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ABSTRACT 

Human composers have used formal rules for centuries to compose 

music, and an algorithmic composer – composing without the aid of 

human intervention – can be seen as an extension of this technique. An 

algorithmic composer of popular music (a computer program) has 

been created with the aim to get a better understanding of how the 

composition process can be formalized and at the same time to get a 

better understanding of popular music in general. With the aid of 

statistical findings a theoretical framework for relevant methods are 

presented.  The concept of Global Joint Accent Structure is introduced, 

as a way of understanding how melody and rhythm interact to help the 

listener form expectations about future events. Methods of the 

program are presented with references to supporting statistical 

findings. The algorithmic composer creates a rhythmic foundation 

(drums), a chord progression, a phrase structure and at last the melody. 

The main focus has been the composition of the melody. The melodic 

generation is based on ten different musical aspects which are 

described. The resulting output was evaluated in a formal listening test 

where 14 computer compositions were compared with 21 human 

compositions. Results indicate a slightly lower score for the computer 

compositions but the differences were statistically insignificant. 

I. INTRODUCTION 

Human composers have used formal rules for centuries to 

compose music. With the introduction of computers it became 

possible to execute these formalized set of instructions without 

the direct involvement of the human composer, thus, music 

could be entirely created by algorithms. In this study popular 

music has been the musical style of focus.  How can we 

formalize popular music? This is an essential question if an 

implementation of an algorithmic composer of popular music is 

to be successful.  

In which way may a composition program help us better 

understand music? As pointed out by Rothgeb (1993) a 

computer program can contribute by exposing deficiencies in 

theories about composition. If the computer is unable to 

compose given specific rules then those rules are incorrect, or 

they insufficiently describe the composition process. Which 

algorithmic approach is best suited to the task if we at the same 

time wish to gain an improved understanding of music? If the 

approach is to use Markov chains or neural networks, the 

achievement of a composition program will be merely that. A 

generative model where probabilities may interact at many 

levels can instead provide a deeper understanding. By using 

such an approach, we intrinsically answer questions about 

music (Ahlbäck, 2004), while at the same time providing 

possibilities for easy user interaction. On a similar theme 

Nierhaus (2012) has also used algorithmic composition to 

formalize composition techniques used by human composers.  

Authors on popular songwriting (Citron, 1985; Webb, 1998; 

Blume, 2004; Cole, 2006) stress aspects such as lyrics, 

harmony, refrains and hooks, which of course are relevant to 

every composer of popular music. But perhaps the most 

important lesson, often neglected in scientific research, is the 

emphasis on the composer as a listener. In this project, a 

constant evaluation of the sounding results has been used to 

shape the songs into music that better corresponds to the genre. 

Let us take a look at the more scientific approaches to music 

composition. A lot of work has been done on classical music 

(Cope, 2000; Tanaka et al, 2010; Farbood & Schoner, 2001). A 

reason for the interest in this type of music may perhaps be an 

already established formalization such as species counterpoint 

made famous by Johann Joseph Fux. Another reason may be the 

special position that classical music has reached within music 

science where contemporary popular music is more or less 

disregarded (Levitin, 2006).  

If the output of the program is to be in accordance with the 

structure of sung music it seems feasible to use data from sung 

music as a model for the program. Statistical analyzes have 

been performed on such data to extract probabilities which were 

employed in the music generation. The statistical approach to 

music is supported by the observation that humans seem to have 

an unconscious statistical understanding of music, where 

predictable events in music are experienced as pleasurable 

(Huron, 2006). A statistical understanding has been important 

in this study and a statistical analysis has been performed on the 

Essen Folksong Collection (Schaffrath, 1995). Results will be 

presented to support the methods that are described.  

II. THEORY 

A. Music & Patterns 

Humans sees pattern everywhere. IQ tests are mainly built on 

finding patterns in a sequence of letters, numbers or pictures. 

Even where there are no patterns to be found, confronted with 

random noise input, humans still sees input that breaks small 

sequences of order as exceptional (Simon & Sumner, 1993). 

Patterns in music are almost always multidimensional with a 

constant formation of patterns at many simultaneous levels 

(Parncutt, 1994b). How should these patterns be arranged? The 

Gestalt psychologists e.g. Wertheimer (1944), Köhler (1947) 

and Koffka (1935) (as cited in Bartlett, 1993), studied patterns 

in search of "good patterns" during the 40's. A good pattern 

would form a whole, a Gestalt, when perceived by the observer. 

