MXNet: Flexible and Efficient Library for Deep Learning

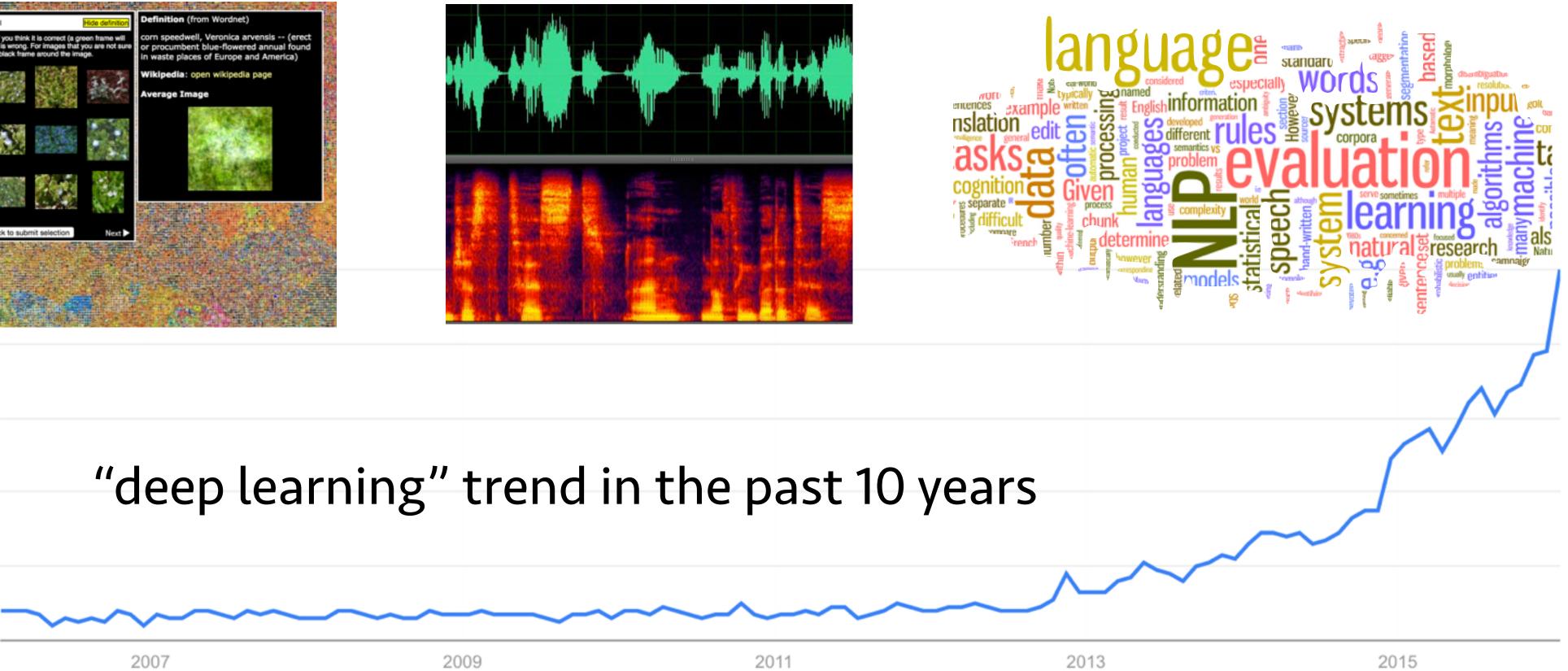
from Distributed GPU Clusters to Embedded Systems

Tianqi Chen W UNIVERSITY of WASHINGTON

Carnegie Mellon University

Learns multiple levels of representations of data

image understanding

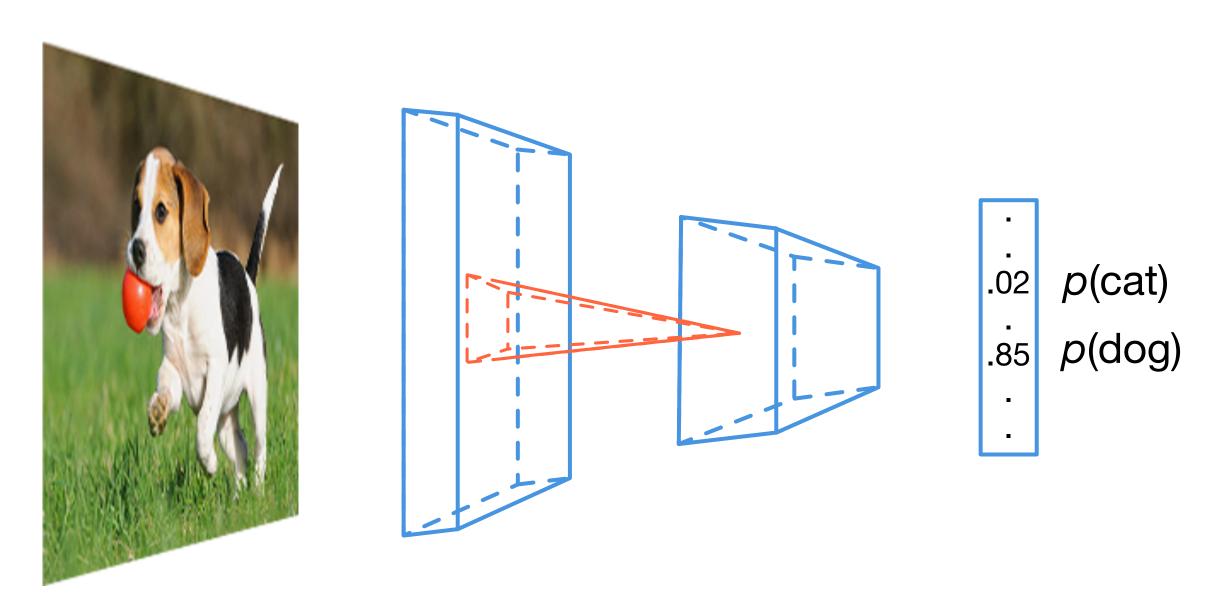


Deep Learning

- Significantly improve many applications on multiple domains
 - natural language processing

Image classification

multilevel feature extractions from raw pixels to semantic meanings

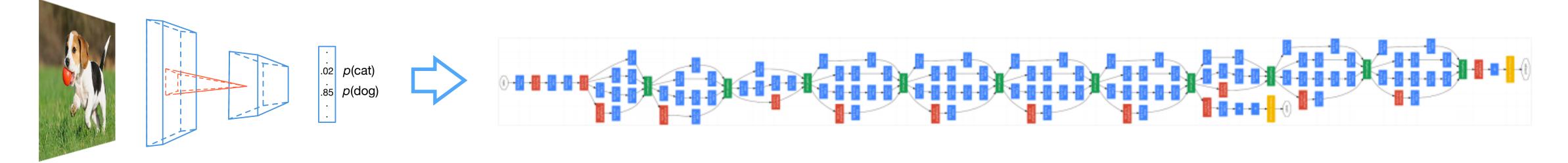


Layer 1

explore spatial information with convolution layers

1 Layer 2 Output

Image Classification

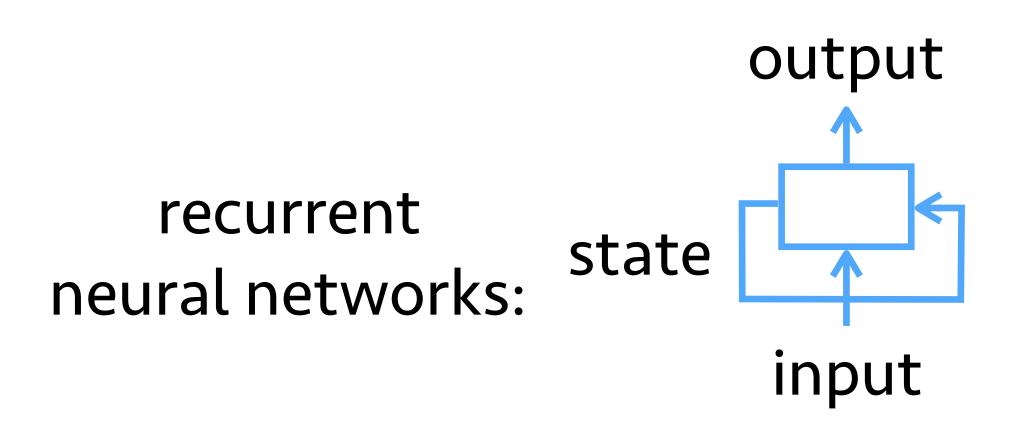


- Hard to define the network
- A single image requires billions floating-point operations
 - Intel i7 ~500 GFLOPS
 - Nvidia Titan X: ~5 TFLOPS
- Memory consumption is linear with number of layers

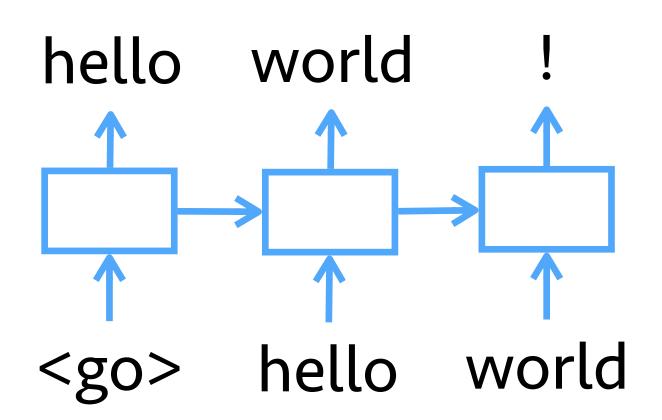
State-of-the-art networks have tens to hundreds layers

the definition of the inception network has >1k lines of codes in Caffe

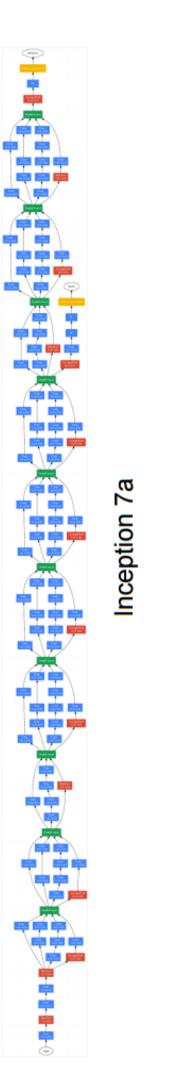
Language Modeling

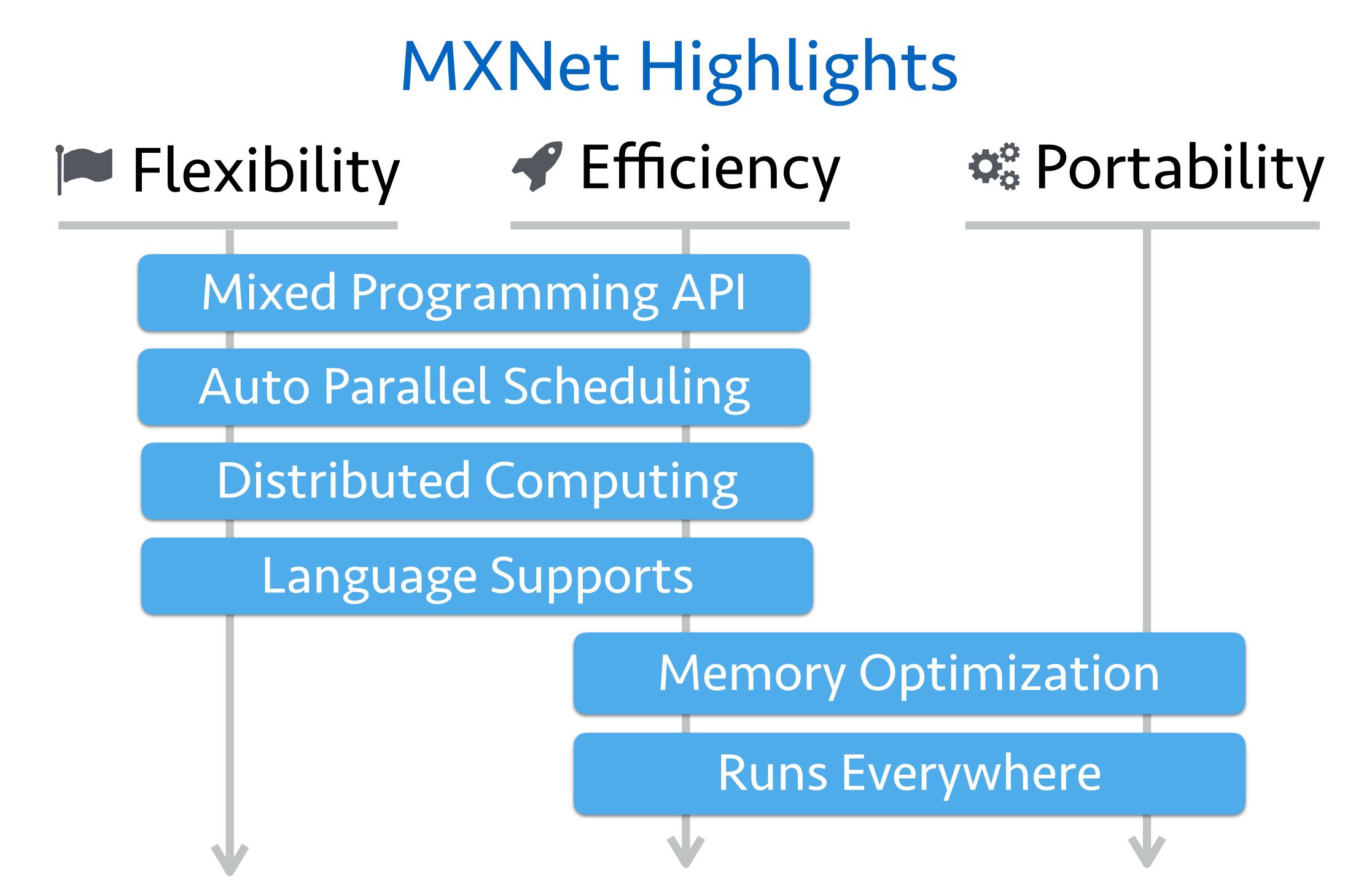


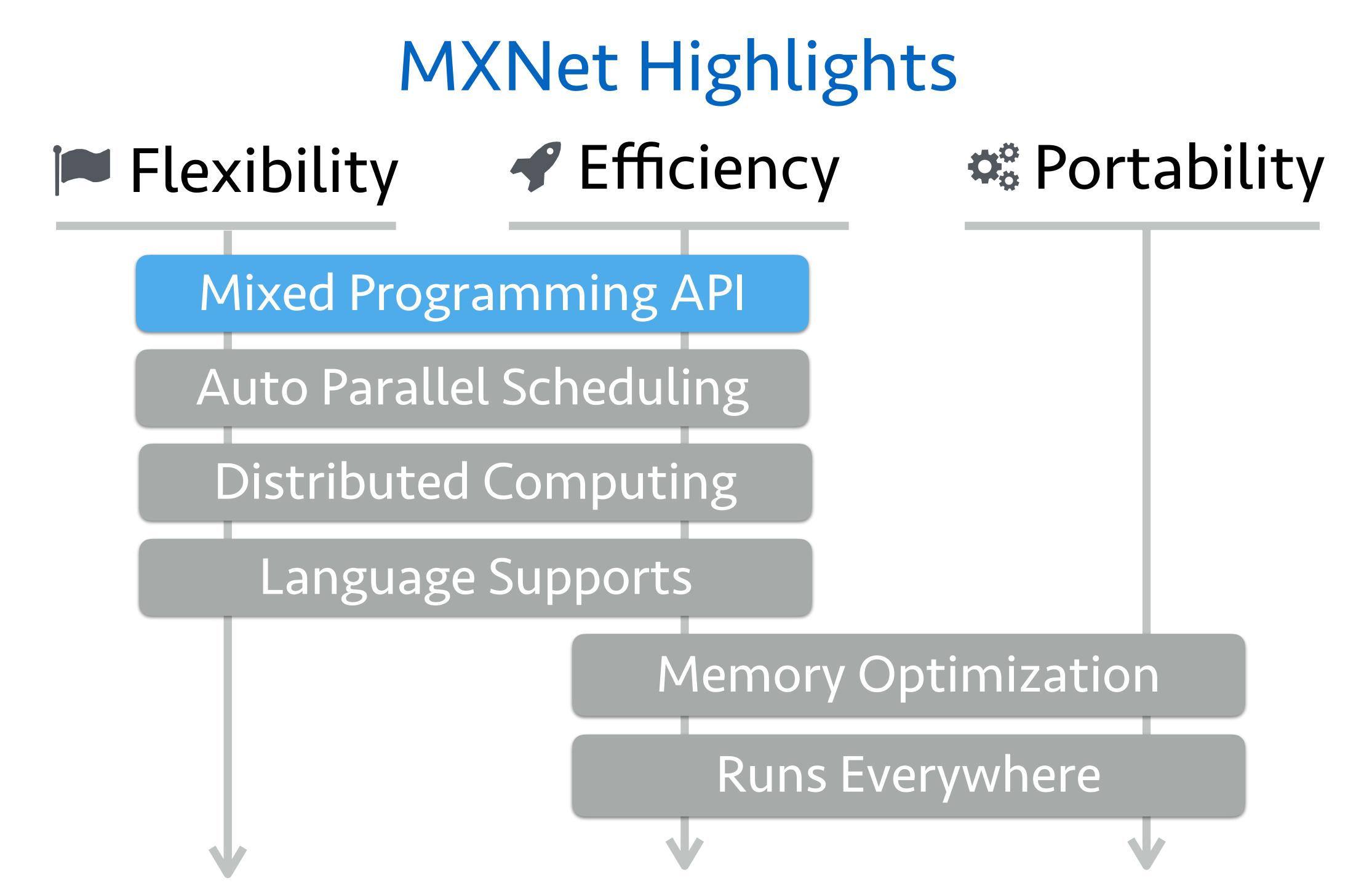
- Variable length of input and output sequences
- State-of-the-art networks have many layers
 - Billions of floating-point operations per sentence
 - Memory consumption is linear with both sequence length and number of layers



MXNet Highlights Flexibility fficiency Portability







Deep Learning Workflow

Computational Graph of the Deep Architecture

backword forward input ∂ input ∂ fullc fullc sigmoid ∂ sigmoid ∂ fullc fullc ∂ softmax softmax loss label

Deep Learning Workflow

Computational Graph of the Deep Architecture

backword forward input ∂ input ∂ fullc fullc ∂ sigmoid sigmoid ∂ fullc fullc ∂ softmax softmax loss label

Updates and Interactions with the graph

- Parameter update
- Beam search
- Feature extraction ...

$$w = w - \eta \partial f(w)$$

- Involves high dimensional array(tensor) operations in both direction
- How to program a typical DL application?

