance experiment.
n  Because the rhythm section is generated, we know the beat/harmony segmentation. The

machine learns the correlation between the beat structure, the harmonic structure, and what's
played by the performer. Sequence 5.1.

n  Listen to Sequence 5.1 (human on piano)
n  Listen to Sequence 5.2 (human + computer)
n  Listen to Sequence 5.3 (human’s new chords reused by computer)
n  Listen to Sequence 5.4 (computer alone)

69 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

Another Data Structure

n Paths from root to leaf nodes are reverse
suffixes, e.g. for A B A A C B A,
n  A à B, BàC, ABàC, CàA, BCàA, ABCàA,

A (A, B, C) B (A) C (B)

A (C) B (A) A (A) C (A) A (B)

70 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

36

David Cope: Recombinant Music

n Create fragments from compositions
n Reassemble fragments to form pieces

n Search for patterns based on melodic

intervals
n Harmonic context (chord progressions) of

each melodic fragment are retained
n Patterns of harmony are also discovered

71 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

Signatures

72 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

37

Recombination

73 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

Examples

n Based on Scarlatti
n Based on Bach Invention
n Based on Joplin Rag

74 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

38

Recent Work

n Some interesting work on treating digital
audio samples as learnable sequences:

n We can look at notes, chords, or other music
representations in terms of sequences:

Spring 2019 Ⓒ 2019 by Roger B. Dannenberg 75

Credit: WaveNet project from DeepMind
https://deepmind.com/blog/wavenet-generative-model-raw-audio/

Credit: Sony CSL FlowComposer Project, 2016
http://www.flow-machines.com/wp-content/uploads/2016/06/Miles-Davis-Mix_DEF.mp3

Summary

n Sequence Learning can be applied to Music
generation

n  “symbols” can be pitches or, more likely,
combinations of pitch+duration

n Markov Chain concepts can be extended to
variable length suffixes

n Suffix trees and related structures provide
efficient representations

n  “Modern” machine learning approaches are
actively (re)exploring these concepts

76 Spring 2019 Ⓒ 2019 by Roger B. Dannenberg

