Introduction to JavaPathfinder
Part 2

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Sagar Chaki
27 November 2007

=== Software Engineering Institute | CarnegieMellon ©2007 Carnegi Mallon Uniers

Outline

Search Strategies

Partial-Order Reduction

Exercises

Some slides borrowed from JavaPathFinder tutorial at ASE conference
2006

« htip://www.visserhome.com/willem/presentations/aseQ6jpftut.ppt

—— Intro to JPF: Part 2

=== Software Engineering Institute = CarnegieMellon Sagar chaki, 27 Novo7

© 2007 Carnegie Mellon University

Search Strategies

— . Intro to JPF: Part 2
=== Software Engineering Institute | CarnegieMellon Sagar Chaki, 27 Nov 07

~— © 2007 Carnegie Mellon University

Under the Hood - Search

<Search>

searchgr\

<AbstractSearch>
vm

depth

istaner

forward()
nacktrack()

[' I
DFSearch HeuristicSearch
search() {.} queue
heuristic B <Heuristic>
search() int heuristicValue ()

generateChildren ()
expandState ()

- I ' |

e BFSHeuristic
(| :‘fb/;: \Q\D | _'}O': int heuristicValue () {..}

\
.

T mac [[[Fon |

sorted state queue

Intro to JPF: Part 2

=== Software Engineering Institute | CarnegieMellon sagr chaki,27 Novor

© 2007 Carnegie Mellon University

Extending JPF - Listeners

Preferred way of extending JPF: ‘Listener’ variant of the Observer pattern
« Keep extensions out of the core classes

Listeners can subscribe to Search and VM events

if (listener == null)
listener = nlistener;
else

if (listener != null) listener = new
listener.subjectChangedX(this); Multicaster(nlistener,
. listener);
Subject
listener % =
- - <Listener>
adc_iLlsFener (nlistener) {.} 1 s SUbjectChangedX ()
~{ notifyListenerOfX () {.} U.n subjectChanged ()
notifyListenerOfY () {.} head = h;
querySubject (); ZP tail = t;
i ConcreteListener Multicaster
ConcreteSubject subjectChangedX (s) {.} head, tail \
internalState su bJectChangedY (s) {} Multicaster (h,t) {.} .-} 4
changeX () {.} e subjectChangedX (s) {.}
changeY () {} <|n|t> 0{} . subjectChangedY (s) {.} ~
notﬁyusteneroﬂﬁo; sub.addlListener(this); i TETT:EE%EE:EE{;:SESESJ

s.querySubject()Fzza]

Intro to JPF: Part 2

=== Software Engineering Institute | CarnegieMellon sagr chaki,27 Novor

© 2007 Carnegie Mellon University

Extending JPF - SearchListener

public interface SearchListener { searchStarted
/* got the next state */ :]
void stateAdvanced (Search search);

/* state was backtracked one step */ slaleAdvanced
void stateBacktracked (Search search);

/* a previously generated state was restored
(can be on a completely different path) */
void stateRestored (Search search);

searchFinished

propertyViolated

stateBacktracked

/* JPF encountered a property violation */ —»(searchConstrainHit o
void propertyViolated (Search search); - J

/* we get this after we enter the search loop, but BEFORE the first

forward 7/

void searchStarted (Search search);

/* there was some contraint hit in the search, we back out could have
been turned into a property, but usually is an attribute of the search, not
the application */

void searchConstraintHit (Search search);

/* we're done, either with or without a preceeding error */

void searchFinished (Search search);

}

e Intro to JPF: Part 2

=== Software Engineering Institute | CarnegieMellon sagr chaki,27 Novor

— © 2007 Carnegie Mellon University

Extending JPF - VMListener

public interface VMListener {
void instructionExecuted (JVM vm); // VM has executed next instruction
void threadStarted (JVM vm); // new Thread entered run() method
void threadTerminated (JVM vm); // Thread exited run() method
void classlLoaded (JVM vm); // new class was loaded
void objectCreated (JVM vm); // new object was created
void objectReleased (JVM vm); //object was garbage collected
void gcBegin (JVM vm); // garbage collection mark phase started
void gcEnd (JVM vm); // garbage collection sweep phase terminated
void exceptionThrown (JVM vm); // exception was thrown
void nextChoice (JVM vm); // choice generator returned new value

}

Intro to JPF: Part 2

=== Software Engineering Institute | CarnegieMellon sagr chaki,27 Novor

© 2007 Carnegie Mellon University

Extending JPF - Listener Example

public class HeapTracker extends GenericProperty implements VMListener, SearchListener {
class PathStat { .. int heapSize = 0; .. } // helper to store additional state info
PathStat stat = new PathStat();
Stack pathStats = new Stack();
public boolean check (JVM vm, Object arg) { // GenericProperty
return (stat.heapSize <= maxHeapSizelLimit);
}
public void stateAdvanced (Search search) { // SearchListener
if (search.isNewState()) {..
pathStats.push(stat);
stat = (PathStat)stat.clone();
}
public void stateBacktracked (Search search) { // SearchListener
if (!'pathStats.isEmpty()) stat = (PathStat) pathStats.pop();
}
public void objectCreated (JVM vm) {.. // VMListener
ElementInfo ei = vm.getLastElementInfo();
.stat .heapSize += ei.getHeapSize();
}

public void objectReleased (JVM vm) ({ // VMListener
ElementInfo ei = vm.getLastElementInfo();
.stat.heapSize —-= ei.getHeapSize();

— Intro to JPF: Part 2

=== Software Engineering Institute | CarnegieMellon sagr chaki,27 Novor

© 2007 Carnegie Mellon University

Extending JPF - Listener Configuration

Listeners are usually configured, not hard coded

Per configuration file:

search.listener = MySearchlistener
vm.listener = MyVMListener
jpf.listener = MyCombinedListener:MySecondListener...

