
JavaPathFinder Exercises

27
th

 Nov 2007

Preamble

In each exercise, you will be required to write Java programs based on some starter files, and run them

through JPF. You will have to report your final Java files, and the time and memory required by JPF to

verify these files. You must report your time and memory measurements in the following tabular format:

Machine Spec CPU = XYZ GHz PQR Cores Memory = XYZ MB

Key Time (seconds) Memory (MB)

N1 T1 M1

N2 T2 M2

N3 T3 M3

… … …

The Key entry will be specified in each exercise. You must increase the value of Key till your experiment

times out at 900 seconds (you must indicate this by a “*” in the Time) or your machine starts thrashing due

to lack of memory (in which case you must put a “*” under Memory).

Exercise 1: Dining Philosophers

In the first lecture we saw a version of the Dining Philosophers (DP) problem that had a deadlock. There

are a number of ways to avoid deadlock with DP. In this exercise, we will model and verify two such

approaches. The generic command line to run any of the following DP programs through JPF is:

jpf <DP class name> <number of philosophers>

Exercise 1.1. Dining Philosophers with Deadlock

The starter file DP.java contains a version of DP with deadlock. Run this program through JPF and make

sure that JPF does indeed find the deadlock. Tabulate your results as shown above using the number of

philosophers as Key.

Exercise 1.2. Using one Left-Handed Philosopher

We will remove the deadlock by forcing one of the philosophers to pick up her forks in a different order

than the remaining philosophers. The file DPDifferentOrder.java has the basic framework to do this. Right

now it is exactly the same as DP.java. You must modify it appropriately to achieve the desired result. You

must not add any more methods, fields or classes, but simply modify existing methods. Report your Java

file and experimental results using the number of philosophers as Key.

Exercise 1.3. Using a Butler

We will remove deadlock by using a butler that allows at most (K – 1) philosophers from being at the table,

where K is the total number of philosophers. The starter file DPButler.java contains a basic infrastructure

for using a butler. However it has an error and will deadlock. Fix the error and run JPF to ensure that

deadlock is indeed no longer possible. You should do this without adding a new classes, fields or methods.

Report your Java file and experimental results using the number of philosophers as Key.

Exercise 2: Santa Claus

A simple version of the Santa Claus problem is defined as follows: Santa has M reindeer and N elves
1
.

Santa repeatedly sleeps until wakened by either: (a) one of his M reindeer, back from its holidays, or (b) by

one of his N elves. If awakened by a reindeer, he harnesses it to his sleigh, delivers toys with it and finally

unharnesses it (allowing it to go off on holiday). If awakened by an elf, he shows him into his study,

consults with him on toy R&D and finally shows him out (allowing him to go back to work).

The file Santa.java contains a partial implementation of the Santa Claus problem. Run the program through

JPF using the following command:

jpf +vm.por.sync_detection=false Santa <# of reindeer> <# of elves>

Our main goal is to verify the following safety property: (PROP) whenever Santa is woken up, there is

exactly one reindeer or one elf waiting for him. We will do this in three stages.

Exercise 2.1. Using Assertions

The program supplied to you already contains the right variables to check for PROP. However, these

variables are not being set properly, nor is the appropriate condition over these variables being asserted.

Your task is to: (a) identify the right variables (Hint: they are in the SantaClaus class), (b) set these

variables properly, (c) add an appropriate assertion over these variables that checks for PROP, and (d)

verify that these assertions are never violated using JPF. Report your Java file (rename it to Santa1.java)

and your results in a tabular format using (M,N) as your key. Start with M = 2 and N = 2, and slowly

increase their values till your computer times our or runs out of memory. Increase the value of M and N

alternately, starting with M. In other words, your key values should be (2,2), (3,2), (3,3), (4,3), (4,4), (5,4),

(5,5) and so on.

Exercise 2.2. Using Property

Verify PROP by implementing a new class that extends GenericProperty as described in the first lecture.

Specifically, you must do the following: (a) identify the right variables, (b) set these variables properly, (c)

implement a class called SantaProperty that extends GenericProperty and checks for PROP, and (d) verify

that PROP is never violated using JPF, i.e., verify that the check() method of SantaProperty never returns

false. Report your Java file (rename it to Santa2.java) and your results as in Exercise 2.1.

Exercise 2.3. Using Listeners

Verify PROP by implementing a new class that extends PropertyListenerAdapter as described in the first

lecture. Specifically, you must do the following: (a) implement a class called SantaListener that extends

PropertyListenerAdapter and checks for PROP, and (c) verify that PROP is never violated using JPF, i.e.,

verify that the check() method of PropertyListenerAdapter never returns false. Report your Java file

(rename it to Santa3.java) and results as in Exercise 2.1.

Exercise 3: Standard Santa Claus (Extra Credit)

The Santa Claus problem is defined as follows: Santa has M reindeer and N elves. Santa repeatedly sleeps

until wakened by either: (a) all M of his reindeer, back from their holidays, or (b) by three of his N elves. If

awakened by the reindeer, he harnesses them to his sleigh, delivers toys with them and finally unharnesses

them (allowing them to go off on holiday). If awakened by three elves, he shows them into his study,

consults with them on toy R&D and finally shows them out (allowing them to go back to work). Your job

is to implement the Santa Claus problem in Java using separate threads for Santa, the reindeer and the

1
 This is a slightly modified version of the standard Santa Claus problem.

eleves. Your implementation should satisfy the following safety property: (PROP) whenever Santa is

woken up, he works with either exactly M reindeer or three elves. Verify this property on your program

using the three techniques described in Exercise 2.