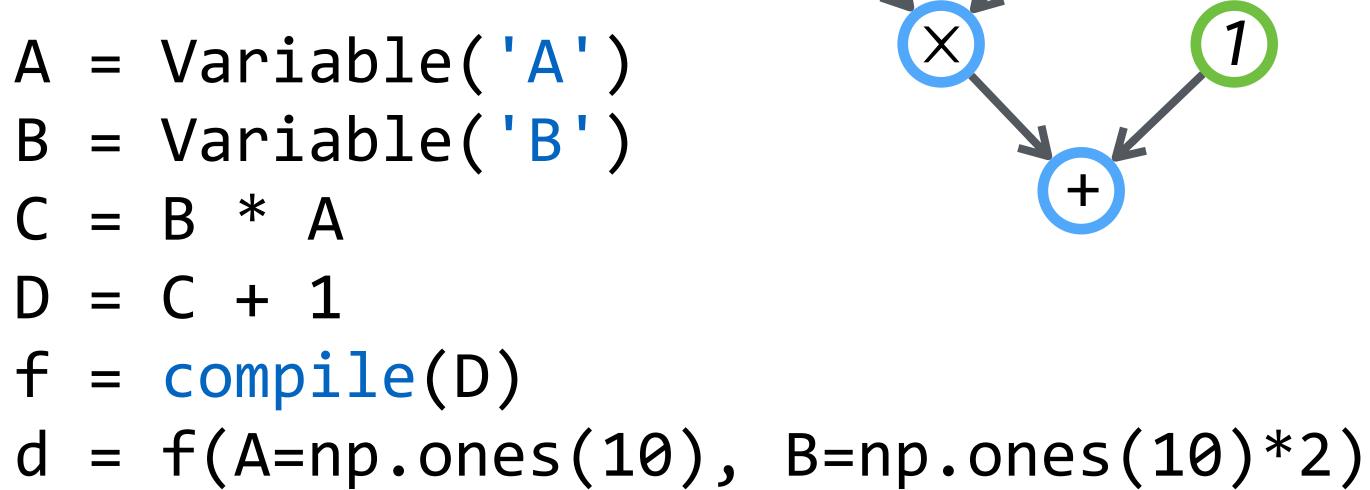
Imperative Programs

- Execute operations step by step.
- $c = b \times a$ invokes a kernel operation
- Numpy programs are imperative

import numpy as np a = np.ones(10) b = np.ones(10) * 2 c = b * a d = c + 1

Declarative Programs

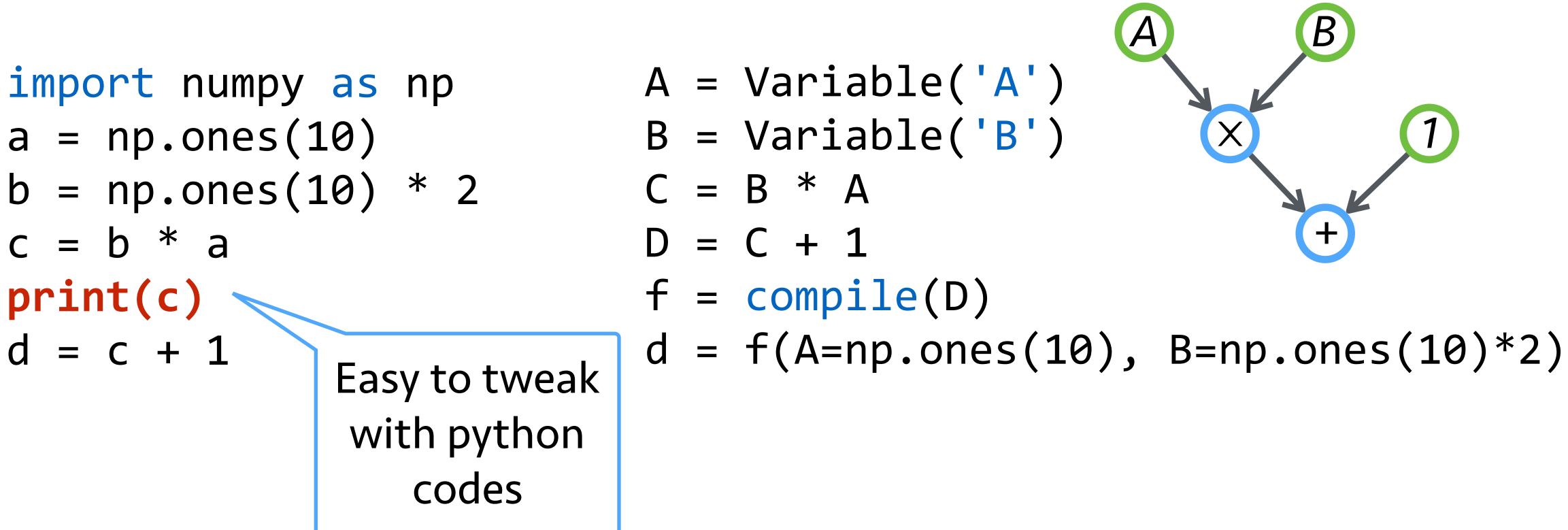
- Declares the computation
- Compiles into a function
- \bullet C = B × A only specifies the requirement
- SQL is declarative



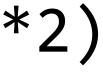
B

Imperative vs. Declarative Programs

Imperative programs are straightforward and flexible.

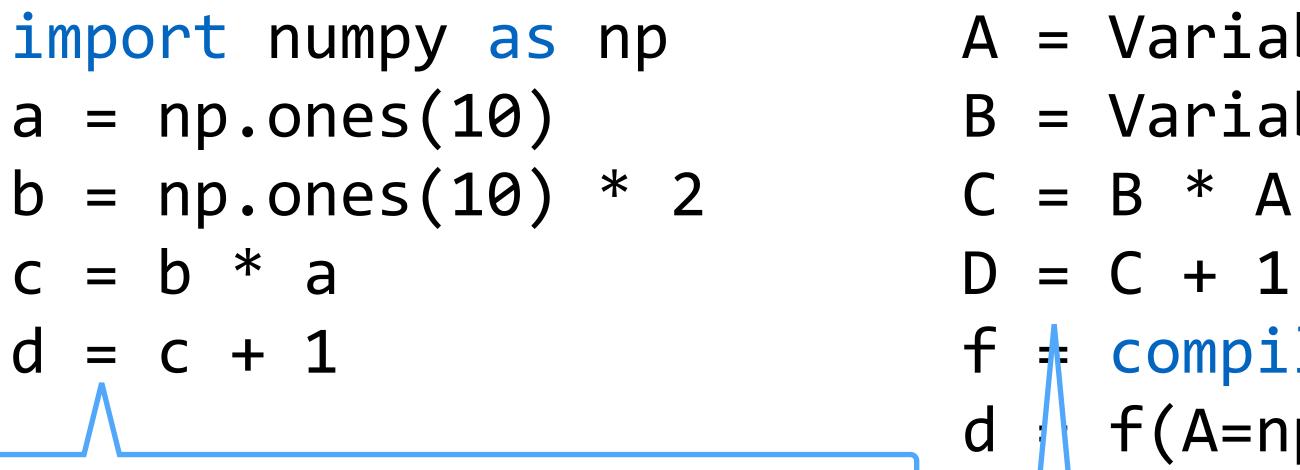


- Take advantage of language native features (loop, condition)



Imperative vs. Declarative Programs

- Declarative programs see the entire graph
- More chances for optimization
- Easy to save and load the computation structure

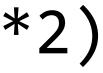


c cannot share memory with d, because it could be used in future

- Which program uses less memory to obtain d?
 - A = Variable('A') A B = Variable('B')

 - = C + 1
 - compile(D)
 - f(A=np.ones(10), B=np.ones(10)*2)

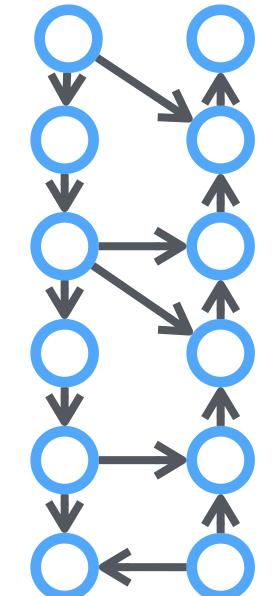
C can share memory with D, because C cannot be seen by user



Imperative vs. Declarative for Deep Learning

Computational Graph of the Deep Architecture

forward backword



Needs heavy optimization, fits **declarative** programs

Updates and Interactions with the graph

 Parameter update Beam search Feature extraction ...

$$w = w - \eta \partial f(w)$$

Needs mutation and more language native features, good for **imperative** programs

MXNet: Mix the Flavors Together

Imperative NDArray API

>>> import mxnet as mx >>> a = mx.nd.zeros((100, 50)) >>> a.shape (100L, 50L)>>> b = mx.nd.ones((100, 50)) >>> c = a + b >>> b += c

Declarative Symbolic Executor

- >>> import mxnet as mx

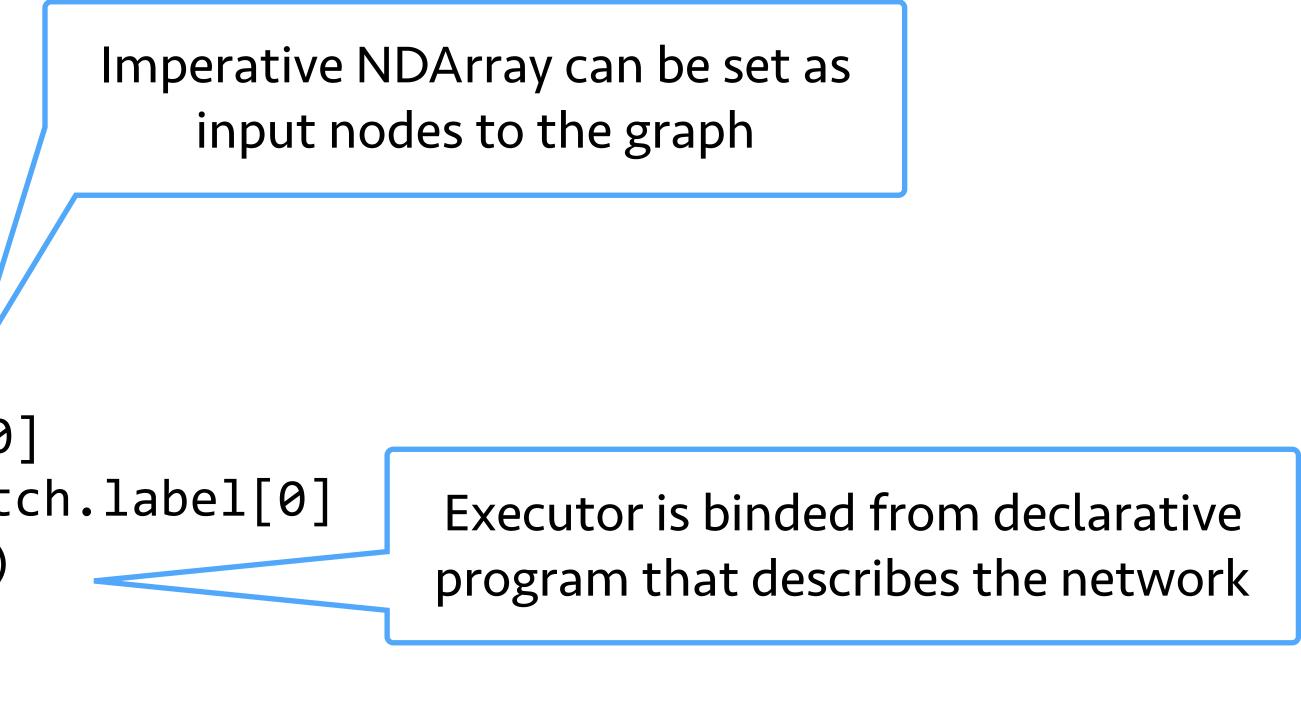
- >>> type(net)
- <class 'mxnet.symbol.Symbol'>

```
>>> net = mx.symbol.Variable('data')
>>> net = mx.symbol.FullyConnected(data=net, num_hidden=128)
>>> net = mx.symbol.SoftmaxOutput(data=net)
```

>>> texec = net.simple_bind(data=data_shape)

Mixed Style Training Loop in MXNet

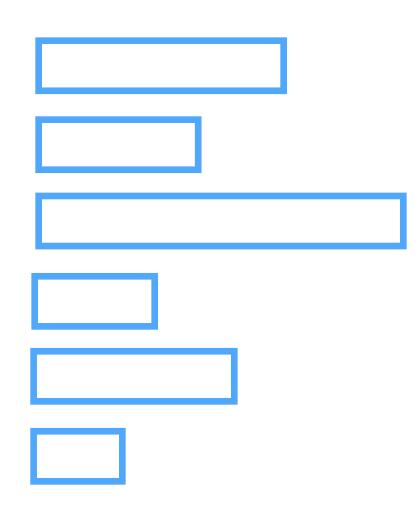
executor = declarative_symbol.bind()
for i in range(3):
 train_iter.reset()
 for dbatch in train_iter:
 args["data"][:] = dbatch.data[0]
 args["softmax_label"][:] = dbatch.label[0]
 executor.forward(is_train=True)
 executor.backward()
 for key in update_keys:
 args[key] -= learning_rate * grads[key]



Imperative parameter update on GPU

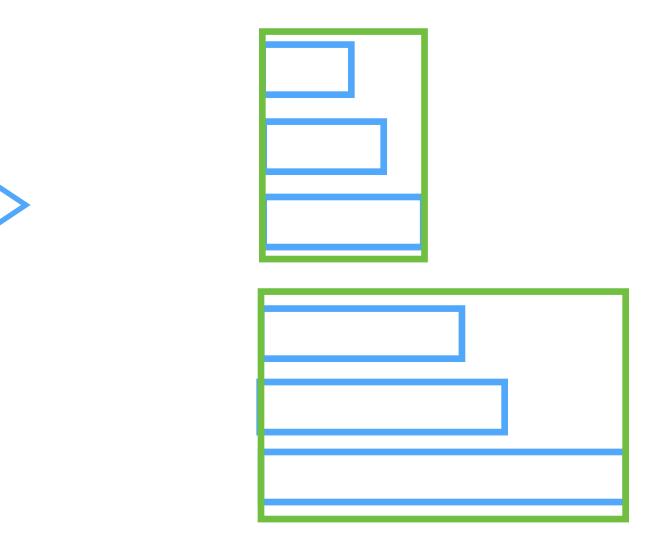
Mixed API for Quick Extensions

Various length examples



Useful for sequence modeling and image size reshaping

Bucketing



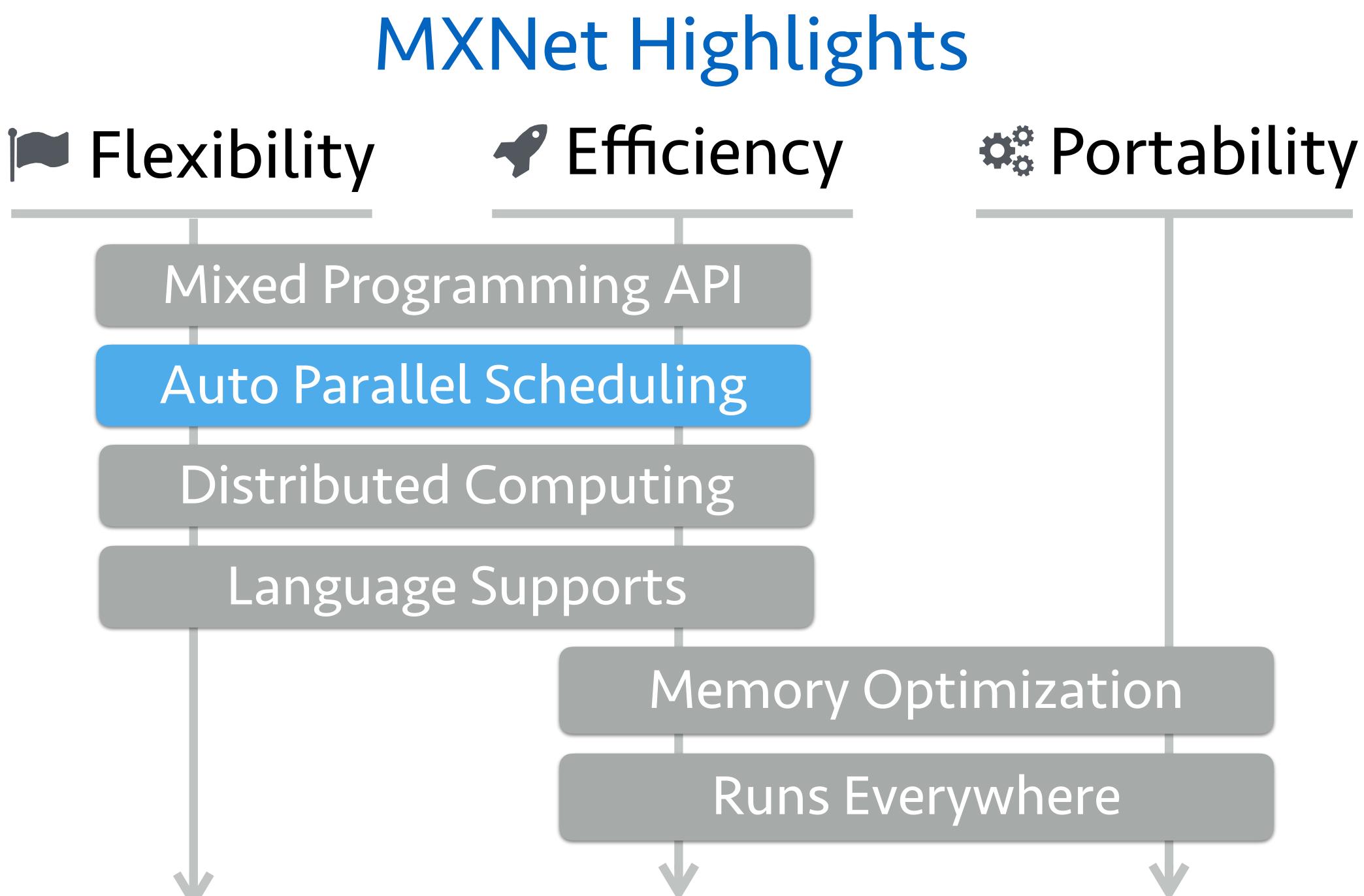
- Runtime switching between different graphs depending on input
- Make use of imperative code in python, **10 lines** of additional python code

100 lines of Python codes

3D Image Construction

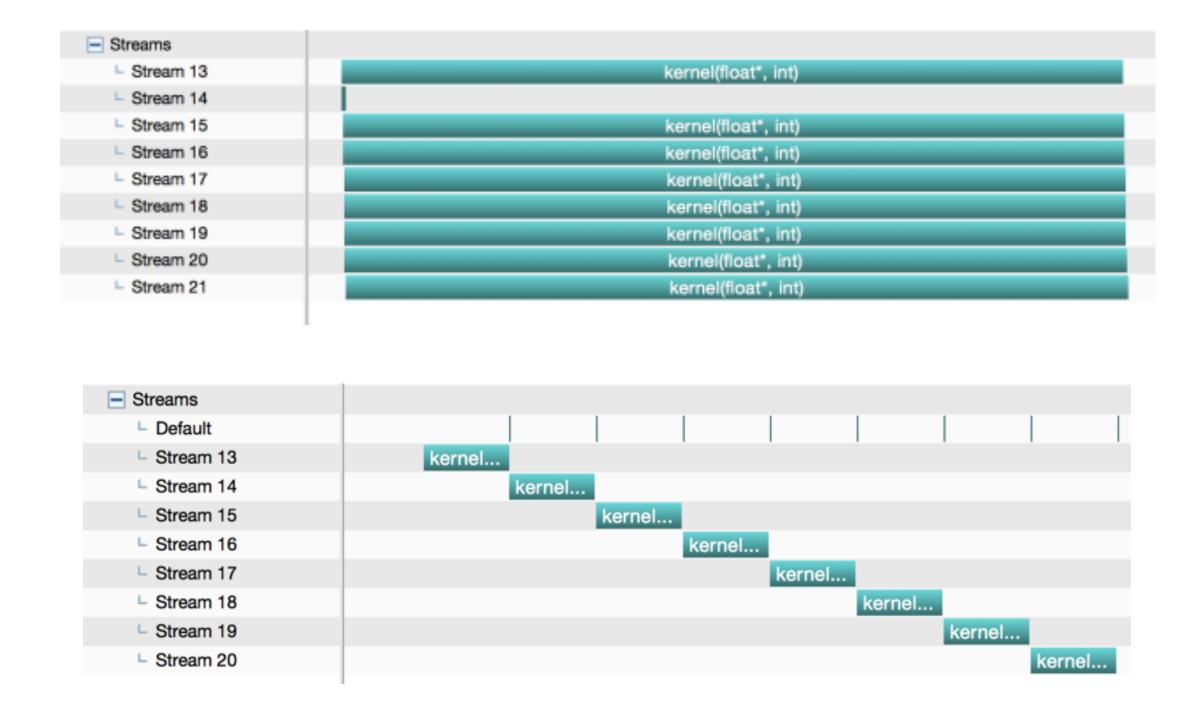
100 lines of Python codes

3D Image Construction



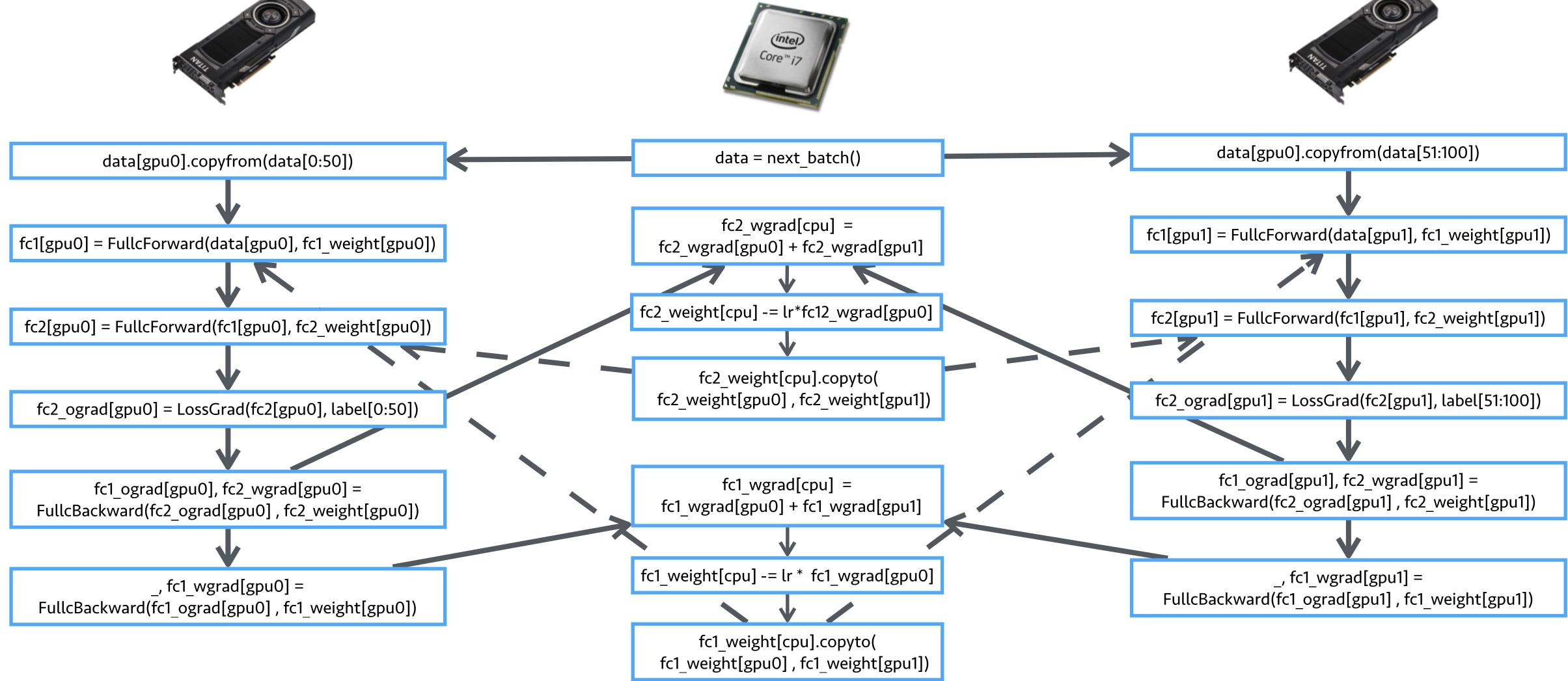
Need for Parallelization

- Parallelize workload on multiple GPUs
- Fine grained parallelization of small kernels
- Overlap of memory copy with computation