It turns out that the Gestalt psychologists, and their 

successors were not only focused on visual patterns. They 

regarded melodic patterns as a typical example of Gestalts, as 

they form a distinct, structured whole. Bartlett (1993) uses 

Gestalt psychology in this manner for the limitation a scale 

becomes to the number of alternative tunes: A melody that 

moves within a scale will belong to a smaller group of songs 

than a melody using tones that do not belong to any particular 

scale. Thus, a melody that moves within a scale will facilitate 

the perceptual prediction of future events. Beyond scales the 

melody is imposed several “restrictions” such as harmony, 
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meter and rhythm. All of these restrictions make the melody 

easier to decipher, and various ways to ensure that the melody is 

bound by them will be presented. 

B. Music & Memory 

Chunking is the process where smaller pieces of information, 

as an example four digits, can form a single unit or element in 

short-term memory. This expands our capacity to store 

information. The process is important in music as it is easier to 

decipher tonal patterns when they are grouped into equal pieces 

(Monahan, 1993). It has been pointed out that it is hard for 

people to chunk information in groups consisting of more than 

three or four elements (Estes, 1972 as cited in West et al, 1985) 

and we can see a connection to music as the number of beats per 

measure often varies between two and four. 

In a similar way as chunking, longer structures like phrases 

can be encoded and stored in the immediate memory as “cues” 

(Rowe, 2001; Ahlbäck 2004), representing higher level 

structures. The cues are signposts that embody the musical 

material within. There are also indications that short rhythmic 

patterns tend to be processed as mental “atoms” (Huron, 2006). 

If the melodic structure of the phrases is repeated throughout 

the song, a sense of cohesiveness can be achieved. Figure 1 

shows the probabilities for phrase repetition in the German 

songs of the Essen Folksong Collection (Elowsson, 2012). 

Notice that according to the figure, rhythmic phrase repetition is 

very common as nearly 40 % of the analysed phrases repeat the 

rhythm of an earlier phrase. Notice also that repetition of 

contour almost never occurs without repetition of rhythm.  
 

             

Figure 1.  Probabilities for phrase repetition in German folksongs. 

The probabilities represents how likely it is for any given phrase 

of a song to be a repetition of an earlier phrase. 

Huron (2006, p. 141) concludes: 

 

“...there is probably no other stimulus in common human 

experience that matches the extreme repetitiveness of music.” 

 

Notice that any musical meaningful event leads to 

expectations of new musical events. Every note that has come to 

the listener's attention forms new expectations about where the 

piece will evolve. From a computational perspective this means 

that the probabilities for future events constantly change. 

 

 

C. Melody 

A good definition of melody is 'A succession of notes, 

varying in pitch, which have an organized and recognizable 

shape' (Kennedy, 1980).  

When algorithmically processing pitch intervals the size of 

the intervals are not the only relevant aspect. Listeners 

recognize repetition of contour (West et al, 1985) so a small 

falling interval is perceived as very different from a small rising 

interval, whereas a small rising interval and a somewhat bigger 

rising leap are not perceived as that different. This is accounted 

for in the program. 

Another interesting aspect is patterns of tonal direction at 

different positions in the phrase. Huron (2006) has examined 

the phrase contour in a large set of folksongs, classifying each 

phrase into one of nine different types. He found that 40 % of 

the phrases belonged to a convex arch-shaped type, which 

indicates that an upward movement tend to start and a 

downward movement tend to end phrases.  

As can be seen in Figure 2 (Elowsson, 2012) there is a 

relationship between note length and interval size. If the notes 

are shorter the probability for smaller intervals will be higher 

and if the notes are longer the interval size will on average 

become larger. 

 

Figure 2.  The relationship between interval size and note length 

in over 1000 German folksongs. 

As the melodies will be crafted for the singing voice, vocal 

range sets a definite limit to the ambitus of our compositions. In 

this report ambitus is used to describe the total tonal range of 

the composition and tessitura describes the range within which 

the singer is comfortable. In what can be considered a 

regression to the mean, the listener expects the melody to strive 

towards the mean pitch between the lowest and the highest note 

(Huron, 2006). An implementation of regression to the mean is 

used in the program and is covered more extensively in the 

method section. It features a soft regression within the range 

which the singer is comfortable (tessitura), a harder regression 

as the range becomes more expanded and a definite limit so that 

the ambitus is not greater than what the singer can handle.  

