
© 2007 Carnegie Mellon University

Introduction to JavaPathfinder
Part 2

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA  15213

Sagar Chaki

27 November 2007



2

Intro to JPF: Part 2
Sagar Chaki, 27 Nov 07

© 2007 Carnegie Mellon University

Outline

Search Strategies

Partial-Order Reduction

Exercises

Some slides borrowed from JavaPathFinder tutorial at ASE conference 
2006

• http://www.visserhome.com/willem/presentations/ase06jpftut.ppt



3

Intro to JPF: Part 2
Sagar Chaki, 27 Nov 07

© 2007 Carnegie Mellon University

Search Strategies



4

Intro to JPF: Part 2
Sagar Chaki, 27 Nov 07

© 2007 Carnegie Mellon University

Under the Hood - Search



5

Intro to JPF: Part 2
Sagar Chaki, 27 Nov 07

© 2007 Carnegie Mellon University

Extending JPF - Listeners

Preferred way of extending JPF: ‘Listener’ variant of the Observer pattern

• Keep extensions out of the core classes

Listeners can subscribe to Search and VM events



6

Intro to JPF: Part 2
Sagar Chaki, 27 Nov 07

© 2007 Carnegie Mellon University

Extending JPF - SearchListener

public interface SearchListener {

/* got the next state */

void stateAdvanced (Search search);

/* state was backtracked one step */

void stateBacktracked (Search search);

/* a previously generated state was restored

(can be on a completely different path) */

void stateRestored (Search search);

/* JPF encountered a property violation */

void propertyViolated (Search search);

/* we get this after we enter the search loop, but BEFORE the first

forward */

void searchStarted (Search search);

/* there was some contraint hit in the search, we back out could have

been turned into a property, but usually is an attribute of the search, not

the application */

void searchConstraintHit (Search search);

/* we're done, either with or without a preceeding error */

void searchFinished (Search search);
}



7

Intro to JPF: Part 2
Sagar Chaki, 27 Nov 07

© 2007 Carnegie Mellon University

Extending JPF - VMListener

public interface VMListener {

void instructionExecuted (JVM vm); // VM has executed next instruction

void threadStarted (JVM vm);       // new Thread entered run() method

void threadTerminated (JVM vm);    // Thread exited run() method

void classLoaded (JVM vm);         // new class was loaded

void objectCreated (JVM vm);       // new object was created

void objectReleased (JVM vm);      // object was garbage collected

void gcBegin (JVM vm);             // garbage collection mark phase started

void gcEnd (JVM vm);           // garbage collection sweep phase terminated

void exceptionThrown (JVM vm);     // exception was thrown

void nextChoice (JVM vm);          // choice generator returned new value
}



8

Intro to JPF: Part 2
Sagar Chaki, 27 Nov 07

© 2007 Carnegie Mellon University

Extending JPF - Listener Example

public class HeapTracker extends GenericProperty implements VMListener, SearchListener {

class PathStat { .. int heapSize = 0; .. }    // helper to store additional state info

PathStat stat = new PathStat();

Stack pathStats = new Stack();

public boolean check (JVM vm, Object arg) {       // GenericProperty

return (stat.heapSize <= maxHeapSizeLimit);

}

public void stateAdvanced (Search search) {      // SearchListener

if (search.isNewState()) {..

pathStats.push(stat);

stat = (PathStat)stat.clone(); ..

}

public void stateBacktracked (Search search) {   // SearchListener

.. if (!pathStats.isEmpty())  stat = (PathStat) pathStats.pop();

}

public void objectCreated (JVM vm) {..            // VMListener

ElementInfo ei = vm.getLastElementInfo();

..stat.heapSize += ei.getHeapSize(); ..

}

public void objectReleased (JVM vm) {             // VMListener

ElementInfo ei = vm.getLastElementInfo();

..stat.heapSize -= ei.getHeapSize(); ..

}

}



9

Intro to JPF: Part 2
Sagar Chaki, 27 Nov 07

© 2007 Carnegie Mellon University

Extending JPF - Listener Configuration

Listeners are usually configured, not hard coded

Per configuration file:
search.listener = MySearchListener

vm.listener = MyVMListener

jpf.listener = MyCombinedListener:MySecondListener...

Per command line:
jpf ... +jpf.listener=MyCombinedListener ...

Hard coded:
MyListener listener= new MyListener(..);

..

Config config = JPF.createConfig( args);

JPF jpf = new JPF( config);

jpf. addSearchListener (listener);

jpf. addVMListener ( listener);

jpf.run();

..