Js kernels Itation

Writing Parallel Programs is Painful



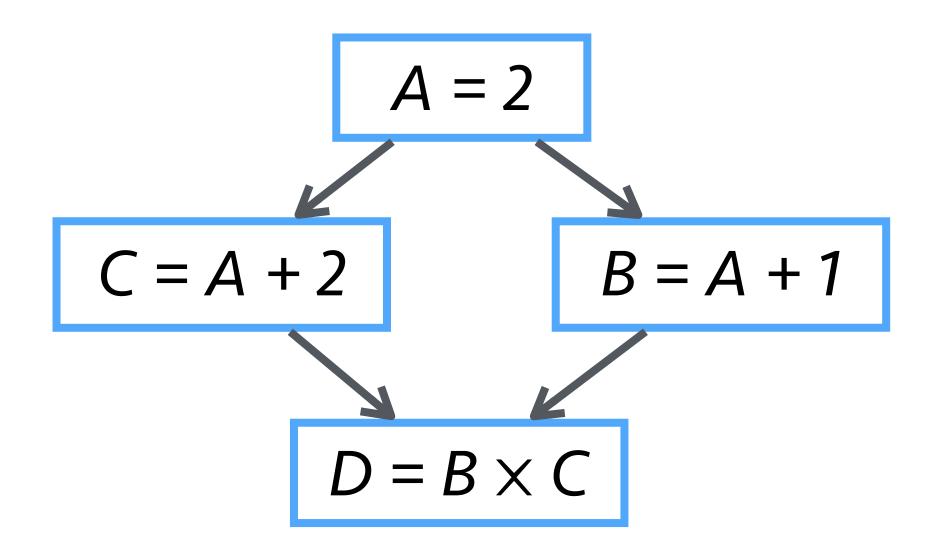
Hard to overlap computation with communication due to dependencies

Auto Parallelization for Mixed Programs

Write **serial** programs

- >>> import mxnet as mx
- >>> A = mx.nd.ones((2,2)) *2
- >>> C = A + 2
- >>> B = A + 1
- >>> D = B * C

Run in **parallel**

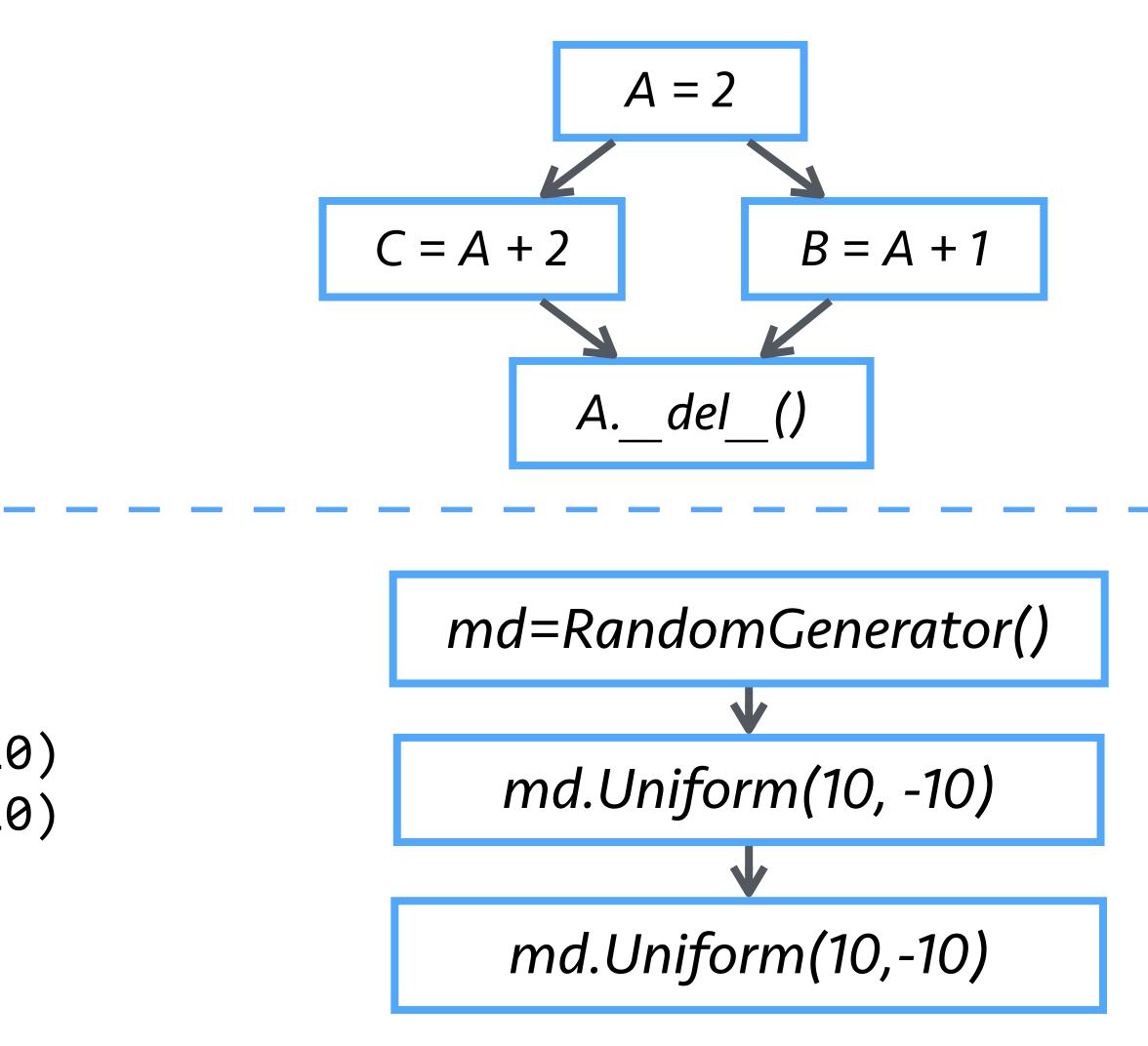


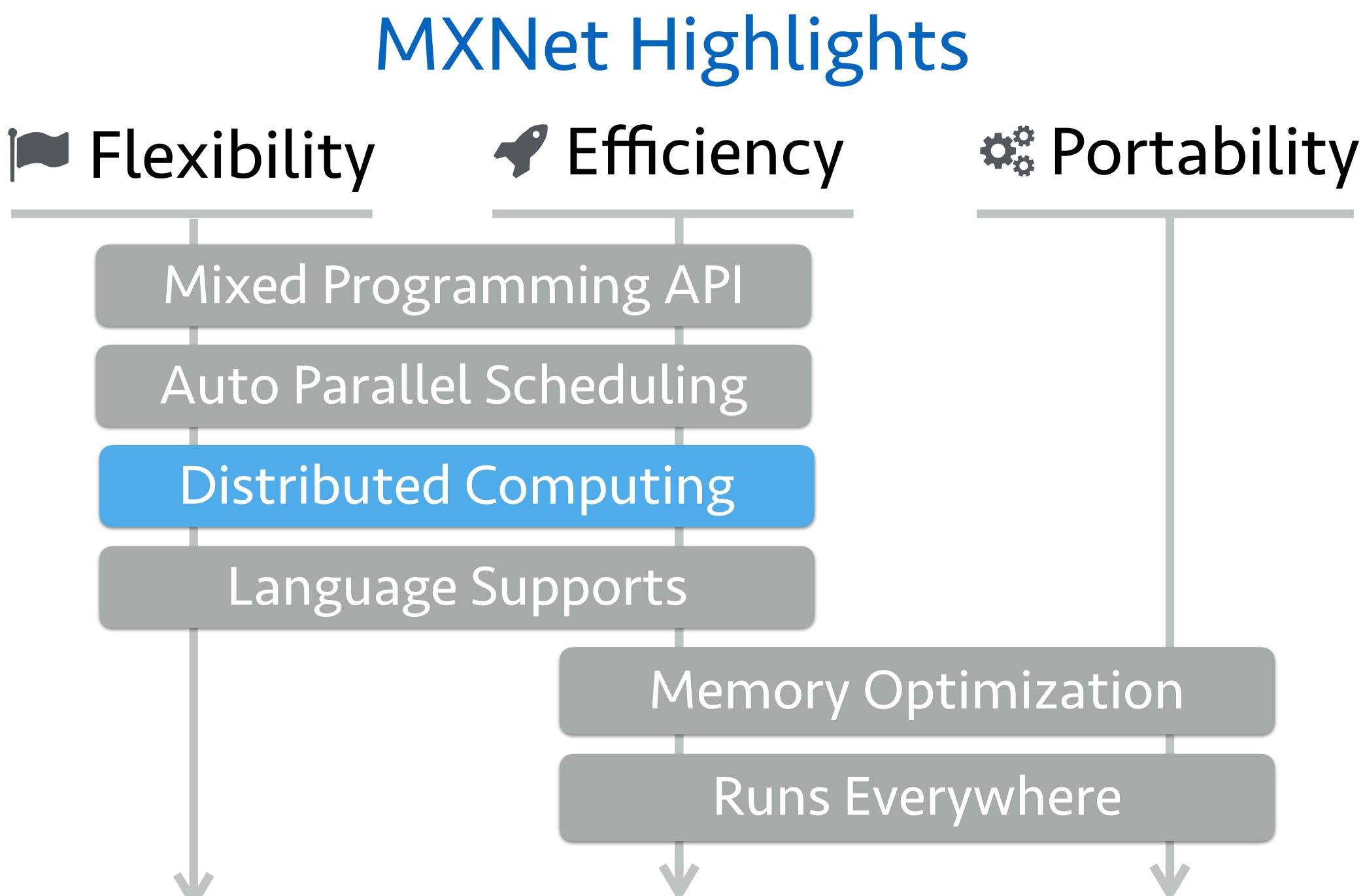
Auto Parallelization for Mixed Programs

Schedules any resources includes array, random number generator

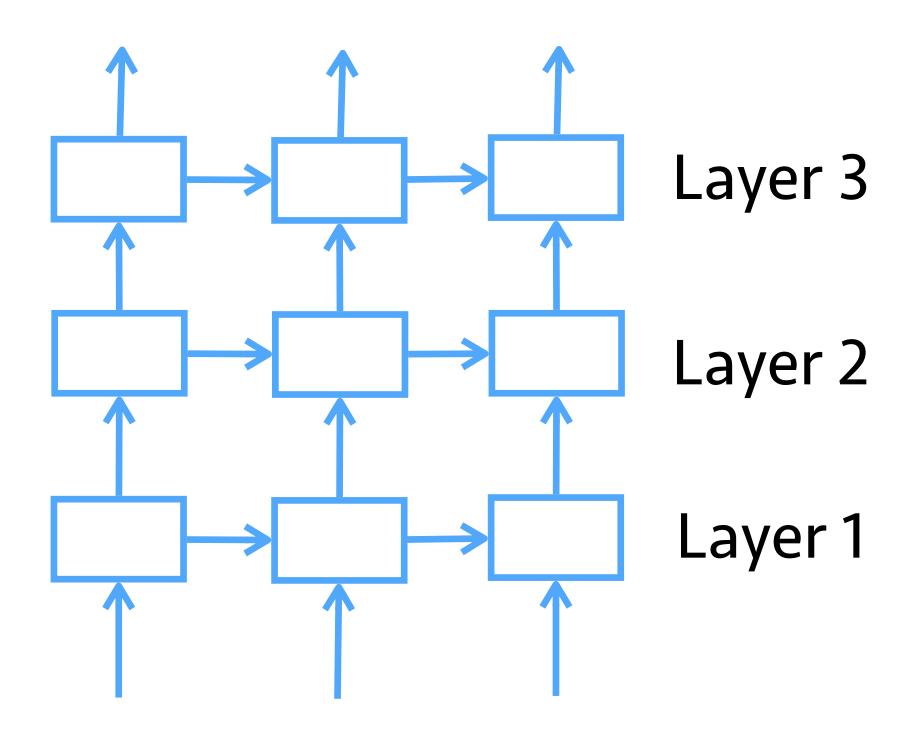
>>> import mxnet as mx
>>> A = mx.nd.ones((2,2)) *2
>>> C = A + 2
>>> B = A + 1
>>> del A

>>> import mxnet as mx
>>> A = mx.nd.uniform(shape, 10, -10)
>>> B = mx.nd.uniform(shape, 10, -10)