Figure 3 shows the ambitus of over 4000 German folk songs 

in major mode (Elowsson, 2012). Notice that the songs of the 

Essen Folksong Collections are rather short excerpts. As the 

songs become longer the ambitus will probably rise a little. 
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Figure 3.  Ambitus of more than 4000 German folksongs. 

D. Rhythm, Meter & Tempo 

Let us look at a simple drum rhythm in popular music. Pulse 

sensation is used by Parncutt (1994a) to describe all the 

different levels evoked in the listener's mind. The parts with the 

highest amplitudes (usually the snare drum and bass drum) 

become the most important parts of the perceived rhythmic 

structure (Gabrielsson, 1993), but we also react to transients 

with lower amplitude. The rhythmic figures often has some 

regularity and as they repeat so does the rhythmic accents which 

they produce (Gabrielsson, 1993).  

The listener uses rhythm to create a perception of tempo and 

meter (Monahan, 1993). This is possible because the rhythmic 

figure allows us to systematize and predict the meter (Smith, 

2000). Just as rhythm, meter becomes a structure that helps us 

group the melodic pitch pattern. Just imagine how difficult a 

melody would be to listen to if the accompaniment plays in a 

different meter than the melody. When notes coincide with 

important beats in the metric structure listeners perceive a high 

“goodness of fit” (Palmer et al, 1990, as cited in Huron, 2006). 

The tempo in popular music varies between approximately 

60 BPM and 160 BPM as can be seen in Figure 4 (Elowsson, 

2011). The graphs are based on the tempo of 123 songs from 10 

famous groups or artists in popular music. 
 

 

Figure 4. Tempo in popular music. 

E. Melodic Accents 

Our discussion regarding accents will begin with the Joint 

Accent Structure theory as described by Mari Riess Jones 

(1993). It is an important tool in establishing a connection 

between melodic accents formed by pitch and melodic accents 

formed by note lengths. The Joint Accent Structure is defined as 

how these accents coincide over time.  

The accents in the pitch-domain (melodic accents) are 

formed by large melodic jumps, positions where a succession of 

notes turns from being rising to falling, or falling to rising and 

notes that constitute a resolution of a melodic sequence such as 

the last note of a phrase. Accents in the time-domain (temporal 

accents) are for example, longer notes that mark the end of a 

succession of notes. 

Jones found that when melodic accents and temporal accents 

coincide over time the accents becomes stronger. It was also 

found by listening tests that when there is a simple relationship 

in the distance between melodic and temporal accents the 

melody becomes easier to track. These studies considered only 

the melody. However rhythm also possesses an accents 

structure as seen in Section D. In the same way as the different 

accents of the melody are perceptually connected it seems 

reasonable to assume that an investigation of melodic accents 

combined with rhythmical accents can be useful as well. 

F. An Integrated Model of Melody and Rhythm 

Ahlbäck (2004) concludes that the beats can be conceived as 

points of temporal expectation in music. This assertion seems 

valid but will be nuanced with a theory of accents strength 

based on the actual rhythmical content within the music. There 

is a wide variety of drum patterns in popular music, and it will 

be shown below that they probably arise as a reaction to the 

melody. The drum patterns are crafted - often unconsciously – 

as a support for the melody in the time domain. 

Consider dancing, you will find dancing in connection to 

music everywhere; at a rock concert, a prom or a folk dance. 

Dancing illustrates how the listeners predict where rhythmic 

accents will occur. Another illustration can be provided by the 

live performance (Collins, 2007, p. 181). 

 

”...the human perception of time utilizes prediction rather 

than reaction, no more so than in musical behaviors like 

synchronization within ensembles; in order to play together, 

musicians must anticipate a future point of synchrony, because 

they would otherwise react too slowly to all perform in union.” 

 

Now remember how Bartlett (1993) used Gestalt psychology 

to identify good patterns in melodies. The use of a scale limited 

the number of alternative pitches and made the melody easier to 

predict. With the same reasoning the rhythmic accents guides 

our attention towards specific metrical positions, thus limiting 

the number of alternative positions for the notes to fall upon. In 

conclusion our attention is directed towards the rhythmic 

accents and if the notes of the melody fall upon them we 

perceive the result as a good pattern, a good Gestalt. As the 

notes occur on accents we will be more prepared for them and 

more easily decipher them. To summarize: 

 