Per command line:
jpf ... +jpf.listener=MyCombinedListener

Hard coded:

MyListener listener= new MylListener(..);

Config config = JPF.createConfig(args);
JPF jpf = new JPF(config);

jpf. addSearchlistener (listener);

jpf. addVMListener (listener);
jpf.run();

—— Intro to JPF: Part 2

=== Software Engineering Institute = CarnegieMellon Sagar chaki, 27 Novo7

— © 2007 Carnegie Mellon University

Partial-Order Reduction

— . Intro to JPF: Part 2
=== Software Engineering Institute | CarnegieMellon Sagar Chaki, 27 Nov 07

~— © 2007 Carnegie Mellon University

Partial-Order Reduction (POR)

The number of different scheduling combinations is the prevalent factor for
the state space size of concurrent programs.

Fortunately, for most practical purposes it is not necessary to explore all
possible instruction interleavings for all threads.

The number of scheduling induced states can be significantly reduced by
grouping all instruction sequences in a thread that cannot have effects
outside this thread itself, collapsing them into a single transition.

This technique is called Partial Order Reduction (POR), and typically
results in more than 70% reduction of state spaces.

e Intro to JPF: Part 2

=== Software Engineering Institute | CarnegieMellon sagr chaki,27 Novor

— © 2007 Carnegie Mellon University

On-the-Fly POR in JPF

JPF employs an on-the-fly POR that does not rely on user instrumentation or static
analysis. JPF automatically determines at runtime which instructions have to be
treated as state transition boundaries.

If POR is enabled (configured via vm.por property), a forward request to the VM
executes all instructions in the current thread until one of the following
conditions is met:

1. the next instruction is scheduling relevant

2. the next instruction yields a "nondeterministic” result (i.e. simulates random
value data acquisition)

Detection of both conditions are delegated to the instruction object itself
(Instruction.execute(..)), passing down information about the current VM
execution state and threading context.

If the instruction is a transition breaker, it creates a ChoiceGenerator and
schedules itself for re-execution.

—— Intro to JPF: Part 2

=== Software Engineering Institute | CarnegieMellon sagr chaki,27 Novor

~— © 2007 Carnegie Mellon University

Determining Scheduling Relevance (1)

Each bytecode instruction type corresponds to a concrete
gov.nasa.jpf.Instruction subclass that determines scheduling relevance
based on the following factors:

Instruction Type

Due to the stack based nature of the JVM, only about 10% of the Java
bytecode instructions are scheduling relevant, i.e. can have effects across
thread boundaries.

The interesting instructions include direct synchronization (monitorEnter,
monitorExit, invokeX on synchronized methods), field access (putX, getX),
array element access (Xaload, Xastore), and invoke calls of certain Thread
(start(), sleep(), yield(), join()) and Object methods (wait(), notify()).

—— Intro to JPF: Part 2

=== Software Engineering Institute | CarnegieMellon sagr chaki,27 Novor

~— © 2007 Carnegie Mellon University

Determining Scheduling Relevance (2)

Object Reachability

Besides direct synchronization instructions, field access is the major type
of interaction between threads.

However, not all putX / getX instructions have to be considered, only the
ones referring to objects that are reachable by at least two threads can
cause data races.

While reachability analysis is an expensive operation, the VM already
performs a similar task during garbage collection, which is extended to
support POR.

e Intro to JPF: Part 2

=== Software Engineering Institute | CarnegieMellon sagr chaki,27 Novor

— © 2007 Carnegie Mellon University

Determining Scheduling Relevance (3)

Thread and Lock Information

Even if the instruction type and the object reachability suggest scheduling
relevance, there is no need to break the current transition in case there is
no other runnable thread.

In addition, lock acquisition and release (monitorEnter, monitorExit) do not
have to be considered as transition boundaries if there they happen
recursively - only the first and the last lock operation can lead to
rescheduling.

—— Intro to JPF: Part 2

=== Software Engineering Institute | CarnegieMellon sagr chaki,27 Novor

~— © 2007 Carnegie Mellon University

Controlling Thread Scheduling (1)

While JPF uses these information to automatically deduce scheduling
relevance, there exist three mechanisms to explicitly control transition
boundaries (i.e. potential thread interleavings)

Attributor

A configurable concrete class of this type is used by JPF during class
loading to determine object, method and field attributes of selected classes
and class sets.

The most important attributes with respect to POR are method atomicity
and scheduling relevance levels: (a) never relevant, (b) always scheduling
relevant, (c) only relevant in the context of other runnables. (d) only
relevant of top-level lock.

The default Attributor executes all java.* code atomically, which is can be
too aggressive (i.e. can cause BlockedAtomicExceptions).

— Intro to JPF: Part 2

=== Software Engineering Institute | CarnegieMellon sagr chaki,27 Novor

~— © 2007 Carnegie Mellon University

Controlling Thread Scheduling (2)

VMListener

A listener can explicitly request a reschedule by calling ThreadInfo.yield()
in response of a instruction execution notification.

Verify

The Verity class serves as an APl to communicate between the test
application and JPF, and contains beginAtomic(), endAtomic() functions to
control thread interleaving

e Intro to JPF: Part 2

=== Software Engineering Institute | CarnegieMellon sagr chaki,27 Novor

~— © 2007 Carnegie Mellon University

———= Software Engineering Institute | CarnegieMellon