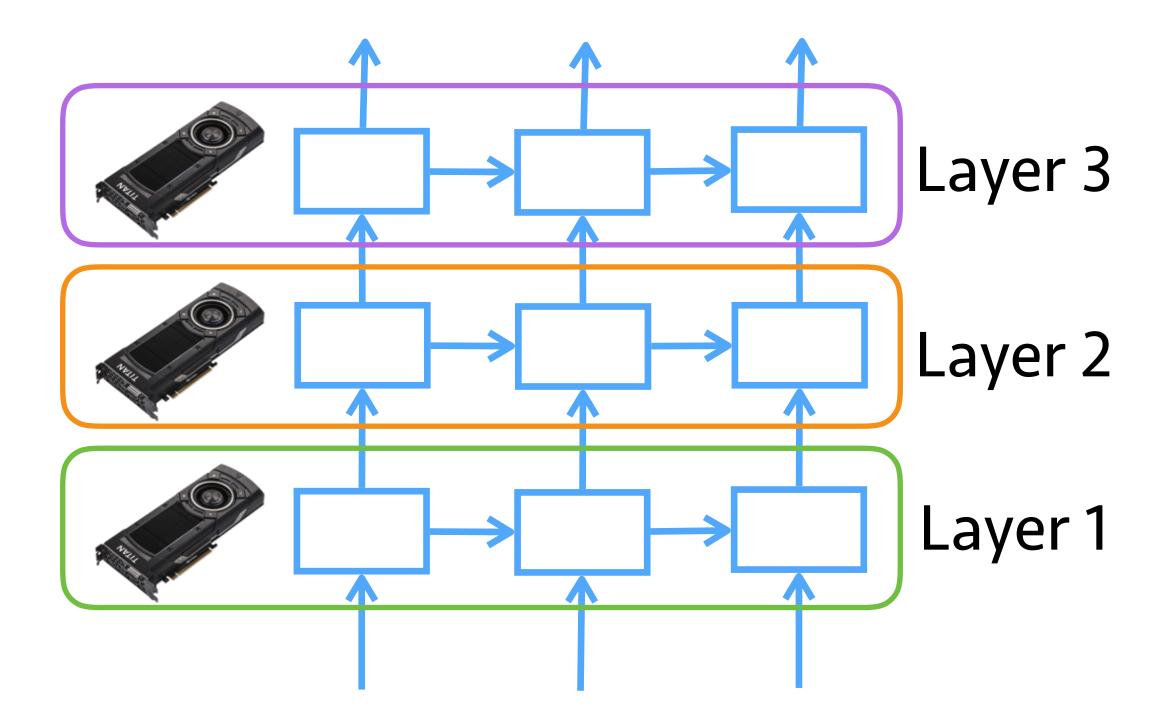




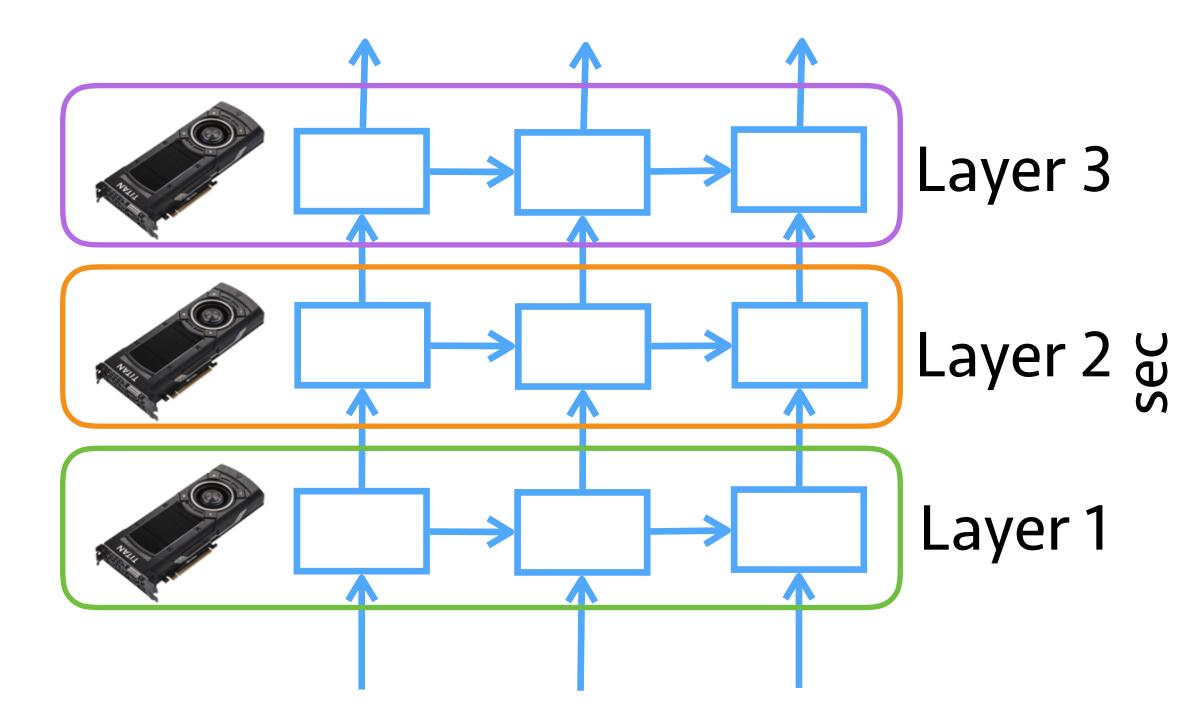
Model Parallelism



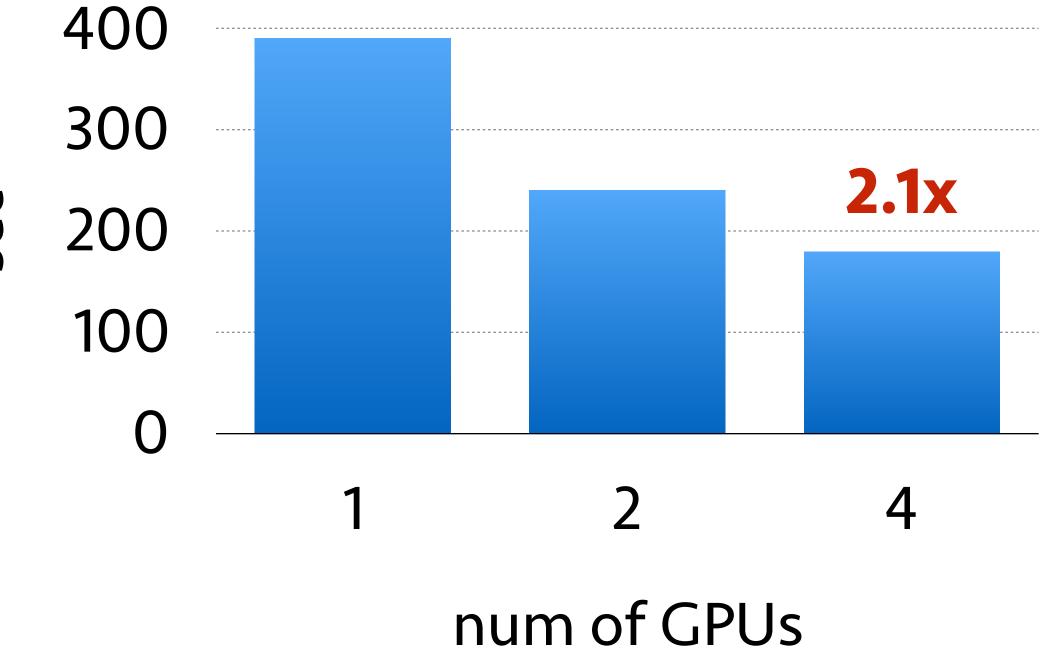
Model Parallelism



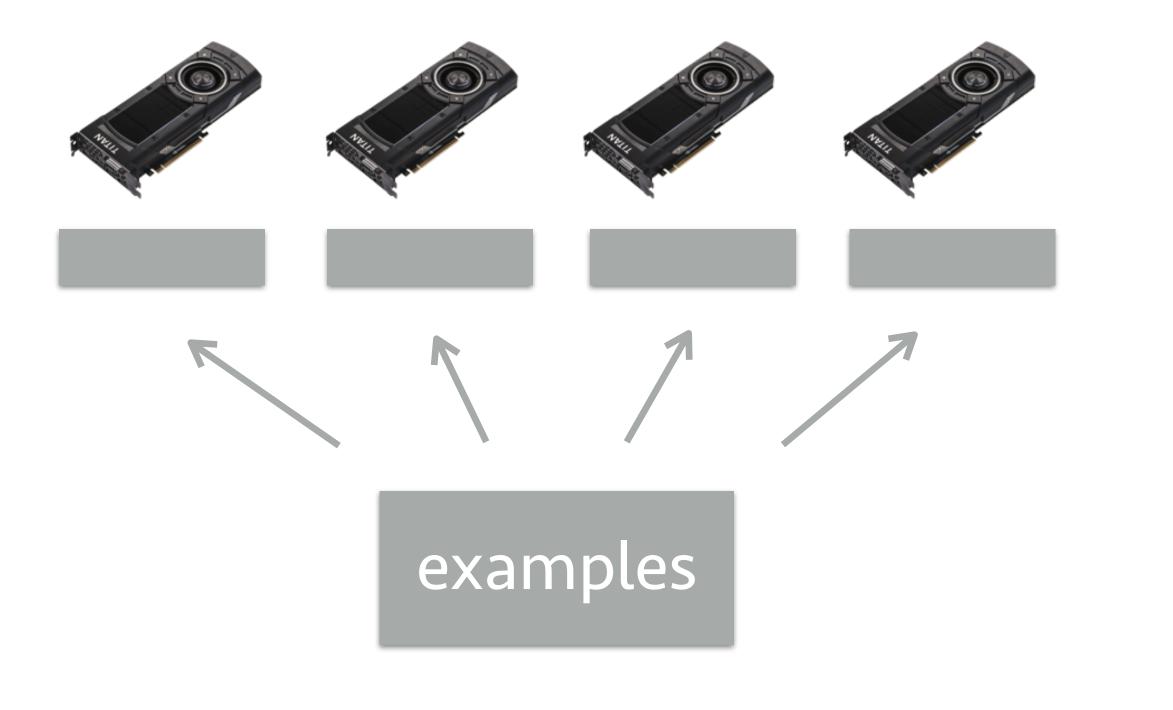
Model Parallelism



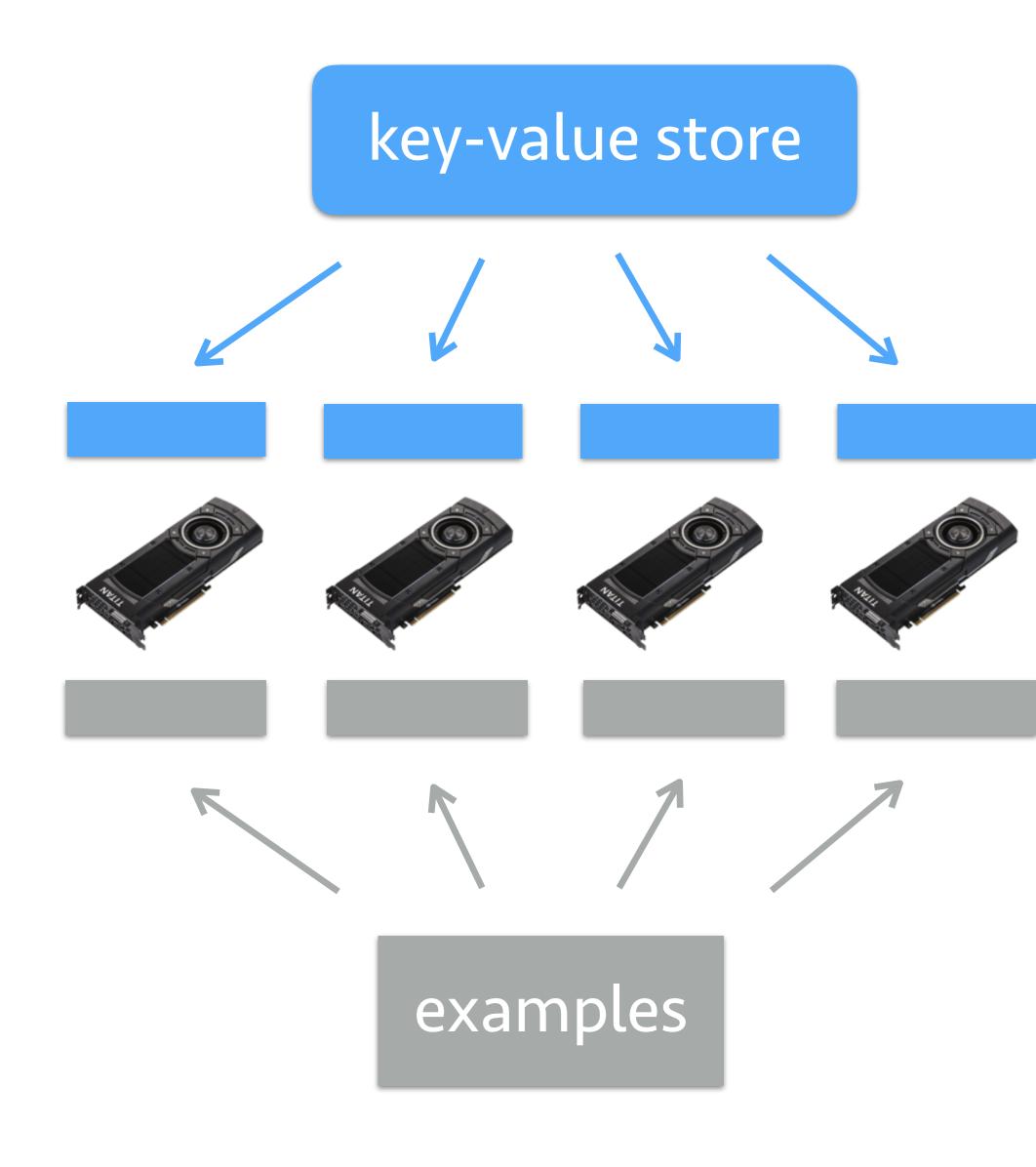
Time for one epoch on PTB:



examples

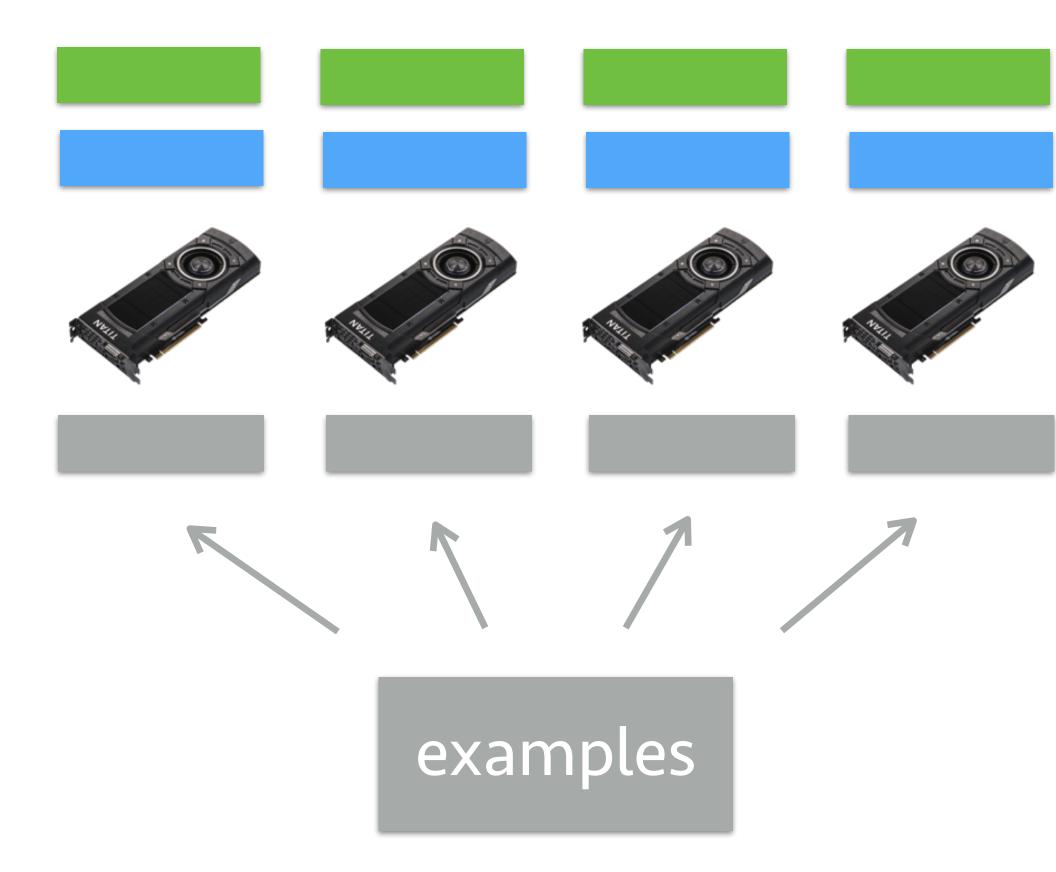


1. Read a data partition

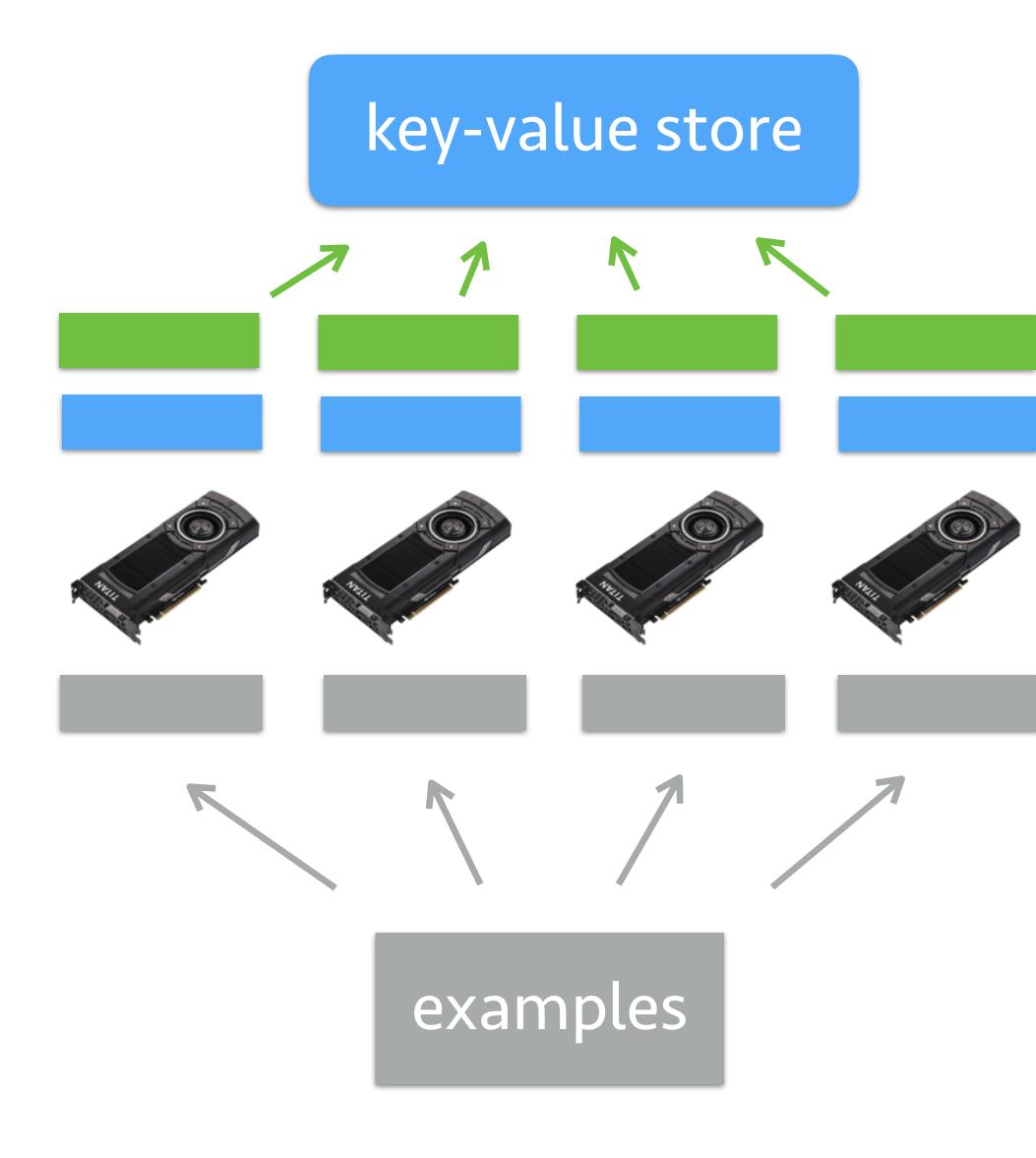


Read a data partition Pull the parameters

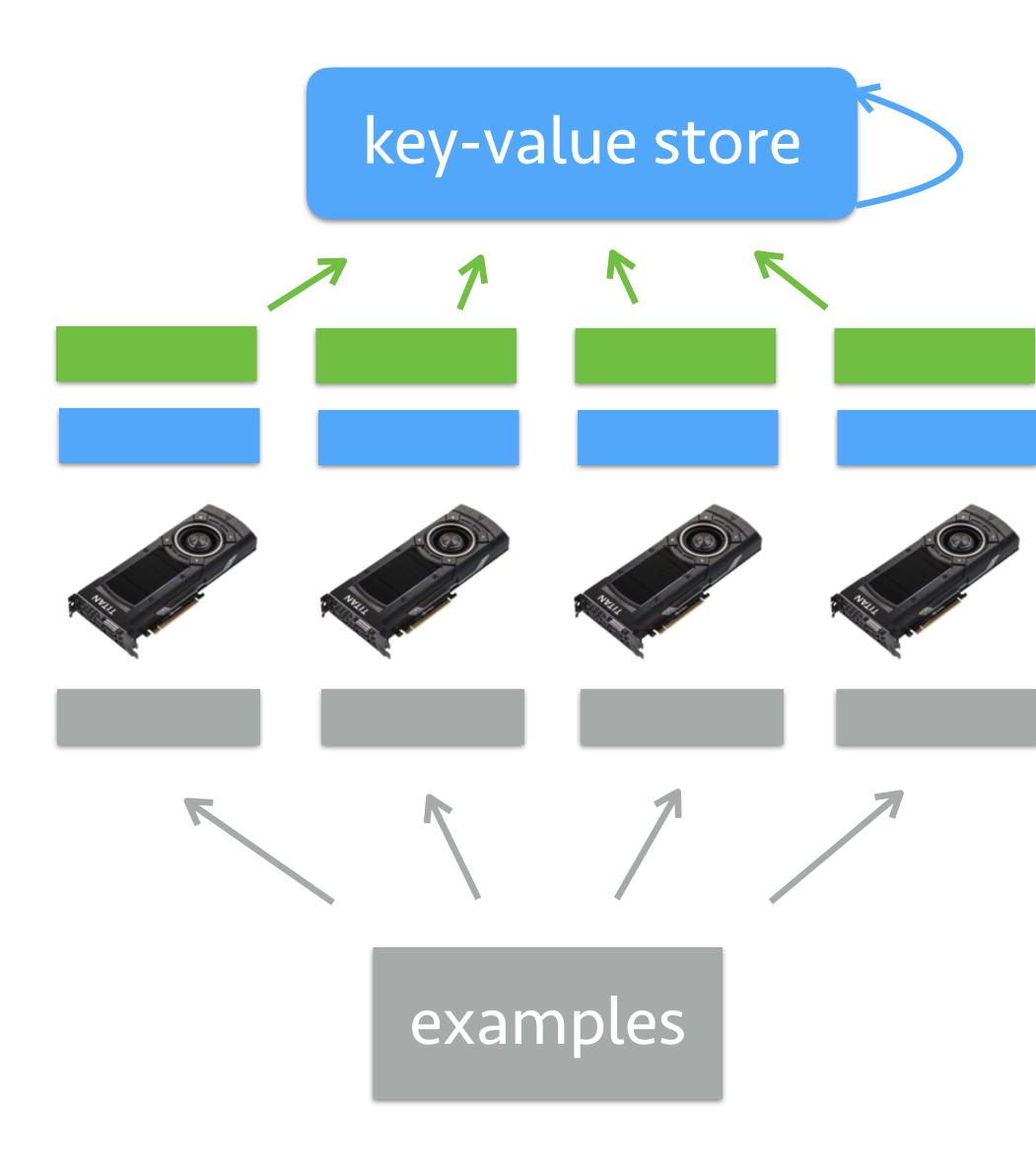
key-value store



- 1. Read a data partition
- 2. Pull the parameters
- 3. Compute the gradient



- 1. Read a data partition
- 2. Pull the parameters
- 3. Compute the gradient
- 4. Push the gradient



- 1. Read a data partition
- 2. Pull the parameters
- 3. Compute the gradient
- 4. Push the gradient
- 5. Update the weight

Implementation

% create executor for each GPU execs = [symbol.bind(mx.gpu(i)) for i in range(ngpu)] % w -= learning rate * grad kvstore.set_updater(...) % iterating on data for dbatch in train_iter: % iterating on GPUs for i in range(ngpu): % read a data partition copy_data_slice(dbatch, execs[i]) % pull the parameters for key in update_keys: kvstore.pull(key, execs[i].weight_array[key]) % compute the gradient execs[i].forward(is_train=True) execs[i].backward() % push the gradient for key in update_keys: kvstore.push(key, execs[i].grad_array[key])

Implementation

% create executor for each GPU execs = [symbol.bind(mx.gpu(i)) for i in range(ngpu)] % w -= learning_rate * grad kvstore.set_updater(...) % iterating on data for dbatch in train_iter: % iterating on GPUs for i in range(ngpu): % read a data partition copy_data_slice(dbatch, execs[i]) % pull the parameters for key in update_keys: kvstore.pull(key, execs[i].weight_array[key]) % compute the gradient execs[i].forward(is_train=True) execs[i].backward() % push the gradient for key in update_keys: kvstore.push(key, execs[i].grad_array[key])

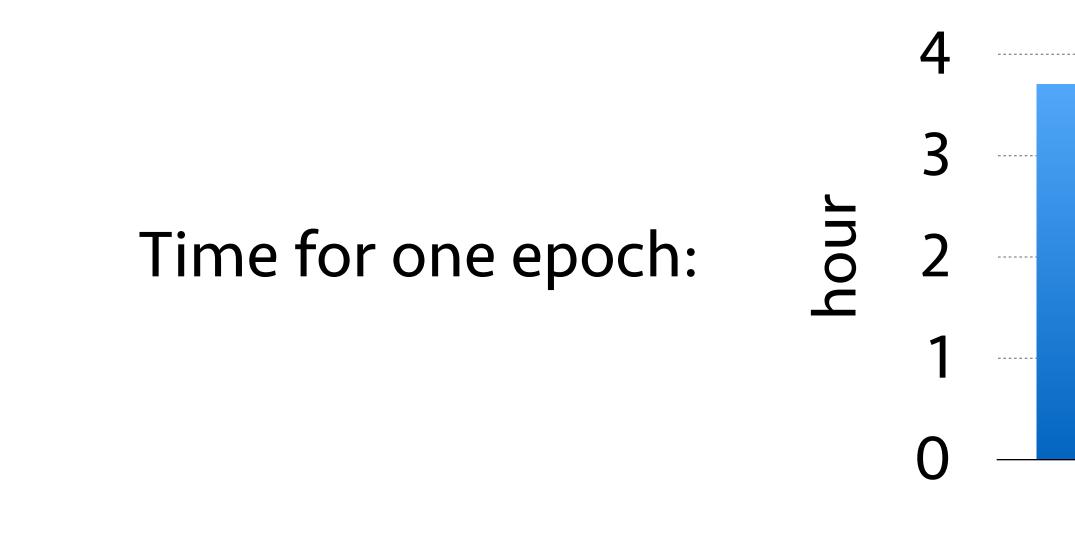
automatic parallelism for mixed API

- IMAGENET with 1.2m images and 1,000 classes
- ♦ 4 x Nvidia GTX 980
- Google Inception Network