The rhythmic figure provides a framework of more or less 

accentuated beats in which more or less accentuated notes are 

allowed to form patterns.  
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This idea for how the melody is connected to rhythmic 

accents is called Global Joint Accent Structure (Elowsson, 

2011). The theory has, besides its name, an obvious connection 

to Joint Accent Structure. The alignment of important 

information both in the time-domain and pitch-domain results 

in stronger salience. Also notice that with this alignment and a 

repeating rhythm a simple relationship in the distance between 

strong accents may easily develop which according to Jones 

(1993) makes the melody easier to track. This as rhythmic 

accents tend to repeat over time (Gabrielsson, 1993). Perhaps it 

is so because rhythmically organized patterns are easy to 

reproduce for the listener (Parncutt, 1994a). A difference to 

Joint Accent Structure is however that Global Joint Accent 

Structure does not view the melody as a closed entity. Instead 

the accompaniment becomes more relevant which seems 

natural if the performance of popular music is considered.  

One listening test that supports the theory has been 

performed by Ahlbäck (2004). He found that listeners preferred 

an asymmetrical grouping of rhythm, with good alignment 

between drums and fiddle over a symmetrical grouping with 

less alignment. An interesting aspect, which perhaps was what 

Ahlbäck primarily wanted to show, occurred when grave 

accents and acute accents in the rhythm had been reversed. This 

probably shifted the listeners’ perception of measure starts and 

resulted in a poor scoring. 

Huron (2006, p. 187) has performed a statistical analysis of 

the rhythmic patterns in siciliano (a leisurely dance), and he has 

come to the conclusion that the listeners’ temporal expectations 

are formed by the same recurring rhythm.  

 

“In this case (the siciliano), we can see that it is not simply the 

strict hierarchical metrical frameworks that influence a 

listener's temporal expectations. In addition to these metric 

expectations, listeners also form distinctly rhythmic 

expectations, which need not employ strictly periodic pulse 

patterns.”  

 

Here genre induces temporal expectations. In popular music 

there is not one genre specific rhythm pattern but instead a 

multitude of different patterns can be used. However it is 

common that one song has a specific pattern and the next song 

another. The point of Global Joint Accents Structure is that as a 

specific rhythm repeats several times in a song, temporal 

expectations are formed for that specific song. To get an 

example listen to the snare drum and the kick drum in Should I 

Stay or Should I Go by The Clash (Jones, 1982) and compare it 

with the melody as sung by the lead vocal. You will find a 

temporal alignment with the drums. Another example with the 

same features is California Dreamin’ by The Mamas & the 

Papas (Phillips & Phillips, 1965). This phenomenon is not 

merely found in popular music but in most music with strong 

rhythmic emphasis. The music styles with the most salient 

Global Joint Accent Structures are perhaps Hip Hop and Rap. 

The rhythmic accents do not necessarily need to be provided by 

the drums. In Blowin' in the Wind by Bob Dylan (Dylan, 1962) 

the bass string of the guitar provides important rhythmic accents 

which aligns with the melody, see Figure 5.  

 

 

Figure 5. The Global Joint Accent Structure of Blowin’ in the 

Wind. Rectangles highlight where rhythmic accents are aligned 

with the melody. 

III. METHOD 

The program was written in Java and an outline of the 

structure is presented in Figure 6. As shown the user controls 

settings via the GUI and initializes the composition process. 

The thick arrows indicate the order of execution. First a tempo 

is created, followed by rhythm, harmony and phrase structuring. 

Finally the melody is created and playback can commence at the 

user’s command. 

 
 

Figure 6. The structure of the program. Arrows represent the 

composition process and dotted lines represent dependencies. 

In the Method section a 16
th

 note constitutes the length 1. 

The compositions are at the moment restricted to a 4/4 meter. 

The 16
th

 notes of the measure are referred to as position 1-16. 

One verse and one refrain are created in each composition. 

G. Tempo 

Tempo is created from a normal distribution where the user 

can set a preferred mean of the distribution. 
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H. Rhythm 

The program creates a basic drum rhythm with tempo as 

input parameter. For the kick it is first decided how many 

additional kick hits each measure should contain (the kick is 

always present at the first beat). The number is decided from a 

normal distribution with a standard deviation of 0.45 where the 

mean is calculated by: 
 

1+
∣tempo−160∣

40  
 

The result is rounded to the nearest integer and the number of 

kick hits is only allowed to vary between 1 and 4. Probabilities 

for different positions in the measure are used to distribute the 

kick hits.  

The hihat can play quarter notes, 8
th

 notes or 16
th

 notes 

whereas the ride can play quarter notes or 8
th

 notes. The 

probabilities depend on tempo where a high tempo makes the 

longer notes more probable. 