10

Intro to JPF: Part 2
Sagar Chaki, 27 Nov 07

© 2007 Carnegie Mellon University

Partial-Order Reduction



11

Intro to JPF: Part 2
Sagar Chaki, 27 Nov 07

© 2007 Carnegie Mellon University

Partial-Order Reduction (POR)

The number of different scheduling combinations is the prevalent factor for 
the state space size of concurrent programs.

Fortunately, for most practical purposes it is not necessary to explore all 
possible instruction interleavings for all threads.

The number of scheduling induced states can be significantly reduced by 
grouping all instruction sequences in a thread that cannot have effects 
outside this thread itself, collapsing them into a single transition.

This technique is called Partial Order Reduction (POR), and typically 
results in more than 70% reduction of state spaces.



12

Intro to JPF: Part 2
Sagar Chaki, 27 Nov 07

© 2007 Carnegie Mellon University

On-the-Fly POR in JPF

JPF employs an on-the-fly POR that does not rely on user instrumentation or static 
analysis. JPF automatically determines at runtime which instructions have to be 
treated as state transition boundaries.

If POR is enabled (configured via vm.por property), a forward request to the VM 
executes all instructions in the current thread until one of the following 
conditions is met:

1. the next instruction is scheduling relevant 

2. the next instruction yields a "nondeterministic" result (i.e. simulates random 
value data acquisition) 

Detection of both conditions are delegated to the instruction object itself 
(Instruction.execute(..)), passing down information about the current VM 
execution state and threading context.

If the instruction is a transition breaker, it creates a ChoiceGenerator and 
schedules itself for re-execution.



13

Intro to JPF: Part 2
Sagar Chaki, 27 Nov 07

© 2007 Carnegie Mellon University

Determining Scheduling Relevance (1)

Each bytecode instruction type corresponds to a concrete 
gov.nasa.jpf.Instruction subclass that determines scheduling relevance 
based on the following factors:

Instruction Type

Due to the stack based nature of the JVM, only about 10% of the Java 
bytecode instructions are scheduling relevant, i.e. can have effects across 
thread boundaries. 

The interesting instructions include direct synchronization (monitorEnter, 
monitorExit, invokeX on synchronized methods), field access (putX, getX), 
array element access (Xaload, Xastore), and invoke calls of certain Thread 
(start(), sleep(), yield(), join()) and Object methods (wait(), notify()).



14

Intro to JPF: Part 2
Sagar Chaki, 27 Nov 07

© 2007 Carnegie Mellon University

Determining Scheduling Relevance (2)

Object Reachability

Besides direct synchronization instructions, field access is the major type 
of interaction between threads.

However, not all putX / getX instructions have to be considered, only the 
ones referring to objects that are reachable by at least two threads can 
cause data races.

While reachability analysis is an expensive operation, the VM already 
performs a similar task during garbage collection, which is extended to 
support POR.



15

Intro to JPF: Part 2
Sagar Chaki, 27 Nov 07

© 2007 Carnegie Mellon University

Determining Scheduling Relevance (3)

Thread and Lock Information

Even if the instruction type and the object reachability suggest scheduling 
relevance, there is no need to break the current transition in case there is 
no other runnable thread. 

In addition, lock acquisition and release (monitorEnter, monitorExit) do not 
have to be considered as transition boundaries if there they happen 
recursively - only the first and the last lock operation can lead to 
rescheduling.



16

Intro to JPF: Part 2
Sagar Chaki, 27 Nov 07

© 2007 Carnegie Mellon University

Controlling Thread Scheduling (1)

While JPF uses these information to automatically deduce scheduling 
relevance, there exist three mechanisms to explicitly control transition 
boundaries (i.e. potential thread interleavings)

Attributor

A configurable concrete class of this type is used by JPF during class 
loading to determine object, method and field attributes of selected classes 
and class sets.

The most important attributes with respect to POR are method atomicity 
and scheduling relevance levels: (a) never relevant, (b) always scheduling 
relevant, (c) only relevant in the context of other runnables. (d) only 
relevant of top-level lock.

The default Attributor executes all java.* code atomically, which is can be 
too aggressive (i.e. can cause BlockedAtomicExceptions).



17

Intro to JPF: Part 2
Sagar Chaki, 27 Nov 07

© 2007 Carnegie Mellon University

Controlling Thread Scheduling (2)

VMListener

A listener can explicitly request a reschedule by calling ThreadInfo.yield() 
in response of a instruction execution notification.

Verify

The Verify class serves as an API to communicate between the test 
application and JPF, and contains beginAtomic(), endAtomic() functions to 
control thread interleaving