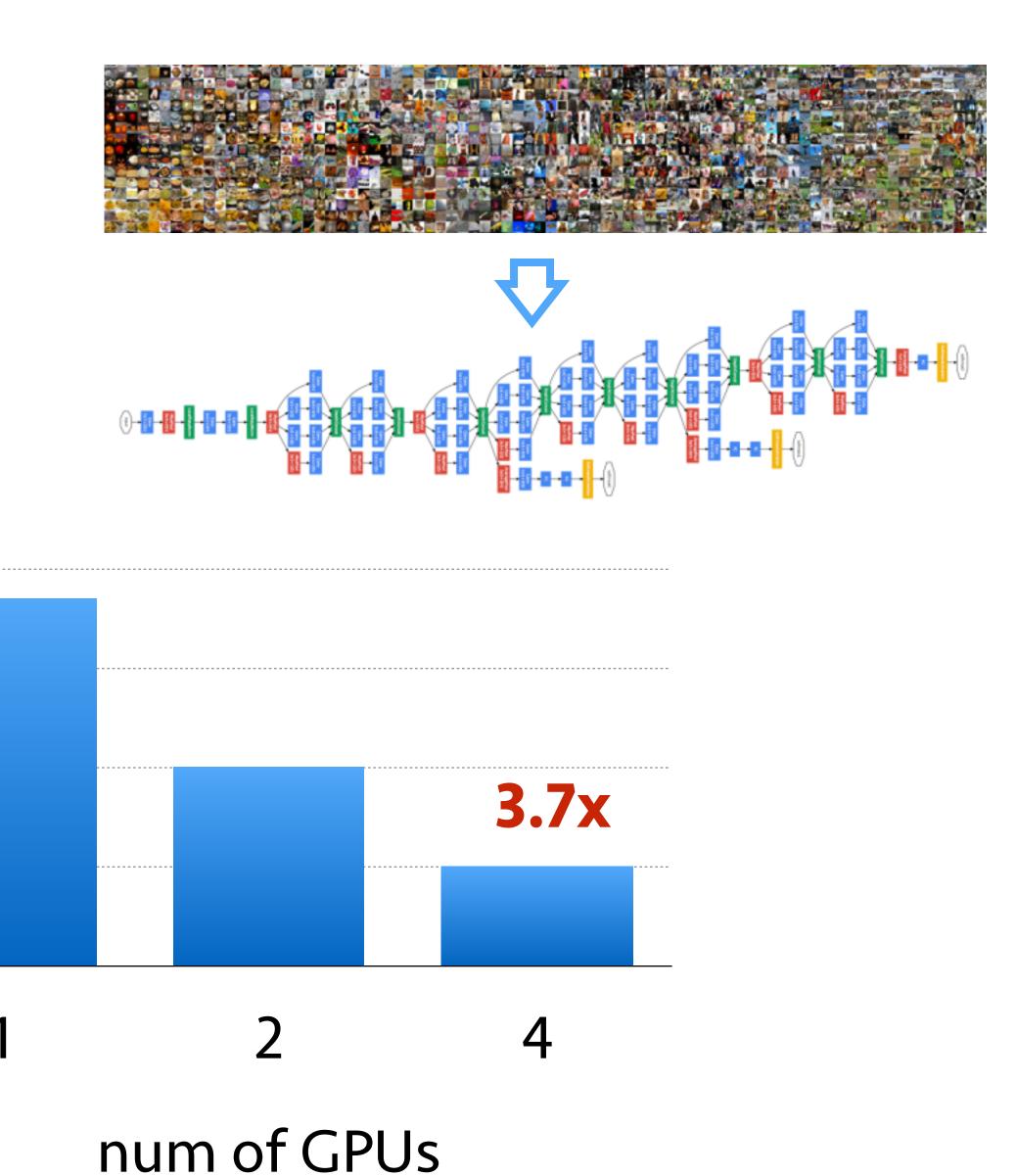
Results



- IMGENET with 1.2m images and 1,000 classes
- 4 x Nvidia GTX 980
- Google Inception Network