The dynamic level of the kick, snare, hihat and ride depend 

on the tempo. For the kick, the number of kick hits is also 

involved. Below is an example of how a mean dynamic level 

(internally the dynamic level is described as a number between 

1 and 3.3) is calculated for the kick. The variable num 

represents the number of kick hits per measure. 
 

5

num
+
∣tempo−160∣

110  
 

When the rhythmic foundation is established the total level of 

the different parts at every 16
th

 note of the measure is calculated. 

The rhythmic weights that are established will provide 

probabilities for note positions in accordance with a Global 

Joint Accent Structure. 

The results are added together with a metrical weight 

representing metrical salience. The default settings for the 

metrical salience can be observed in Table 1 and they can be 

adjusted by the user. 

Table 1.  Weights based on metrical salience. 

I. Harmony 

The chords are created by a Markov chain where earlier 

chords provide probabilities for subsequent chords. Only the 

most common chords in major mode are used and these chords 

are the tonic, subdominant parallel, dominant parallel, 

subdominant, dominant and tonic parallel. This means C, Dm, 

Em, F, G and Am as the key is set to C major during the 

composition.  

The program uses 4-chord sequences or 8-chord sequences 

where each chord has equal length. For a four chords sequence 

6
4
 = 1296 combinations are possible and they are all covered by 

a Markov chain of order 3. The Markov chain for 8-chord 

sequences is instead of order 2, where 2 earlier chords affect 

probabilities for the next chord. As an example Table 2 shows 

probabilities for the second chord of a 4-chord sequence and 

how they depend on the first chord. 

 

 

 

Table 2.  The probabilities for the second chord, depending on the 

first chord. 

First chord  C Dm Em F G Am 

2nd C 24 35 0 20 70 5 

   2nd Dm 2 2 5 1 1 5 

   2nd Em 2 1 0 1 2 1 

2nd F 39 4 85 1 13 49 

2nd G 20 86 2 76 1 39 

   2nd Am 35 4 8 1 14 1 
 

The 4-chord sequences can be repeated exactly or in altered 

shapes. For the end of the refrain a function makes changes to 

the last 3 chords to make sure a resolution from dominant to 

tonic is present. 

J. Phrasing 

A statistical background to phrase repetition can be seen in 

Figure 1, Section B. To make repetition occur at several levels 

many different techniques are used. The probabilities for 

different phrase lengths depend on tempo with relatively longer 

phrases (number of 16
th

 notes) for faster tempos.  

Blocks of length 32 are used to make sure that groups of 

phrases repeat over time. When a phrase repeats another phrase 

the note rhythm will be identical in the program. It is also 

possible that a phrase only repeats a part of another phrase and 

then only those parts will have identical note rhythms. The 

repetition in the pitch domain is described in Section K 

(Repetition). Repetition may also occur for smaller formations 

than at the phrase level. If a half measure have a note rhythm 

which is not homogeneous (only 8
th

 notes or only quarter notes 

etc.) it may be repeated. 

The start position of each phrase is altered by a global offset 

in terms of the number of 16
th

 notes, chosen by a normal 

distribution. By using an offset we can get phrases of length 16 

to go between position (-5-10,11-27,...) instead of position 

(1-16,17-32,...). How much of each phrase that will consist of 

pause and how much that will consist of the melody is 

calculated by: 
 

w−0.0015(tempo−70)  
 

The parameter w is a weight with the default value of 0.62. At 

last, boundaries that constitute where the melody will start and 

end within each phrase are created. 

K. Melody 

The melody is generated by iteratively creating one note at 

the time. First a number of notes of varying pitch and length are 

suggested. For each of these notes a score is calculated by 

multiplication of different sub-scores. Ten aspects that all 

provide such sub-scores are described below. The final note is 

selected by the probability distribution created by all score 

values.  

The user has the freedom to decide how many of the initial 

note suggestions, sorted by their score, that the program will 

finally choose between. The user can also set a power p, which 

if below 1 will lower the difference between the scores S for the 

different note suggestions, and if above 1 will instead increase 

the difference. This will affect the perceived randomness of the 

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Weight 10 1 3 1 6 1 3 1 8 1 3 1 6 1 3 1 
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melody as the probability distribution is altered in favour of 

higher scoring notes, and the equation is simply:  
 

s
p

 
When a note is chosen, which is positioned at or beyond the 

boundary of a phrase, that phrase is finished.  

1)  Ambitus. A regression towards the mean pitch is achieved 

by establishing an allowed ambitus (see Figure 3, Section C). 

