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Graph:
Implicitly defined as {S, A, C}, 

where S – set of states, A – set of actions, C – costs of all (s,a) pairs.   
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Graph:
Implicitly defined as {S, A, C}, 

where S – set of states, A – set of actions, C – costs of all (s,a) pairs.   
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Each edge is defined as:
(s, succ(s,a)) for every s in S and every action a in A
edge cost is given by c(s,a)

Each edge is defined as:
(s, succ(s,a)) for every s in S and every action a in A
edge cost is given by c(s,a)



• Consider a path planning example

• Assume imperfect action execution and full knowledge of the state (i.e., 
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MDP:

Let’s assume 

50% chance of ending up on the left and 

50% ending up on the right
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MDP:
Defined as {S, A, T, C}, where S – set of states, A – set of actions, 

T(s,a,s’) - Prob(s’ |s, a), C – costs of all (s,a) pairs
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What is an optimal policy here?
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MDP (rewards version):
Defined as {S, A, T, R}, where S – set of states, A – set of actions, 

T(s,a,s’) - Prob(s’ |s, a), R – rewards for all (s,a) pairs
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• Consider a path planning example

• Assume imperfect action execution and partial observability of the 

state (i.e., imperfect localization)
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POMDP:

Let’s assume 

UAV initially knows it is at S0

During execution: it can only sense 

adjacent obstacles and being at goal

After taking this action, UAV doesn’t 

know whether it is at state S1 or S2
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Let’s assume 

UAV initially knows it is at S0

During execution: it can only sense 

adjacent obstacles and being at goal

After taking this action, UAV doesn’t 

know whether it is at state S1 or S2

What is an optimal policy here?
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POMDP: {S, A, T, R, Ω, O}, where S, A, T(s,a,s’), R(s,a) – all as in 

MDP, Ω – set of all possible observation vectors o, O(s’,a,o) – Prob(o|s’,a) 

probability of seeing o after executing action a and ending up at state s’

Let’s assume 

UAV initially knows it is at S0

During execution: it can only sense 

adjacent obstacles and being at goal

After taking this action, UAV doesn’t 

know whether it is at state S1 or S2
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POMDP: {S, A, T, R, Ω, O}, where S, A, T(s,a,s’), R(s,a) – all as in 

MDP, Ω – set of all possible observation vectors o, O(s’,a,o) – Prob(o|s’,a) 
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Causal relationship

Example of POMDP problems 

where the robot knows its own pose perfectly 

(perfect localization)? 



• Belief state b: Probability distribution over the states the robot believes it 

is currently in

Belief State Space
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POMDP: {S, A, T, R, Ω, O}, where T(s,a,s’) = P(s’|s,a), R(s,a), O(s’,a,o) = Prob(o|s’,a)
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Causal relationship

Initially, the robot knows it is in s0.
Thus, initial b = [1,0,0,0,0,0,0,0]T. That is, P(s0) = 1
Initially, the robot knows it is in s0.
Thus, initial b = [1,0,0,0,0,0,0,0]T. That is, P(s0) = 1

b – a vector of size N (# of states in S)
ΣN bi = 1, and bi ≥ 0 for all i

b – a vector of size N (# of states in S)
ΣN bi = 1, and bi ≥ 0 for all i
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POMDP: {S, A, T, R, Ω, O}, where T(s,a,s’) = P(s’|s,a), R(s,a), O(s’,a,o) = Prob(o|s’,a)
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Causal relationship

Initially, the robot knows it is in s0.
Thus, initial b = [1,0,0,0,0,0,0,0]T. That is, P(s0) = 1
Initially, the robot knows it is in s0.
Thus, initial b = [1,0,0,0,0,0,0,0]T. That is, P(s0) = 1

b – a vector of size N (# of states in S)
ΣN bi = 1, and bi ≥ 0 for all i

b – a vector of size N (# of states in S)
ΣN bi = 1, and bi ≥ 0 for all i

What is b after robot takes the 1st action?
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Belief State Space 

(for K actions, M possible observations)

b’: P(s’|b,a,o) for every s’ in S;   

b’(s’) = P(s’|b,a,o) = 
𝑂(𝑠′,𝑎,𝑜)  𝑠{𝑇 𝑠,𝑎,𝑠′ ∗𝑏 𝑠 }

𝑃(𝑜|𝑏,𝑎)

Here how outcome beliefs 
are computed

Here how outcome beliefs 
are computed
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(for K actions, M possible observations)

b’: P(s’|b,a,o) for every s’ in S;   

b’(s’) = P(s’|b,a,o) = 
𝑂(𝑠′,𝑎,𝑜)  𝑠{𝑇 𝑠,𝑎,𝑠′ ∗𝑏 𝑠 }

𝑃(𝑜|𝑏,𝑎)

Here how outcome beliefs 
are computed

Here how outcome beliefs 
are computed

Derivation:

P(s’|b,a,o)=
𝑃 𝑜 𝑏, 𝑎, 𝑠′ 𝑃(𝑠′|𝑏,𝑎)

𝑃(𝑜|𝑏,𝑎)
=
𝑃(𝑜|𝑠′,𝑎)  𝑠{𝑃 𝑠′|𝑠,𝑎 ∗𝑃 𝑠 }

𝑃(𝑜|𝑏,𝑎)

Derivation:

P(s’|b,a,o)=
𝑃 𝑜 𝑏, 𝑎, 𝑠′ 𝑃(𝑠′|𝑏,𝑎)

𝑃(𝑜|𝑏,𝑎)
=
𝑃(𝑜|𝑠′,𝑎)  𝑠{𝑃 𝑠′|𝑠,𝑎 ∗𝑃 𝑠 }

𝑃(𝑜|𝑏,𝑎)
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POMDP: {S, A, T, R, Ω, O}, where T(s,a,s’) = P(s’|s,a), R(s,a), O(s’,a,o) = Prob(o|s’,a)

Belief State Space 

(for K actions, M possible observations)

What is Belief State Space?

It is MDP!
We just need to compute transition 

probabilities τ(b,a,b’) = P(b’|b,a) and reward 
function ρ(b,a)

It is MDP!
We just need to compute transition 

probabilities τ(b,a,b’) = P(b’|b,a) and reward 
function ρ(b,a)
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So, finding an optimal policy for POMDP = 
finding an optimal policy for Belief MDP 
So, finding an optimal policy for POMDP = 
finding an optimal policy for Belief MDP 

We can even use Value Iteration you studied, can’t we?

The size of Belief MDP is infinite The size of Belief MDP is infinite 



• Belief state b: Probability distribution over the states the robot believes it 

is currently in

• Popular techniques for solving POMDPs
– by discretizing belief statespace into a finite # of states [Lovejoy, ‘91]

– by taking advantage of the geometric nature of value function [Kaelbing, Littman & Cassandra, ‘98]

– by sampling-based approximations [Pineau, Gordon & Thrun, ‘03]

Belief State Space
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Belief State Space 

(for K actions, M possible observations)
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• MDP generalizes Graph representation

• POMDP generalizes MDP representation

• POMDP – representation of problems where the state of relevant 

variables is NOT fully known

• Solving POMDP can be represented as solving a Belief MDP (whose 

size is infinite though)

• Approximation techniques exist but intractability is still a huge issue 

for using POMDP planning in real world

Summary
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