15-887

Planning, Execution and Learning

Planning under Uncertainty: Partially Observable Markov Decision Processes (POMDP)

Maxim Likhachev
Robotics Institute Carnegie Mellon University

Graph vs. MDP vs. POMDP

- Consider a path planning example

Graph vs. MDP vs. POMDP

- Consider a path planning example
- Assume perfect action execution and full knowledge of the state (i.e., perfect localization)

Graph vs. MDP vs. POMDP

- Consider a path planning example
- Assume perfect action execution and full knowledge of the state (i.e., perfect localization)

Graph:

Implicitly defined as $\{S, A, C\}$, where S - set of states, A - set of actions, C - costs of all (s, a) pairs.

Graph vs. MDP vs. POMDP

- Consider a path planning example
- Assume perfect action execution and full knowledge of the state (i.e., perfect localization)

Graph:

Implicitly defined as $\{S, A, C\}$,
where S - set of states, A - set of actions, C - costs of all (s, a) pairs.

Graph vs. MDP vs. POMDP

- Consider a path planning example
- Assume imperfect action execution and full knowledge of the state (i.e., perfect localization)

Let's assume 50% chance of ending up on the left and 50% ending up on the right

Graph vs. MDP vs. POMDP

- Consider a path planning example
- Assume imperfect action execution and full knowledge of the state (i.e., perfect localization)

MDP:

Defined as $\{S, A, T, C\}$, where S - set of states, A - set of actions, $\boldsymbol{T}\left(\mathbf{s}, \boldsymbol{a}, \mathbf{s}^{\prime}\right)-\operatorname{Prob}\left(\mathbf{s}^{\prime} \mid \mathbf{s}, \boldsymbol{a}\right), C$ - costs of all ($(,, a)$ pairs

Graph vs. MDP vs. POMDP

- Consider a path $\mathrm{p}^{1} \quad$ What is an optimal policy here?
- Assume imperfect action execution and full knowledge of the state (i.e., perfect localization)

MDP:

Defined as $\{S, A, T, C\}$, where S - set of states, A - set of actions, $T\left(s, a, s^{\prime}\right)-\operatorname{Prob}\left(s^{\prime} \mid s, a\right), C-$ costs of all ($\left.s, a\right)$ pairs

Graph vs. MDP vs. POMDP

- Consider a path $\mathrm{p}^{1} \quad$ What is an optimal policy here?
- Assume imperfect action execution and full knowledge of the state (i.e., perfect localization)

MDP:

Defined as $\{S, A, T, C\}$, where S - set of states, A - set of actions, $T\left(s, a, s^{\prime}\right)-\operatorname{Prob}\left(s^{\prime} \mid s, a\right), C-$ costs of all ($\left.s, a\right)$ pairs

Graph vs. MDP vs. POMDP

- Consider a path planning example
- Assume imperfect action execution and full knowledge of the state (i.e., perfect localization)

MDP (rewards version):

Defined as $\{S, A, T, R\}$, where S - set of states, A - set of actions, $T\left(s, a, s^{\prime}\right)-\operatorname{Prob}\left(s^{\prime} \mid s, a\right), R$ - rewards for all (s, a) pairs

Graph vs. MDP vs. POMDP

- Consider a path planning example
- Assume imperfect action execution and partial observability of the state (i.e., imperfect localization)

Let's assume UAV initially knows it is at S_{0} During execution: it can only sense adjacent obstacles and being at goal

After taking this action, UAV doesn't know whether it is at state S_{1} or S_{2}

POMDP:

Graph vs. MDP vs. POMDP

- Consider a path p . What is an optimal policy here?
- Assume imperfect action execution and partial observability of the state (i.e., imperfect localization)

Graph vs. MDP vs. POMDP

- Consider a path planning example
- Assume imperfect action execution and partial observability of the state (i.e., imperfect localization)

Let's assume UAV initially knows it is at S_{0} During execution: it can only sense adjacent obstacles and being at goal

After taking this action, UAV doesn't know whether it is at state S_{1} or S_{2}

POMDP: $\{S, A, T, R, \Omega, O\}$, where $S, A, T\left(s, a, s{ }^{\prime}\right), R(s, a)$ - all as in $M D P, \Omega$ - set of all possible observation vectors o, $\boldsymbol{O}\left(\boldsymbol{s}^{\prime}, \boldsymbol{a}, \boldsymbol{o}\right)-\boldsymbol{P r o b}\left(\boldsymbol{o} \mid \mathbf{s}^{\prime}, \boldsymbol{a}\right)$ probability of seeing o after executing action a and ending up at state s '

Graph vs. MDP vs. POMDP

- Consider a path planning example
- Assume imperfect action execution and partial observability of the state (i.e., imperfect localization)

Causal relationship

POMDP: $\{S, A, T, R, \Omega, O\}$, where $S, A, T(s, a, s), R(s, a)-$ all as in $M D P, \Omega$ - set of all possible observation vectors o, $\boldsymbol{O}\left(\boldsymbol{s}^{\prime}, \boldsymbol{a}, \boldsymbol{o}\right)-\boldsymbol{P r o b}\left(\boldsymbol{o} \mid \mathbf{s}^{\prime}, \boldsymbol{a}\right)$ probability of seeing o after executing action a and ending up at state s'

Graph vs. MDP vs. POMDP

Example of POMDP problems
where the robot knows its own pose perfectly
(perfect localization)?