The user specifies a preferred range (default 8) and a maximum 

range (default 12) as well as an inner and an outer drop-off. 

With the inner drop off the user can specify how much the score 

is lowered for each step that the pitch deviates from the median 

pitch within the preferred range (default 4 %). With the outer 

drop-off the user can specify how much the score is lowered as 

the pitch moves towards the maximum range outside of the 

preferred range (default 15 %). The preferred range represents 

tessitura, a comfortable range for the singer in which most of the 

pitches should reside. 

2)  Harmonic Compliance. How well a given note 

harmonizes with the chord is an important aspect and is in 

this paper referred to as harmonic compliance. Each of 

the pitches have been given a value between 0-1 for how 

well they harmonize with the different chords (Table 3), 

values that can be edited by the user as well. 

Table 3.  Default setting for the harmonization between scale notes 

and common chords. 

 C D E F G A B 

Am 0.92 0.28 0.85 0.03 0.25 0.91 0.20 

C 0.94 0.30 0.95 0.16 0.87 0.26 0.15 

Dm 0.20 0.90 0.26 0.86 0.24 0.88 0.02 

Em 0.01 0.18 0.87 0.09 0.89 0.24 0.83 

F 0.90 0.26 0.18 0.82 0.29 0.99 0.01 

G 0.28 0.92 0.28 0.27 0.95 0.30 0.75 

3)  Intervals & Harmonic Compliance. The size of the 

interval between two notes has a close connection to harmony. 

For larger intervals the dependency on good harmonization is 

much bigger than for small intervals. The harmonization of the 

notes from Table 3 is used in combination with the size of the 

intervals to calculate a harmonic compliance of the intervals. 

Larger upward intervals are favoured over larger downward 

intervals, and smaller downward intervals are favoured over 

smaller upward intervals. Unusual intervals are awarded a 

lower score even if the two pitches of the interval have a perfect 

harmonic compliance. Some more rules have been applied as 

well.
 

 An interval of at least one pitch step where none of the two 

notes belongs to the chord is awarded a lower score.  

 An interval of at least two pitch steps where one of the 

notes does not belong to the chord is awarded a lowered 

score. If both of the notes are pentatonic the lowering is 

small. If at least one of the notes is non-pentatonic the 

lowering is bigger.  

 An interval of at least two pitch steps where one of the 

notes is not pentatonic is awarded a slightly lower score, 

regardless of harmonic compliance. 

 

4)  Note Length. As a new note is suggested the previous note 

will get its length determined based on the onset of the new note. 

One part of the evaluation of the new note position is therefore 

an evaluation of the length of the previous note. Here a Markov 

chain based on statistics would have been a good solution but 

the complexity that comes with such a solution would have 

made it harder to overview. Also a connection to tempo was 

seen as harder to integrate into a Markov chain. In Table 4 the 

probability for different note lengths and their dependency on 

tempo can be observed. 

Table 4. Calculations of probabilities for different note lengths. 

Note Length Equation 

16th 0.65−0.014(tempo−70)  
8th 1−∣0.016(tempo−100)∣  

Dotted 8th 0.151−0.002(tempo−70)  
Quarter 0.5+0.007(tempo−70)  

Dotted Quarter 0.35+0.0085(tempo−70)  
Half 0.15+0.0075(tempo−70)  

 

A normalization is applied so that the highest scoring note 

receives the score 1. Negative values constitute a zero 

probability. Consideration is also taken to positions in the 

measure for a more musical result. As an example, a note falling 

on an uneven position is not allowed to have an even length. 

5)  Note Length & Harmonic Compliance. The program tries 

to create melodies where longer notes in general have better 

harmonization than shorter notes. This means that longer notes 

with poor harmonization are awarded a lower score and that 

longer notes with good harmonization are awarded a higher 

score. It also means that shorter notes with good harmonization 

are awarded a slightly lower score and that shorter notes with 

poor harmonization are awarded a slightly higher score. 

6)  Note Length & Interval Size. As can be seen in Figure 2, 

Section C there is a relationship between note length and 

interval size. This is implemented in the program so that the 

probability for a small interval size is higher between shorter 

notes and the probability for a large interval size is higher 

between longer notes. 

7)  Phrase Arch. Compliance with Huron's (2006) findings 

of convex phrase arches can be ensured if the user choses to. 