Results



key-value store

examples

key-value store

Store data in a distributed filesystem

key-value store

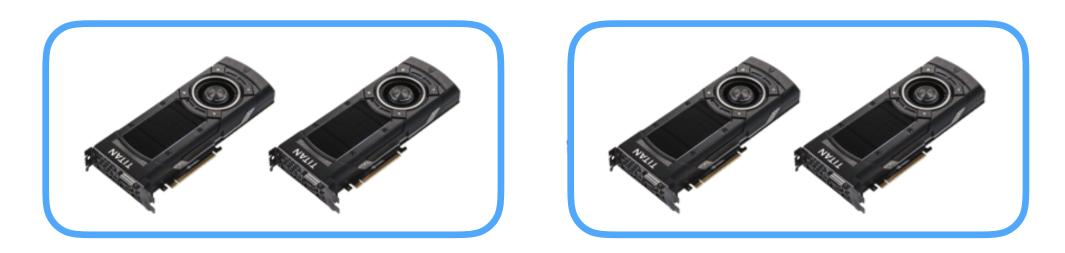
multiple worker machines

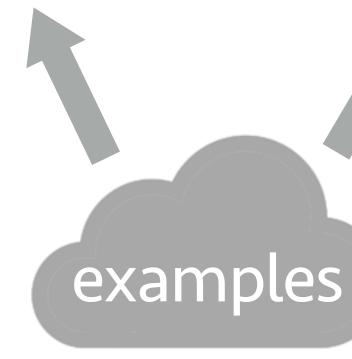
Store data in a distributed filesystem

multiple server machines

multiple worker machines

Store data in a distributed filesystem



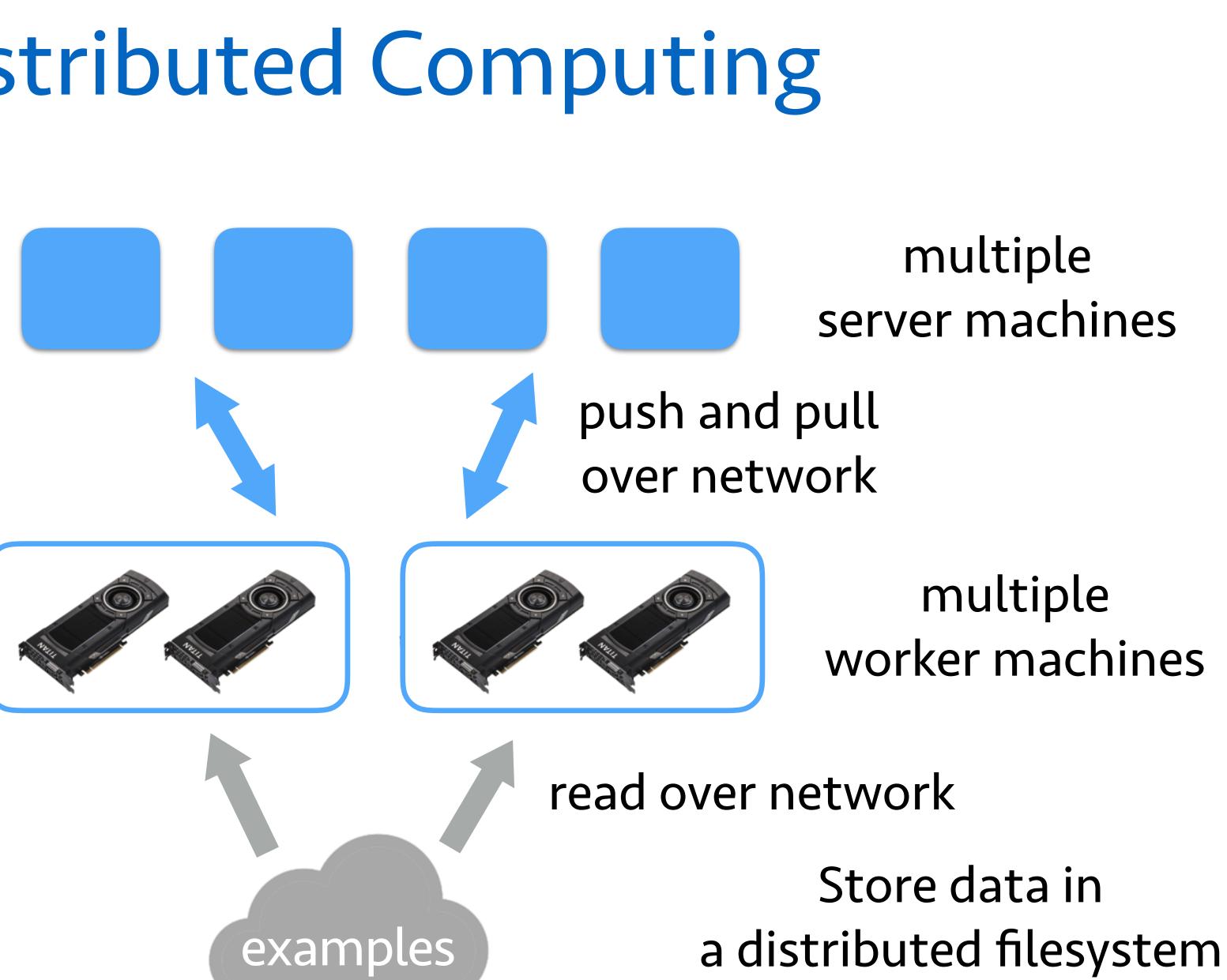


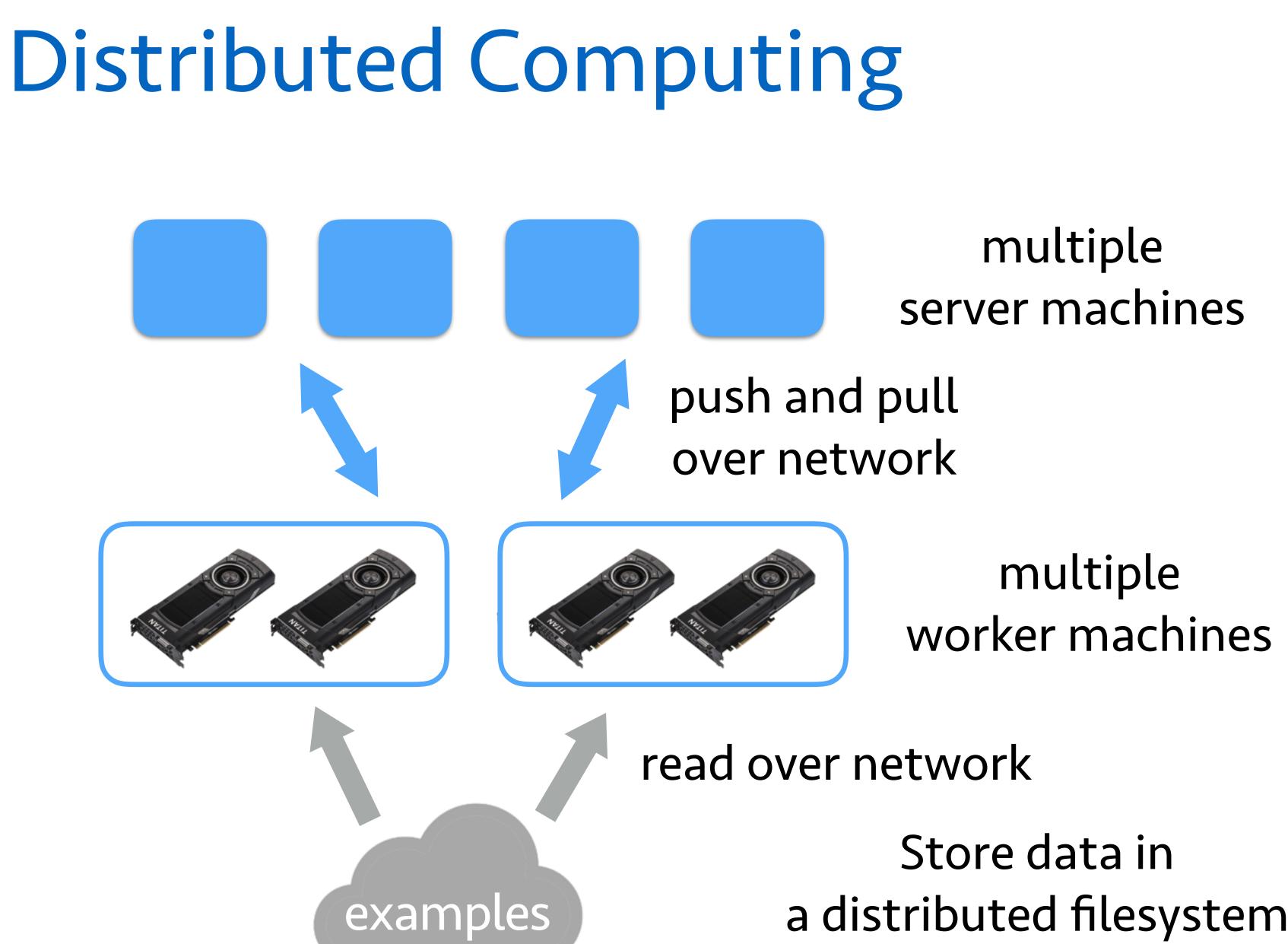
multiple server machines

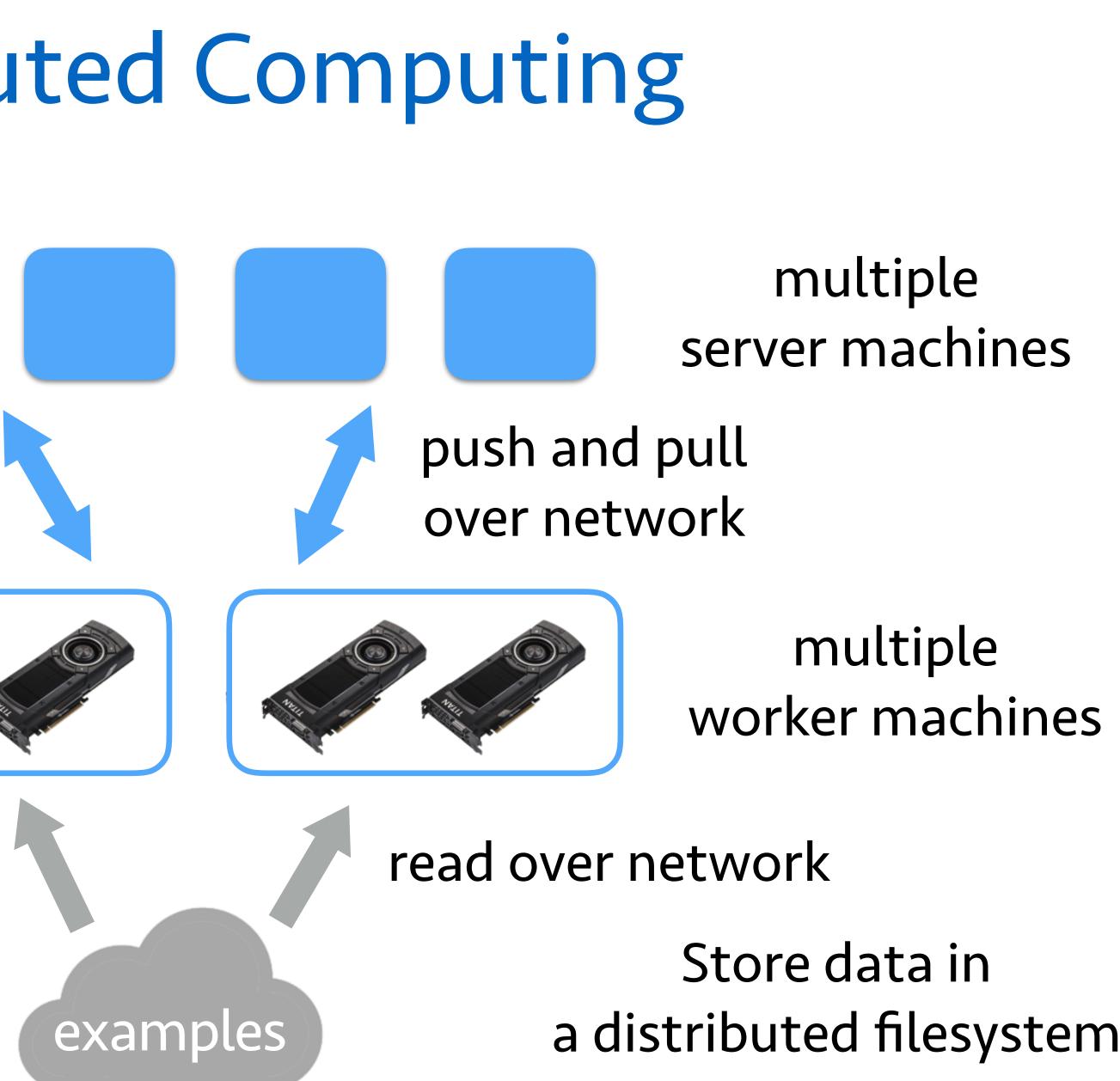
multiple worker machines

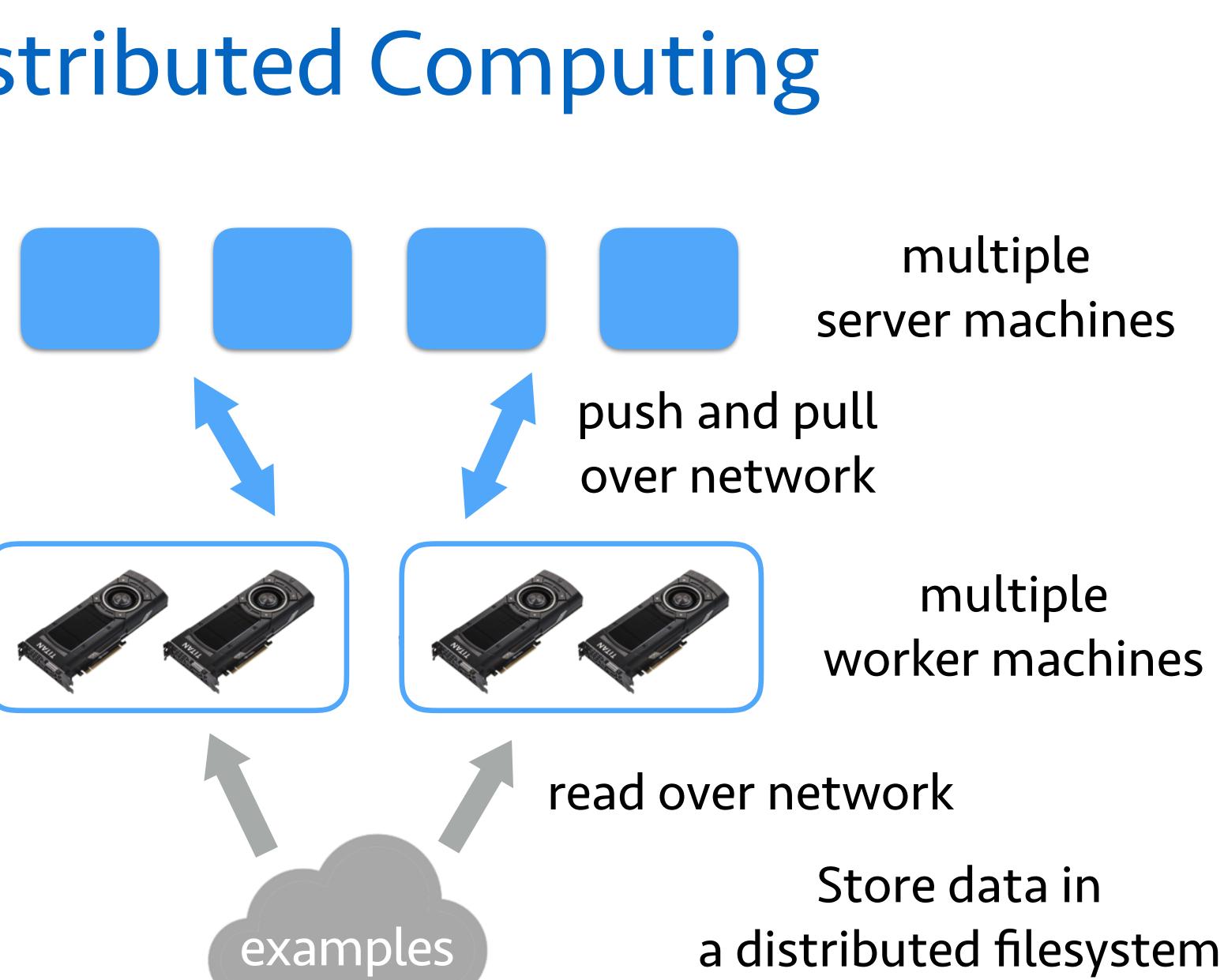
read over network

Store data in a distributed filesystem

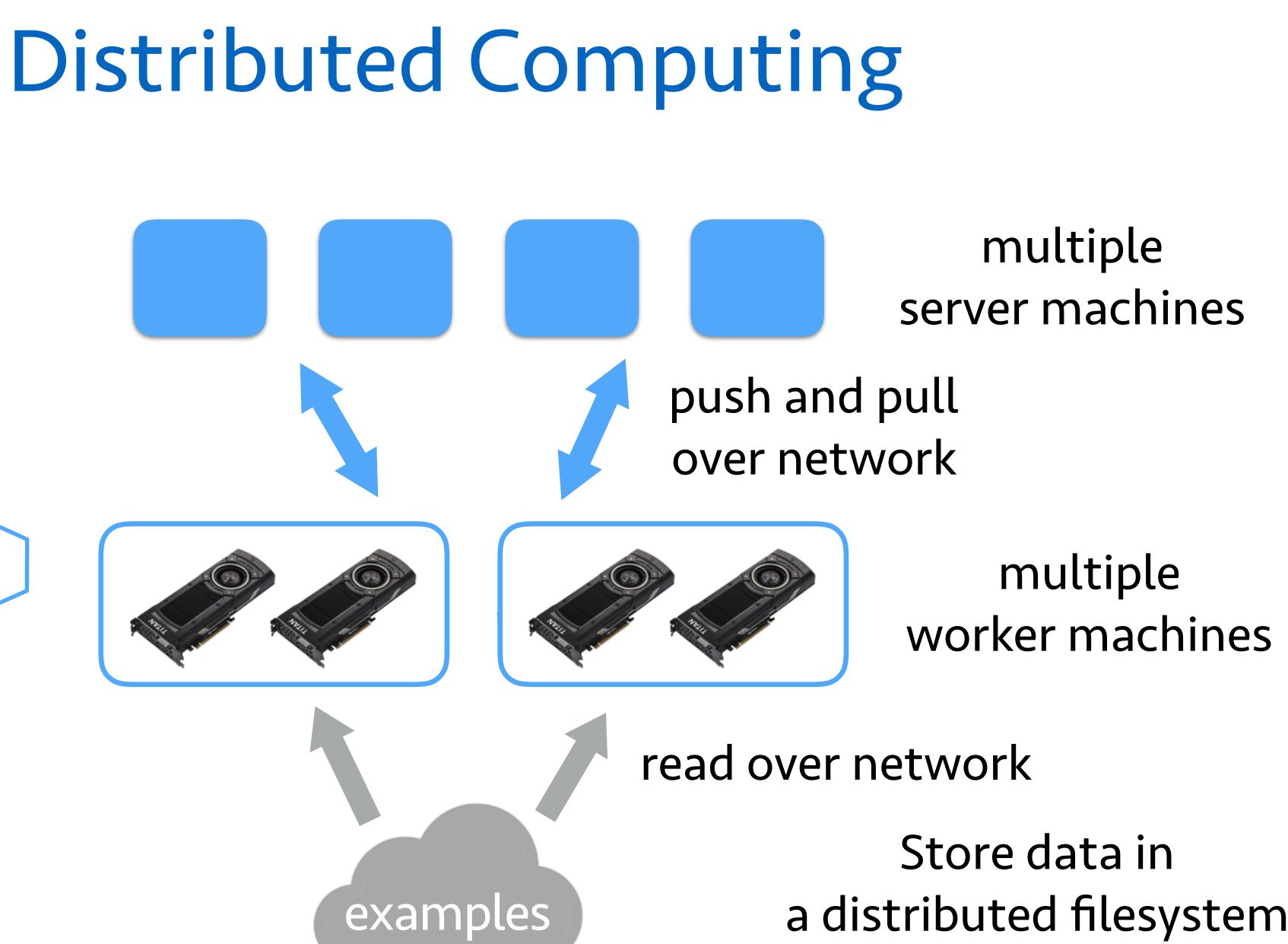




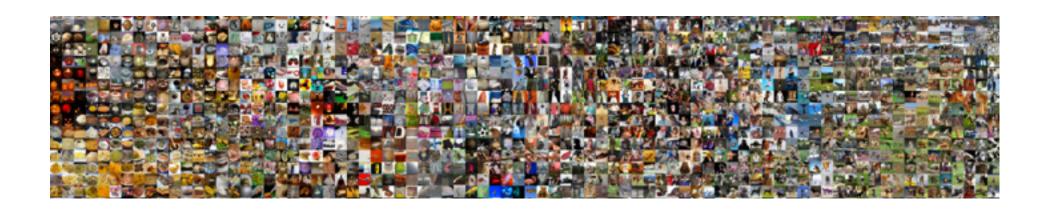


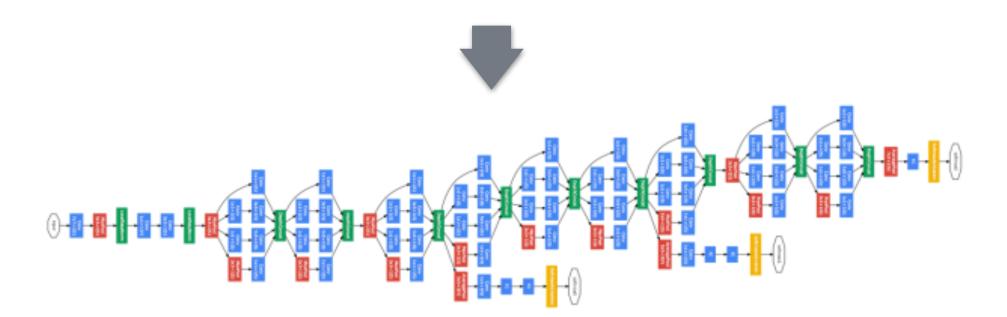


No code change comparing to single machine



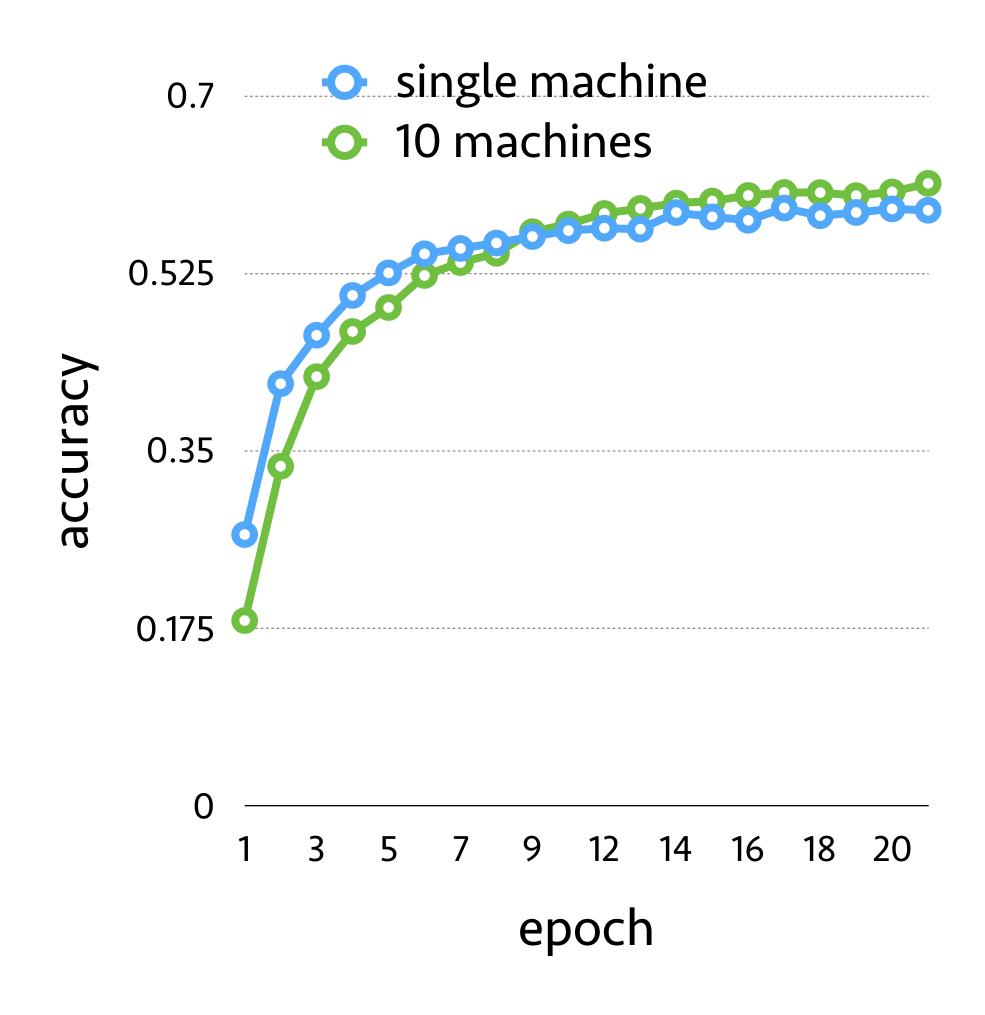
- ImageNet with 1.2m images and 1,000 classes
- AWS EC2 GPU instance, 4 GPUs per machine
- Google Inception Network





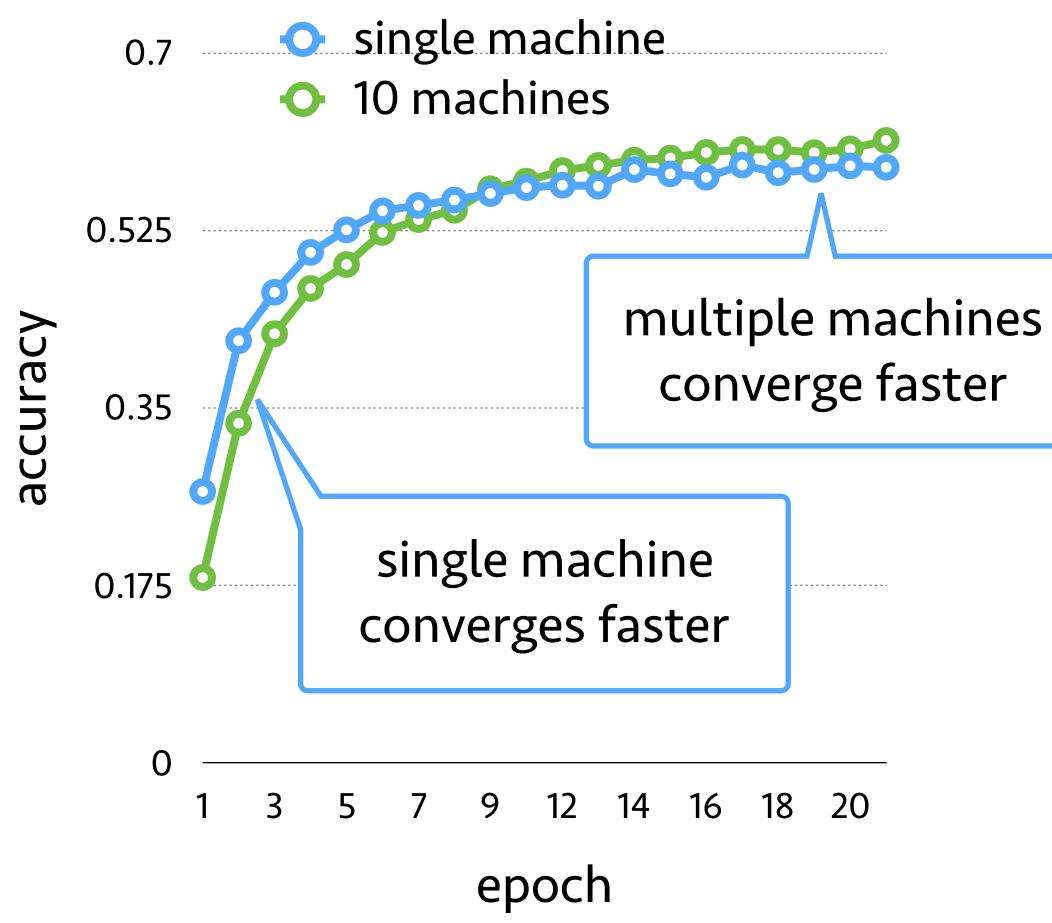
- ImageNet with 1.2m images and 1,000 classes
- AWS EC2 GPU instance, 4 GPUs per machine
- Google Inception Network

validation accuracy versus epoch

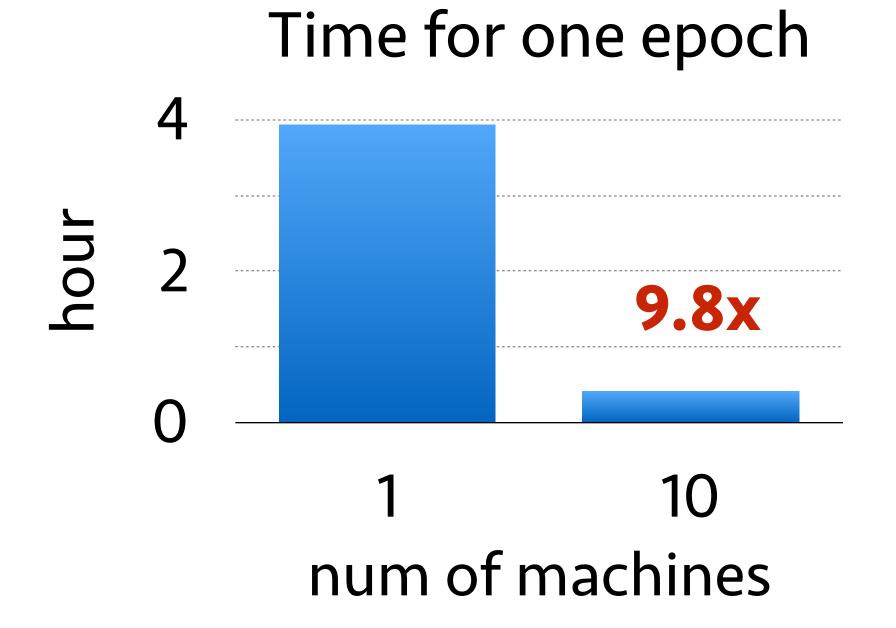


- ImageNet with 1.2m images and 1,000 classes
- AWS EC2 GPU instance, 4 GPUs per machine
- Google Inception Network

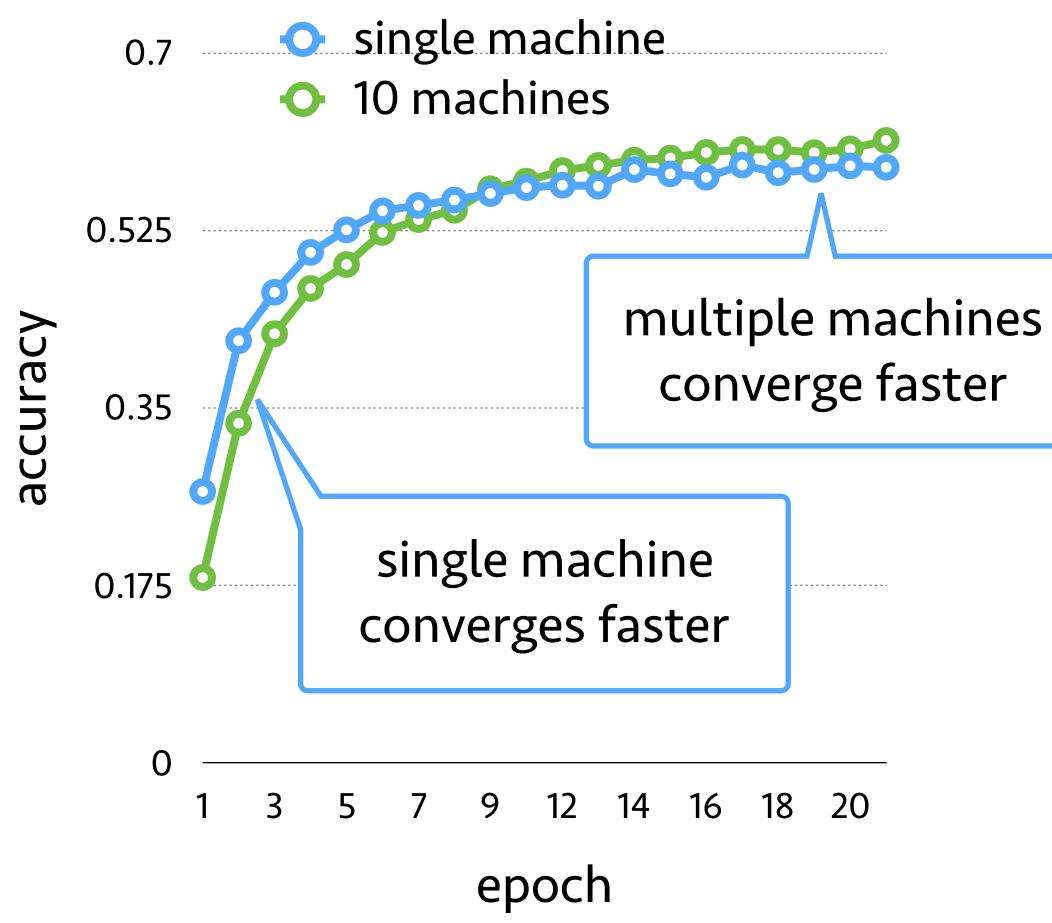
validation accuracy versus epoch

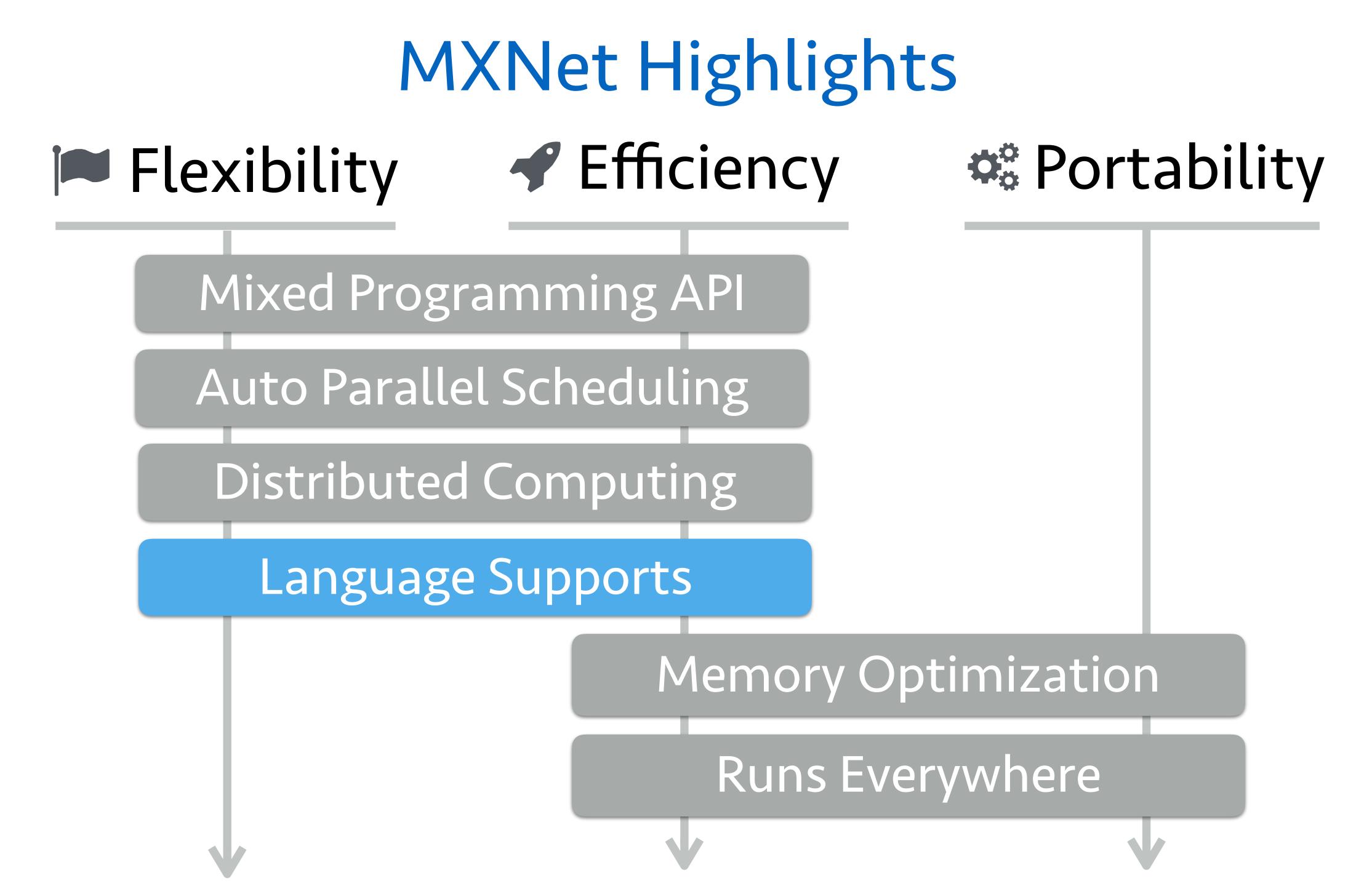


- ImageNet with 1.2m images and 1,000 classes
- AWS EC2 GPU instance, 4 GPUs per machine
- Google Inception Network



validation accuracy versus epoch





Multiple Languages

single implementation of backend system and common operators

performance guarantee regardless which frontend language is used

NumPy is the de facto scientific computing package in Python Great flexibility (500+ operators) but CPU-only

Native Numpy Integration

>>> import numpy as np L>>> import minpy as np

NumPy is the de facto scientific computing package in Python Great flexibility (500+ operators) but CPU-only

- Native Numpy Integration
 - >>> import numpy as np \implies >>> import minpy as np

- Transparent CPU and GPU co-execution
 - >>> x = np.zeros((10, 20)) # call GPU function

NumPy is the de facto scientific computing package in Python Great flexibility (500+ operators) but CPU-only

>>> y = np.sort(x) # call CPU function; copy GPU->CPU >>> z = np.log(y) # call GPU function; copy CPU->GPU

Small operators (Numpy) + Big operators (MXNet)

```
>>> symbol = mx.symbol.FullyConnected(...)
>>> bigop = minpy.core.function(sigmoid, ...)
>>> def training_loss(w, x, y):
... pred = bigop(input=x, fc_weight=w)
... prob = pred * y + (1 - pred) * (1 - y)
... return -np.sum(np.log(prob))
```

Small operators (Numpy) + Big operators (MXNet)

>>> symbol = mx.symbol.FullyConnected(...) >>> def training_loss(w, x, y): • • • • • •

Imperative style auto-differentiation

>>> dw = grad fn(w, x, y)

```
>>> bigop = minpy.core.function(sigmoid, ...)
       pred = bigop(input=x, fc_weight=w)
... prob = pred * y + (1 - pred) * (1 - y)
       return -np.sum(np.log(prob))
```

```
>>> grad_func = minpy.core.grad_and_loss(train_loss)
```

Bring Torch to MXNet Torch is a popular Lua framework for both scientific computing and deep learning

Bring Torch to MXNet Torch is a popular Lua framework for both scientific computing and deep learning