8)  Tonal Resolution. At the end of the refrain the melody 

will resolve at a tonic. This may happen in the verse as well if 

there is a position where a dominant V chord is followed by the 

tonic I. In Figure 7 we see statistical findings for tonal 

resolution at the end of songs in the Essen Folksong Collection 

(Elowsson, 2012). The gradually narrowing distance to the 

tonic, as symbolized by arrows is achieved in the program by a 

narrowing window. 
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Figure 7. Tonal resolution at the end of approximately 1000 

German folk songs. 

9)  Repetition. Patterns in the melody repeat themselves over 

and over again both at a rhythmical level and concerning pitch 

intervals. As we have seen in Figure 1 much repetition comes at 

a phrase level and the program uses earlier phrases as “mirrors” 

for the following phrases. If the phrase is to repeat an earlier 

phrase, consideration is taken to how the intervals between the 

notes in the phrase correspond to the intervals of the notes in the 

mirror phrase. Consideration is also taken separately to the 

difference in contour. The score is given by: 

c⋅I  

The differences in contour determine c. The default setting is 

 Same contour = 1.2 

 Not same, not opposite contour = 0.9 

 Opposite contour = 0.7 

 

The values can be tuned by the user. The value of I is 

determined by the interval I2 of the mirror phrase and the 

interval I1 of the current phrase by the equation 

 

k∣I2− I1∣

 

The constant k can be tuned by the user.  

10)  Good Continuation. To give the melody a sense of 

direction a higher score is awarded to melodies that continue in 

a newly established direction. A statistical foundation can be 

seen in Figure 8 (Elowsson, 2012). 

 

Figure 8. The probabilities for intervals to continue in the same 

direction after x number of intervals of one pitch step in that 

direction, based on over 1000 German folksongs. 

L. Program GUI 

The GUI was developed in the Eclipse (2012) environment for 

Java and WindowBuilder (2012) was used in combination with 

Swing. Though the program is not primarily created for 

commercial use, a friendly user experience was still an object.  

Figure 9 is an overview of the GUI. Here we see settings for 

harmonic compliance (top left) described in Table 3 and user 

settings for note length and phrase length (top right). Notice 

that the user only affects their relative probability; tempo affects 

probabilities in general. In the bottom of Figure 9 are the 

settings for metrical salience (Table 1).  

 

 

Figure 9. The GUI of the program. 

The user can control more advanced settings of the 

composition with the aid of the drop-down menus at the top of 

Figure 9. Figure 10 displays three drop-down menus from the 

GUI for Phrase Settings, Pitch and Rhythm. 
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Figure 10. Drop-down menus for Phrase Settings, Pitch and 

Rhythm. 

IV. RESULTS 

M. Melodies 

Figures 11-12 shows two compositions by the computer 

program. The rhythm section is omitted. 
 

 

Figure 11. A composition by the computer program. 

 

Figure 12. A composition by the computer program. 

V. LISTENING TEST 

A listening test has been conducted on the resulting songs. 

The set of songs that was used in the test is shown in Table 5. 

Table 5. Compositions used in the listening test. 

No. Songs Type  

7 Selected Computer Compositions A 

7 Randomly selected Computer Compositions AR 

7 Winner of Norwegian Melodi Grand Prix 76’-82’ N 

7 Author’s compositions (Elowsson) - Good GJAS GJ 

7 Author’s compositions (Elowsson) - Poor GJAS GN 

 

The first group (A) is a selection of computer generated 

compositions. They were selected based on perceived quality 

by the first author. The second group (AR) consists of randomly 

selected computer compositions. The third group (N) consists 

of the winners in the Norwegian annual music competition 

“Melodi Grand Prix” between the years of 1976 and 1982. The 

fourth and fifth group (GJ and GN) are songs with identical 

melodies composed by the first author. The difference between 

the two groups is that the arrangements are altered, changing the 

Global Joint Accents Structure (GJAS). But as the 

arrangements of the computer music only consisted of simple 

drum rhythms, organ, bass and a piano melody, and as 

conformity in the arrangements was desired to make the 

evaluation fair, the theory of Global Joint Accent Structure was 

mainly tested by altering the position of the kick drum. That is, 

for good GJAS the kick drum was temporarily aligned with the 

melody and for poor GJAS the kick drum was not aligned with 

the melody. A kick drum did however always appear at the first 

beat of each measure.  