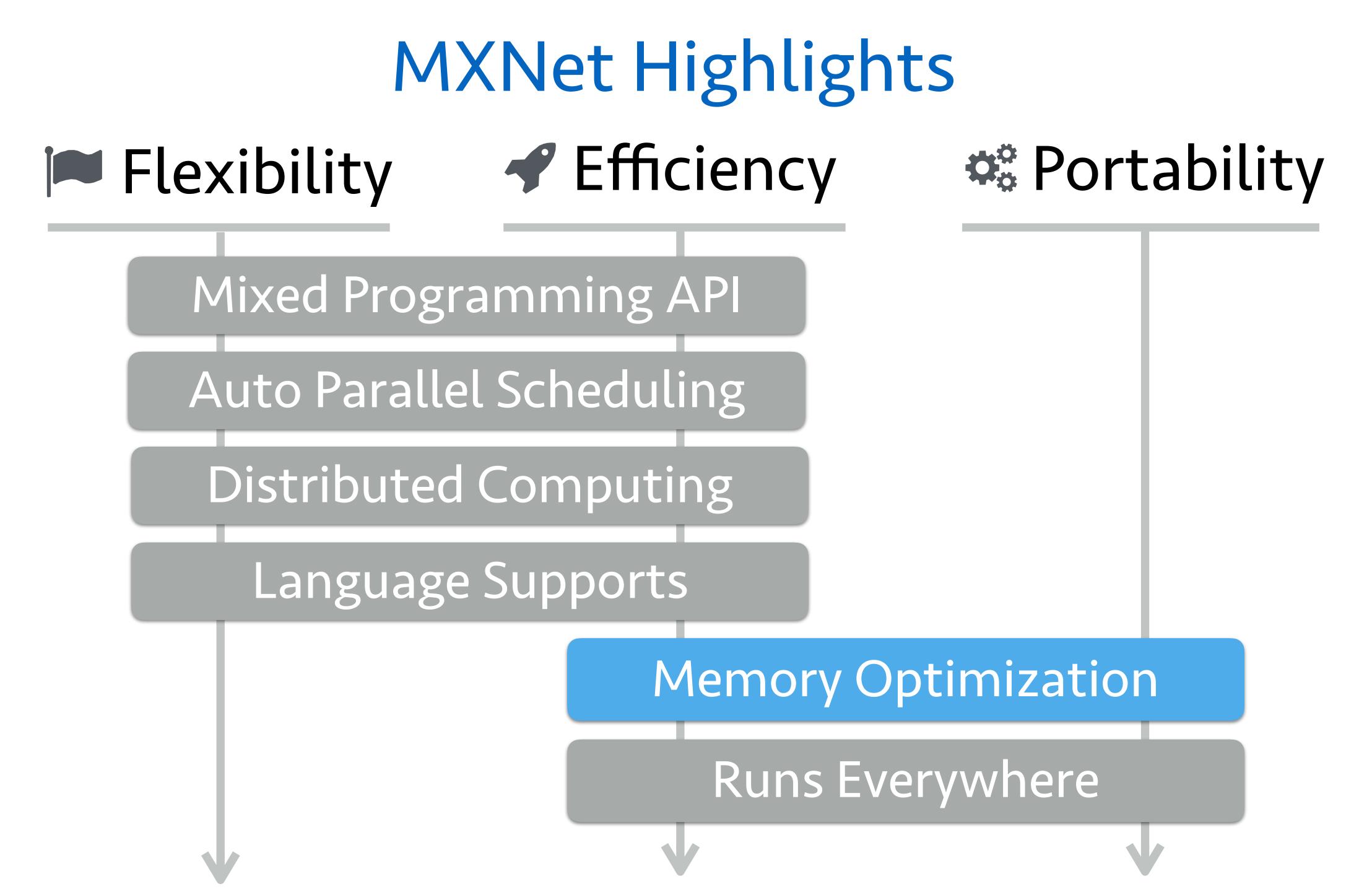
Tensor Computation

- >>> import mxnet as mx
- >>> x = mx.th.randn(2, 2, ctx=mx.gpu(0))
- >>> y = mx.th.abs(x)
- >>> print y.asnumpy()

Modules (Layers)

- >>> import mxnet as mx
- >>> data = mx.symbol.Variable('data')
- >>> fc = mx.symbol.TorchModule(data 0=data,
- >>> mlp = mx.symbol.TorchModule(data 0=fc,
- • •

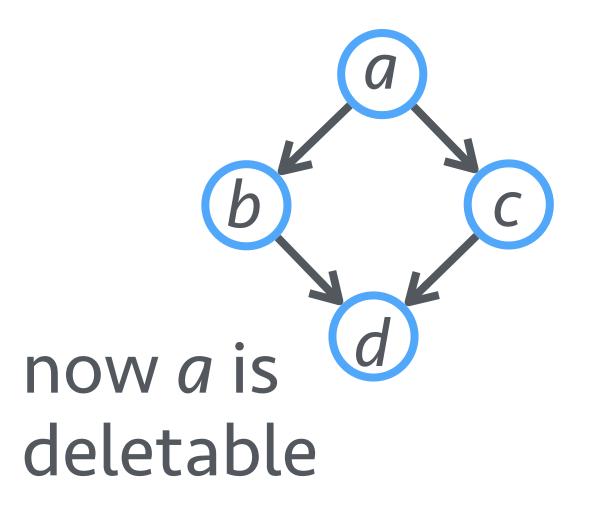
```
lua_string='nn.Linear(784, 128)',...
lua_string='nn.LogSoftMax()',...
```



Memory Optimization

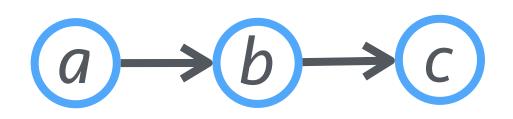
Traverse the computation grap with linear time complexity

aliveness analysis

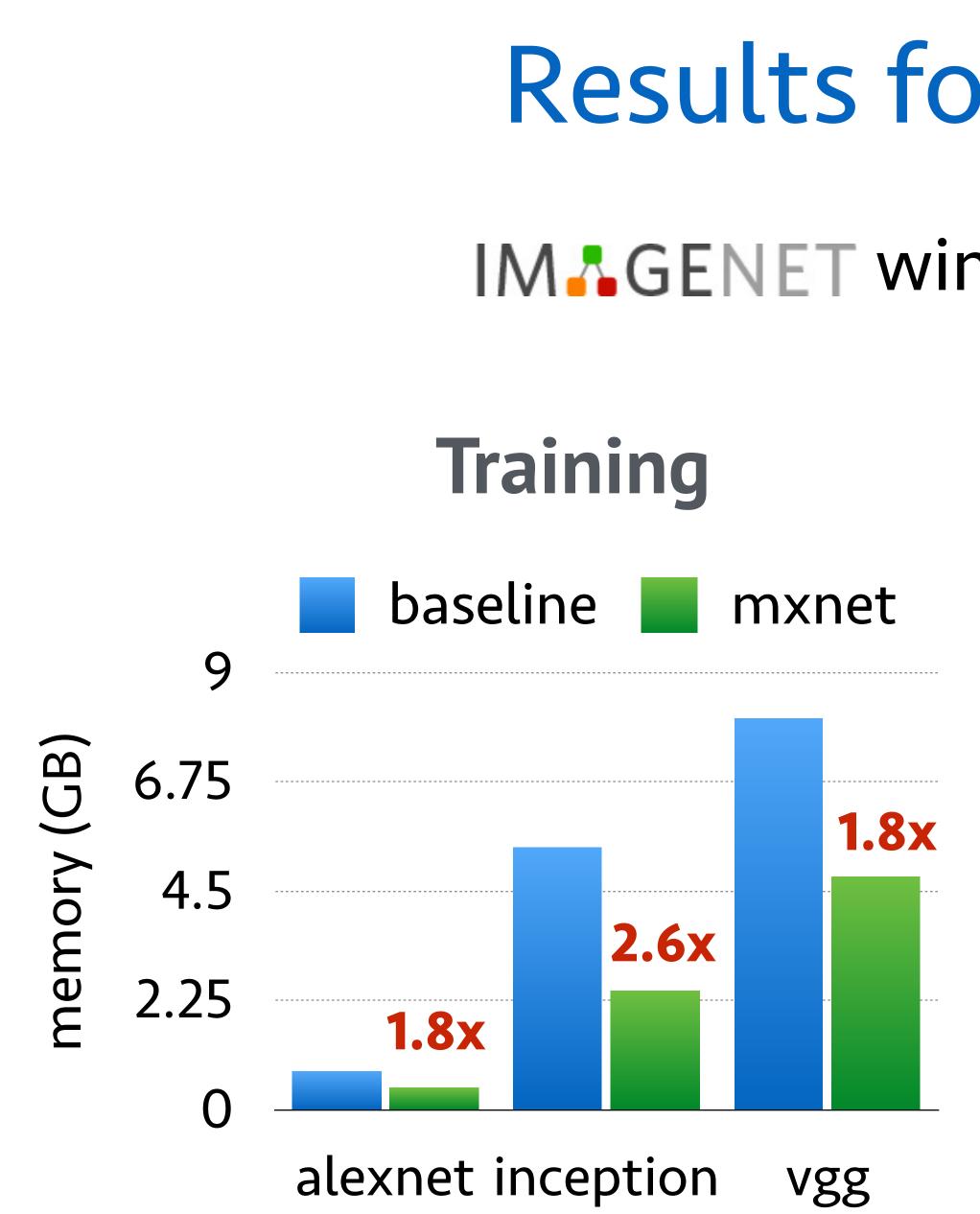


Traverse the computation graph to reduce the memory footprint

shared space between variables

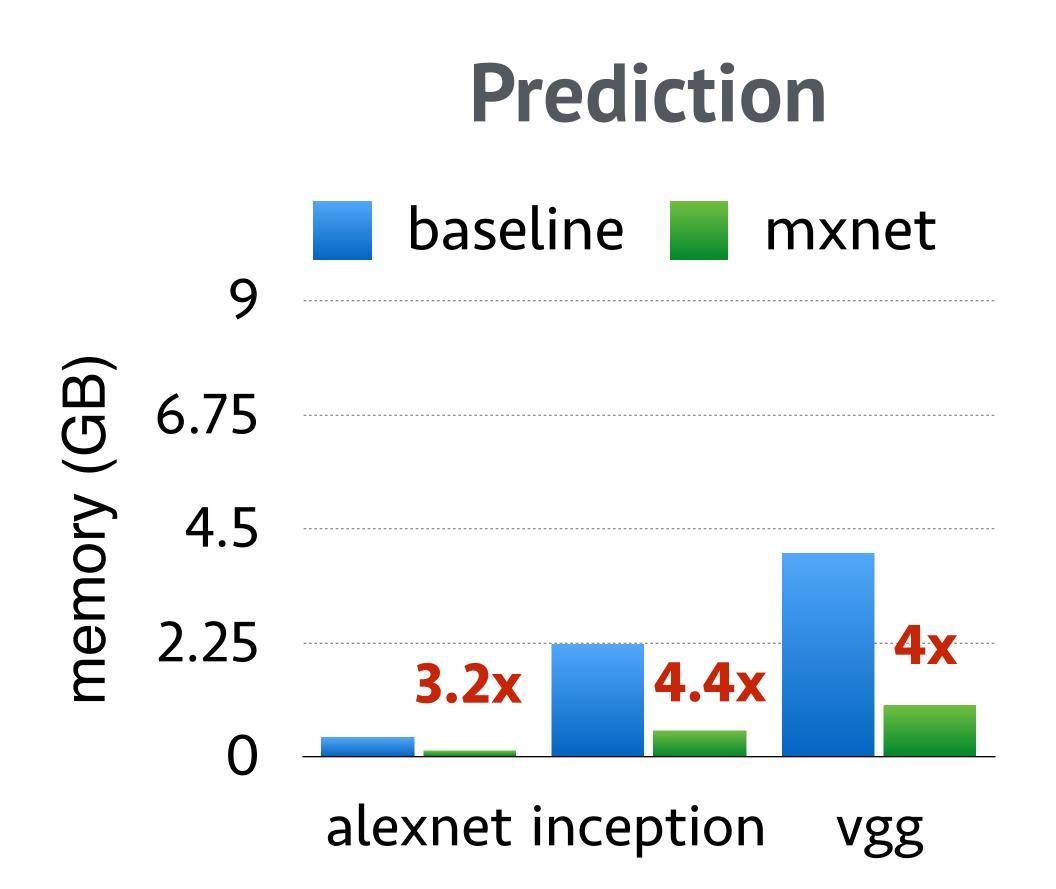


share *a* and *b*



Results for Deep CNNs

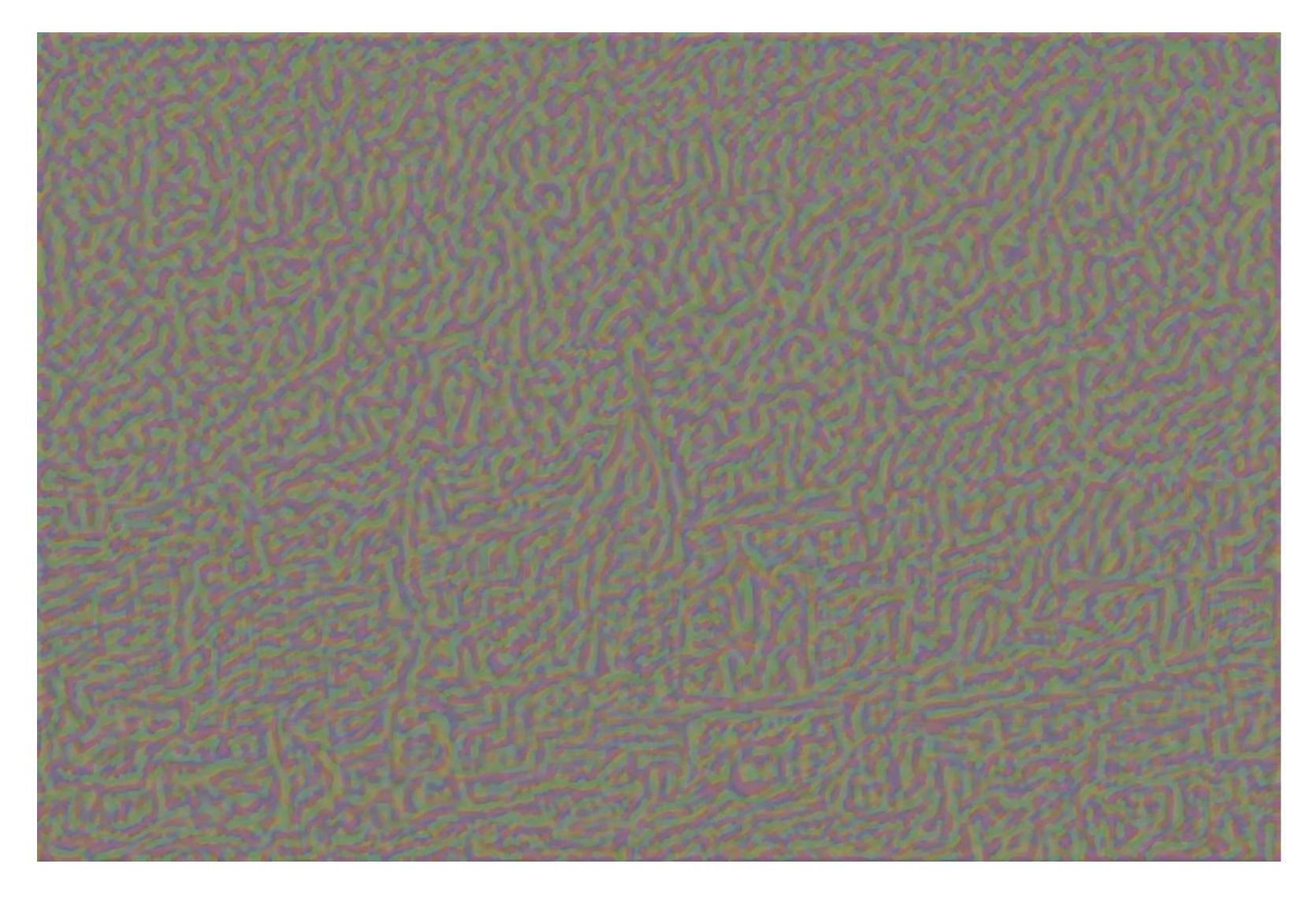
IM GENET winner neural networks

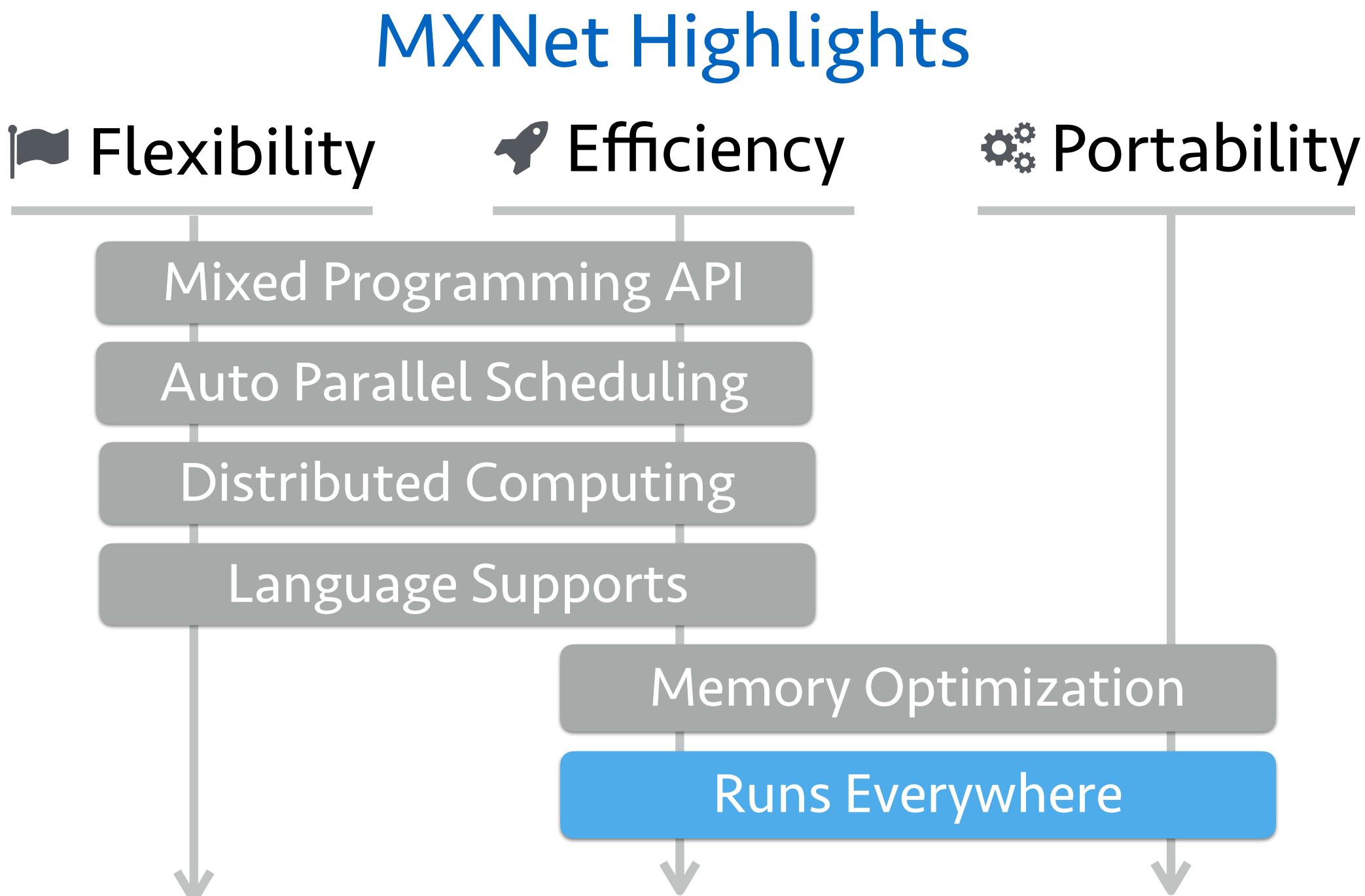


Neural Art

Neural Art

1M pixels GTX 980 TI 6G in 20x speed





Train on the Cloud

Consume data from distributed filesystems

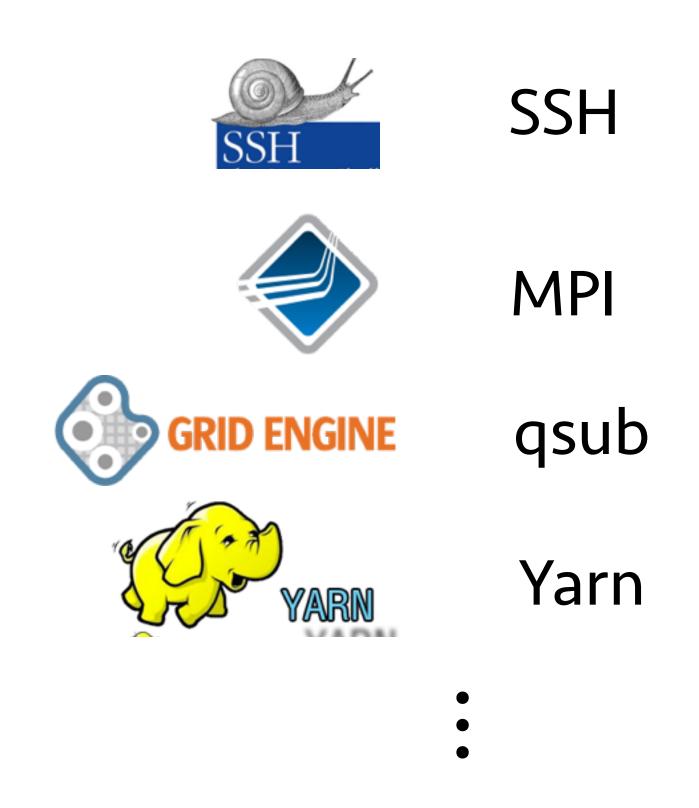
multithreaded read/write to hide network latency

Train on the Cloud

Consume data from distributed filesystems

multithreaded read/write to hide network latency

Launch distributed jobs



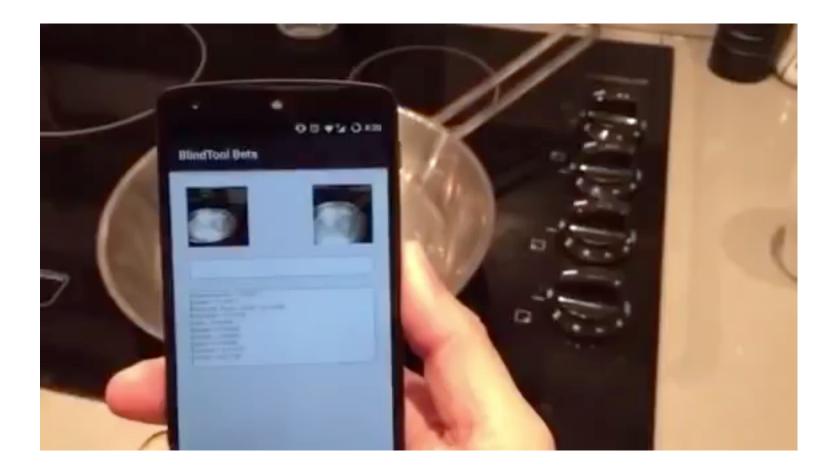
easily extend to other cluster resource management software

Amalgamation

- Fit the core library with all dependencies into a single C++ source file

Amalgamation

- Fit the core library with all dependencies into a single C++ source file
- + Easy to compile on 🞁 觉 ...



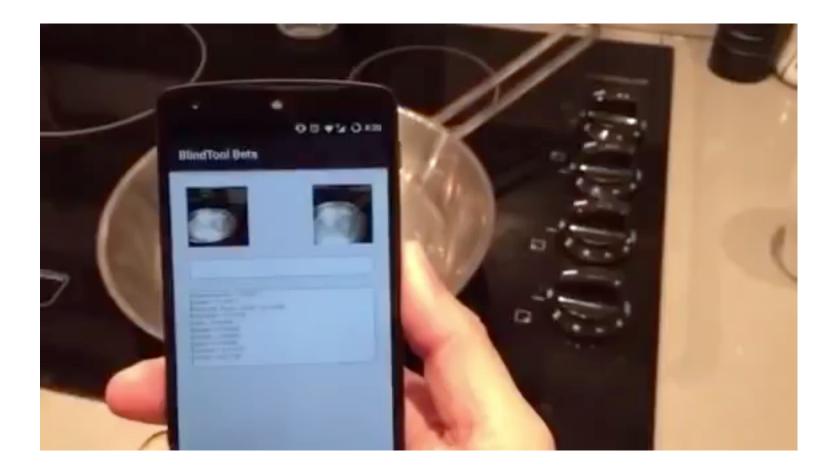
BlindTool by Joseph Paul Cohen, demo on Nexus 4

Deploy Everywhere

Beyond

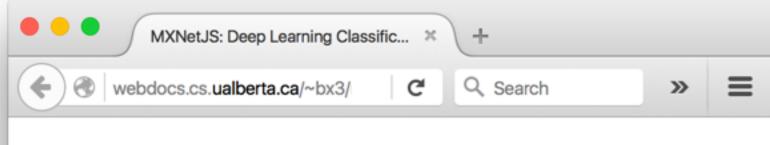
Amalgamation

- Fit the core library with all dependencies into a single C++ source file
- + Easy to compile on 🛑 📹 ...



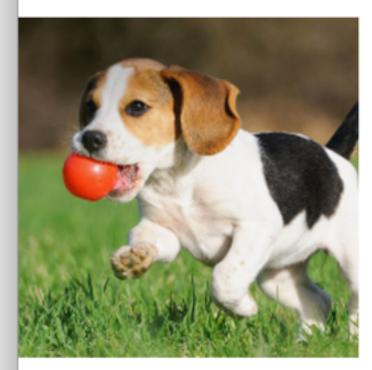
BlindTool by Joseph Paul Cohen, demo on Nexus 4

Runs in browser with Javascript



MXNetJS: Deep Learning **Classification on Browser**

http://g-ecx.images-ama Image URL Classify the Image

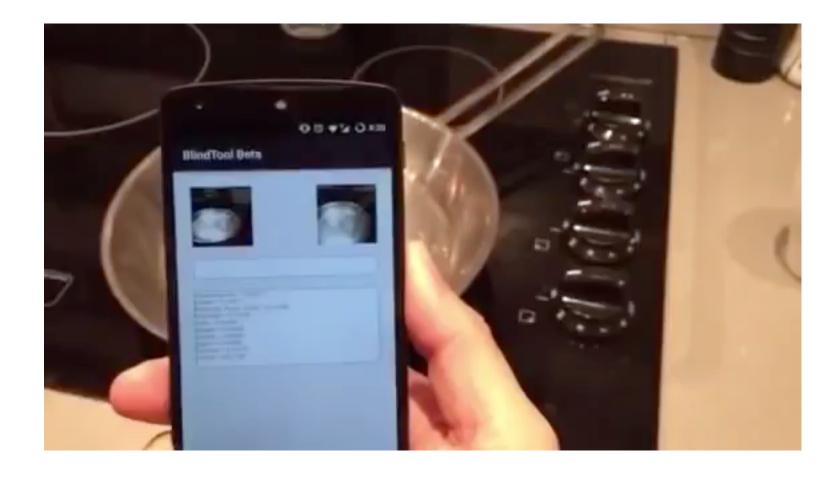


start... prediction... this can take a while finished prediction...

Top-1: n02088364 beagle, value=0.7355721592903137, time-cost=0.927secs

Deploy Everywhere Beyond \bigwedge \bigoplus Runs in browser With Javascript

- Fit the core library with all dependencies into a single C++ source file
- Easy to compile on



The first image for search "dog" at images.google.com

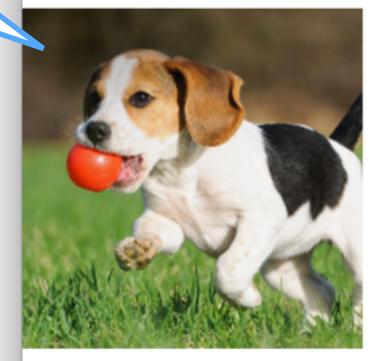
BlindTool by Joseph Paul Cohen, demo on Nexus 4

webdocs.cs.ualberta.ca/~bx3/ C ♀ Search » ■ MYNot IS: Doop I oproind

MXNetJS: Deep Learning Classification on Browser

http://g-ecx.images-ama Image URL Classify the Image

MXNetJS: Deep Learning Classific...

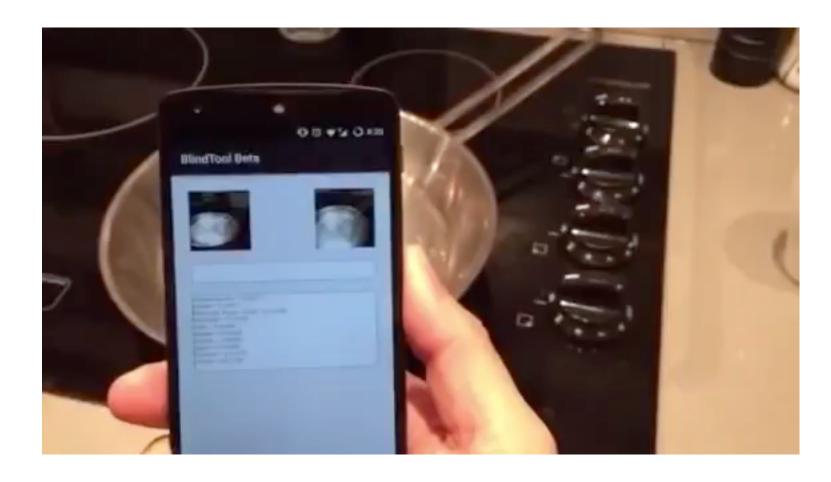


start... prediction... this can take a while finished prediction...

Top-1: n02088364 beagle, value=0.7355721592903137, time-cost=0.927secs

Deploy Everywhere Beyond \bigwedge \bigoplus Runs in browser Amalgamation with Javascript

- Fit the core library with all dependencies into a single C++ source file
- Easy to compile on



BlindTool by Joseph Paul Cohen, demo on Nexus 4

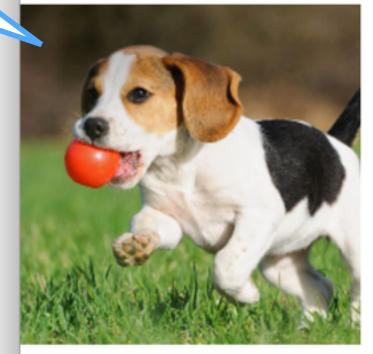
The first image for search "dog" at images.google.com

MXNetJS: Deep Learning Classific... × + webdocs.cs.ualberta.ca/~bx3/ C Q Search » =

MXNetJS: Deep Learning Classification on Browser

http://g-ecx.images-ama Image URL Classify the Image

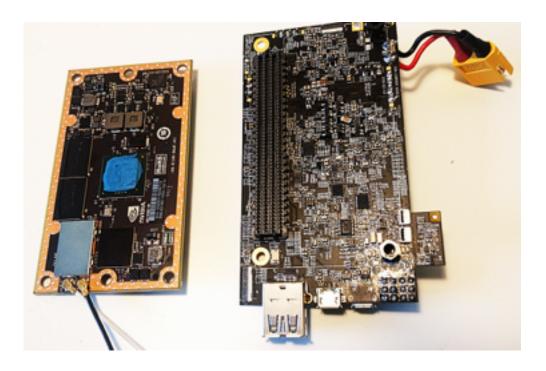
Outputs "beagle" with prob = 73% within 1 sec



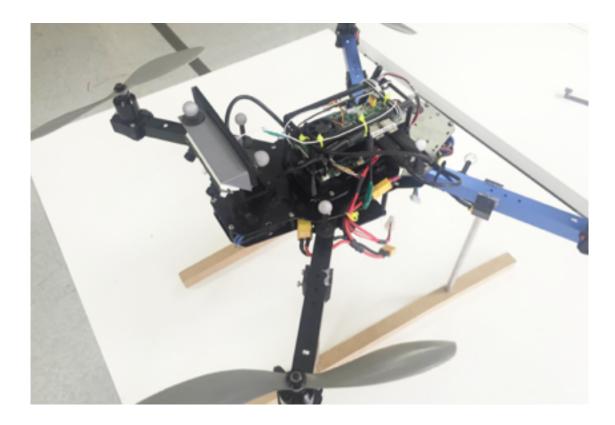
start... prediction... this can take a while finished prediction...

Top-1: n02088364 beagle, value=0.7355721592903137, time-cost=0.927secs

TX1 with customized board



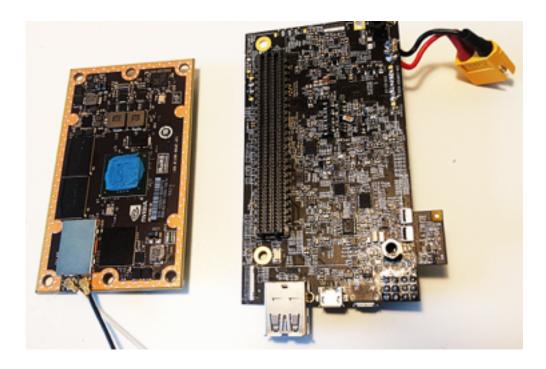
Drone



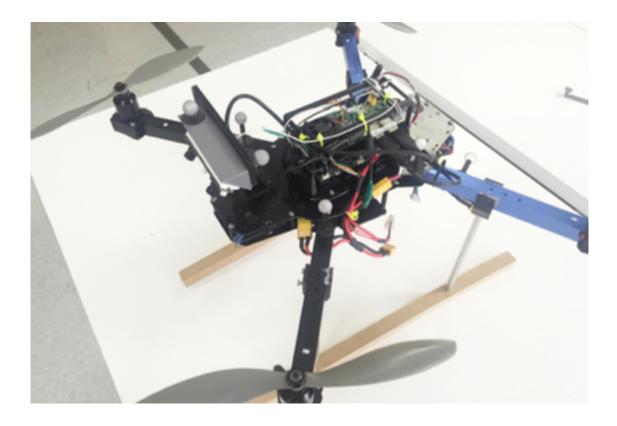
TX1 on Flying Drone

AEVENA

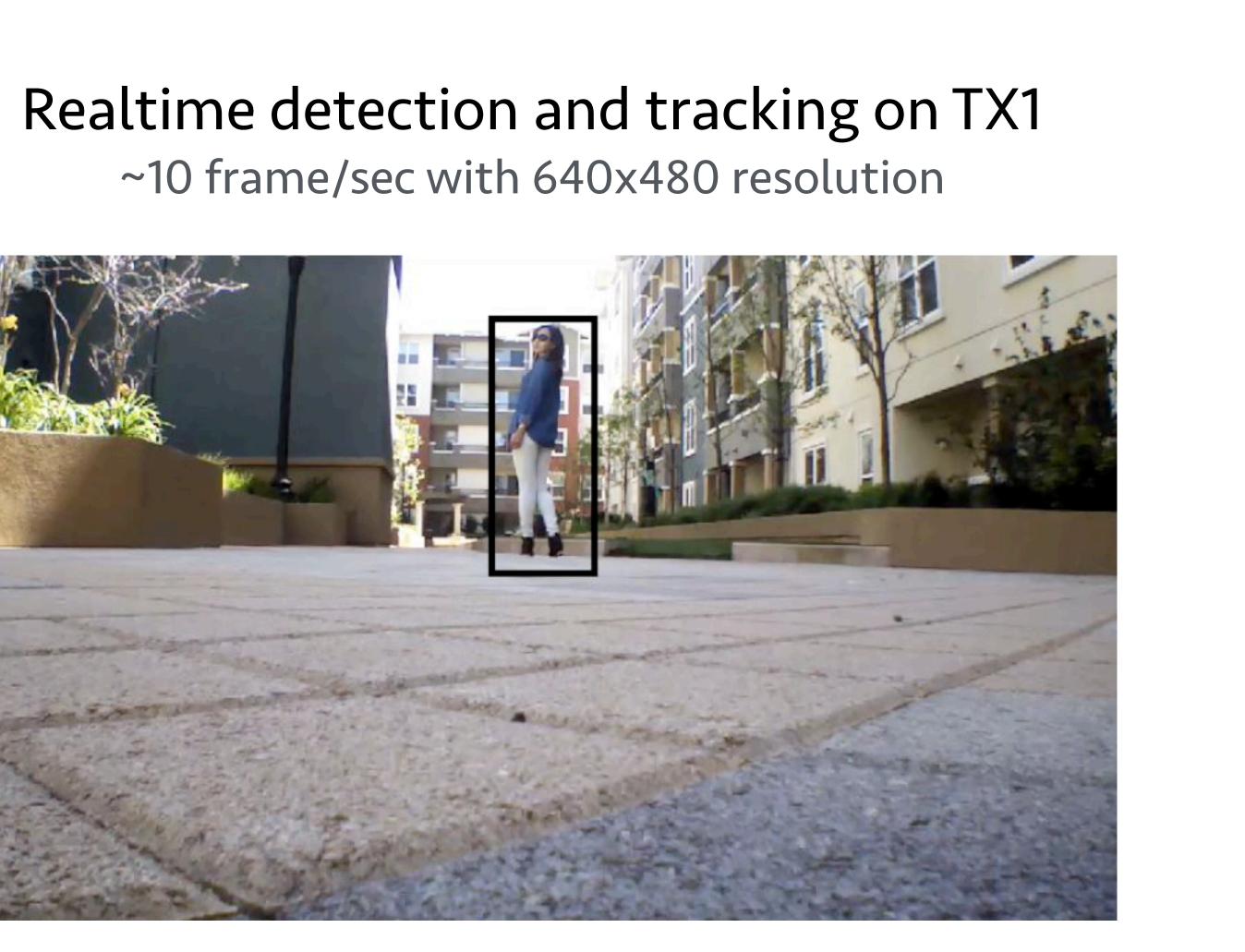
TX1 with customized board

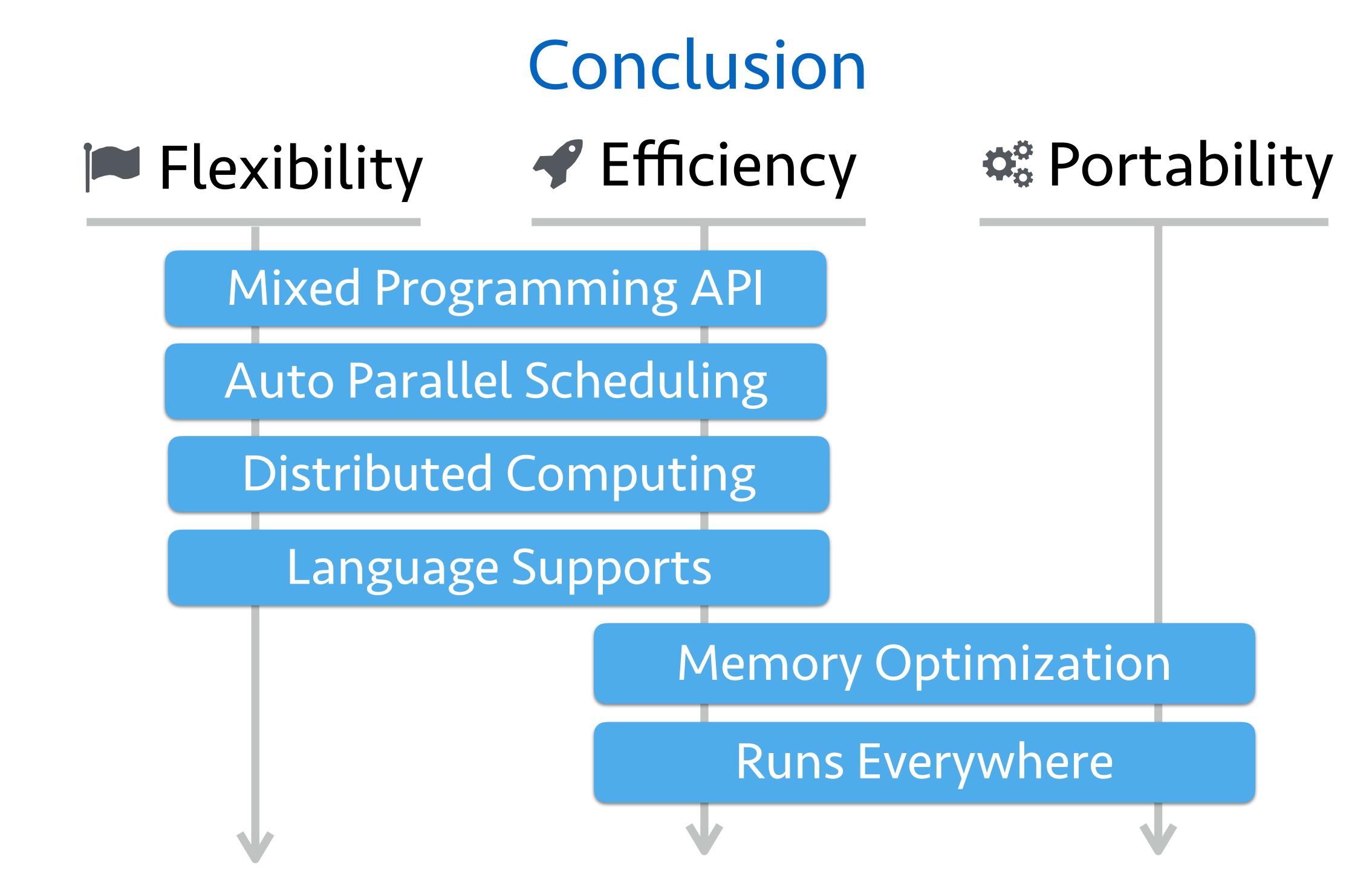


Drone



~10 frame/sec with 640x480 resolution





Acknowledgement

Major Developers

Bing Xu Dato

Eric U Wasł

Naiyan Wang TuSimple

Yuan Tang Uptake

Inc

Tong He Simon Fraser University Shanghai

Advisors

Hardware and software supports **Zheng Zhang** NYU Shanghai

MXNet is developed by over 100 collaborators

c Xie	Chiyuan Zhang	Minjie Wang
hington	MIT	NYU
Yizhi Liu	J Tianjun Xiao	Yutian Li
MediaV	Microsoft	Standford
Qian Kou diana Universi ^a		Chutao Hong Microsoft

Hu Shiwen

Carlos Guestrin Alex Smola

U Washington

CMU