All musical excerpts were rendered with a similar 

instrumentation using MIDI. Songs were played in random 

order but the distance between the repeated melody in the songs 

with a good GJAS and a poor GJAS was always at least 20 

songs. Different aspects of the songs were rated on a 

seven-point scale by 18 participating listeners. The listeners 

were between 20 and 30 years of age and they rated their own 

experience as musicians as 4.2 on a seven-point scale. The 

listeners were among other things asked to rate the quality of the 

compositions where “Bad” was represented by 1 and “Good” 

was represented by 7 (Figure 13). 
 

 

Figure 13. Rating of the quality of a composition in the listening 

test. 

The perceived rated quality of the compositions is shown in 

Figure 14. Here only the first of the two occurrences of songs 

with or without a GJAS was included, to not let repeated 

listening distort the results. The results indicate small 

differences in the ratings of the groups. As can be seen in Figure 

14 all five subsets fall more or less within the same confidence 

intervals.  
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Figure 14. Perceived quality of compositions. Error bars indicate 

95% confidence intervals 

The small difference between groups A and AR suggests that 

the algorithmic composer does not depend on human selection 

of its output; it seems to compose at a stable level on its own.    

The perceived rated quality for each individual composition 

is presented in Figure 15. Here the repeated occurrences for the 

compositions with a GJAS were included. The songs within 

each group are displayed next to each other. Notice that there is 

a great variation within each group. Evidently the variation 

within the groups is much greater than the variation between the 

groups. This suggests that a high perceived quality can be 

achieved with algorithmic composition. 

 

 

Figure 15. Perceived quality of each individual composition. Error 

bars indicate 95% confidence intervals 

Two of the highest rated compositions (songs 20 and 21) 

were the only compositions that contained altered chords. 

These were two human written songs from group N. If these 

would have been removed from group N the mean score for that 

group would have been lowered from 3.76 to 3.53 making the 

score of group N lower than that of the algorithmically 

composed songs in group A.  

The group of songs without a GJAS (GN) and the group with 

a GJAS (GJ) are further compared below. The repeated 

occurrences for them are included in this comparison. Presented 

in Figure 16 is the score for four parameters that the listeners 

assessed. The first (“Good”) is the rated quality as presented in 

Figures 14-15. The second is the perceived “groove” of the 

songs, where a higher score means more groove. For the third 

parameter (“Human”) the listeners were asked to assess if the 

composer was a human. Here “Computer” was represented by 1 

and “Human” was represented by 7.  The fourth parameter is the 

listeners’ sense of stress while listening to the song. Here a 

higher rating means that the listeners felt more stressed. The 

word “Calm” represented 1 and the word “Stressed” 

represented 7.  
 

 

Figure 16. Perceived impression of the songs from group GJ and 

GN for four different parameters. Error bars indicate 95% 

confidence intervals 

The compositions with a good GJAS were rated as having a 

higher quality and more groove. They were perceived to be 

more likely to be written by a human and they made the listeners 

calmer. The differences were however rather small and not 

likely to be statistically significant. 

 

VI. CONCLUSION 

The techniques developed in this study are built on a 

statistical foundation and the statistical approach seems to be 

feasible for modeling the generation of popular music. The 

results indicate that algorithmic composition of popular music 

can be valuable for composers in the field.  

Listening tests indicate that melodies composed by the 

program are relatively close to human compositions concerning 

the perceived quality. A difference could not be statistically 

determined in the test as the groups have overlapping 

confidence intervals. Listeners seem to rate the more complex 

human written songs (altered chords) higher whereas the 

simpler human written songs receive a similar rating as 

computer written songs. This suggests that one aspect that 

needs further development is the harmony. As altered chords 

would be easy to integrate within the theoretical framework, it 

seems reasonable to add these in the future. The user can 

interact with the program to develop compositions of his or her 

style. With further development and added features this 

interaction can hopefully be expanded. It is feasible to let the 

user compose parts of the music and to let the program compose 

other parts. The perceived rated quality was however very 

similar between the randomly selected compositions (AR in 

Figure 14) and the compositions selected by the author (A in 

Figure 14). This indicates that the program performs at a similar 

level independently of if a human participates in the selection 

process or not. 
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A theoretical framework for Global Joint Accent Structure 

has been proposed and integrated into the program. Evaluation 

of the theory suggests that the compositions with a good GJAS 

were rated as having a higher quality and more groove. They 

were perceived to be more likely written by a human and they 

made the listeners calmer. The differences were however rather 

small and further studies are needed to evaluate the validity of 

the theory. 

As the melodies have close resemblance to popular music 

some of the aspects in human composition has hopefully been 

captured and can be formally analyzed.  
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