- Assume imperfect action execution and partial observability of the state (i.e., imperfect localization)

Causal relationship

POMDP: $\{S, A, T, R, \Omega, O\}$, where $S, A, T\left(s, a, s^{\prime}\right), R(s, a)-$ all as in MDP, Ω - set of all possible observation vectors o, $\boldsymbol{O}\left(\boldsymbol{s}^{\prime}, \boldsymbol{a}, \boldsymbol{o}\right)-\boldsymbol{P r o b}\left(\boldsymbol{o} \mid \mathbf{s}^{\prime}, \boldsymbol{a}\right)$ probability of seeing o after executing action a and ending up at state s '

Belief State Space

- Belief state \boldsymbol{b} : Probability distribution over the states the robot believes it is currently in

Causal relationship

POMDP: $\{S, A, T, R, \Omega, O\}$, where $T\left(s, a, s^{\prime}\right)=P\left(s^{\prime} \mid s, a\right), R(s, a), O\left(s^{\prime}, a, o\right)=\operatorname{Prob}\left(o \mid s^{\prime}, a\right)$

Belief State Space

- Belief state \boldsymbol{b} : Probability distribution over the states the robot believes it is currently in

$$
\begin{aligned}
& b-a \text { vector of size } N(\# \text { of states in } S \text {) } \\
& \Sigma^{N} b_{i}=1 \text {, and } b_{i} \geq 0 \text { for all } i
\end{aligned}
$$

Initially, the robot knows it is in s_{0}.
Thus, initial $b=[1,0,0,0,0,0,0,0]^{\top}$. That is, $P\left(s_{0}\right)=1$

Causal relationship

POMDP: $\{S, A, T, R, \Omega, O\}$, where $T\left(s, a, s^{\prime}\right)=P\left(s^{\prime} \mid s, a\right), R(s, a), O\left(s^{\prime}, a, o\right)=\operatorname{Prob}\left(o \mid s^{\prime}, a\right)$

Belief State Space

- Belief state \boldsymbol{b} : Probability distribution over the states the robot believes it is currently in

$$
\begin{aligned}
& b-a \text { vector of size } N \text { (\# of states in } S \text {) } \\
& \qquad \Sigma^{N} b_{i}=1 \text {, and } b_{i} \geq 0 \text { for all } i
\end{aligned}
$$

Initially, the robot knows it is in s_{0}.
Thus, initial $b=[1,0,0,0,0,0,0,0]^{\top}$. That is, $P\left(s_{0}\right)=1$

POMDP: $\{S, A, T, R, \Omega, O\}$, where $T\left(s, a, s^{\prime}\right)=P\left(s^{\prime} \mid s, a\right), R(s, a), O\left(s^{\prime}, a, o\right)=\operatorname{Prob}\left(o \mid s^{\prime}, a\right)$

Belief State Space

- Belief state \boldsymbol{b} : Probability distribution over the states the robot believes it is currently in

Belief State Space
(for K actions, M possible observations)

POMDP: $\{S, A, T, R, \Omega, O\}$, where $T\left(s, a, s^{\prime}\right)=P\left(s^{\prime} \mid s, a\right), R(s, a), O\left(s^{\prime}, a, o\right)=\operatorname{Prob}\left(o \mid s^{\prime}, a\right)$

Belief State Space

- Belief state \boldsymbol{b} : Probability distribution over the states the robot believes it is currently in

$$
\begin{aligned}
& b^{\prime}: P\left(s^{\prime} \mid b, a, o\right) \text { for every } s^{\prime} \text { in } S \text {; } \\
& b^{\prime}\left(s^{\prime}\right)=P\left(s^{\prime} \mid b, a, o\right)=\frac{\left.o\left(s^{\prime}, a, o\right) \sum_{s} s T\left(s, a, s^{\prime}\right) * b(s)\right\}}{P(o \mid b, a)}
\end{aligned}
$$

Here how outcome beliefs
are computed

Belief State Space

(for K actions, M possible observations)

POMDP:
$\{S, A, T, R, \Omega, O\}$, where $T\left(s, a, s^{\prime}\right)=P\left(s^{\prime} \mid s, a\right), R(s, a), O\left(s^{\prime}, a, o\right)=\operatorname{Prob}\left(o \mid s^{\prime}, a\right)$

Belief State Space

- Belief state \boldsymbol{b} : Probability distribution over the states the robot believes it is currently in
$b^{\prime}: P\left(s^{\prime} \mid b, a, o\right)$ for every s'in S;
$b^{\prime}\left(s^{\prime}\right)=P\left(s^{\prime} \mid b, a, o\right)=\frac{O\left(s^{\prime}, a, o\right) \sum_{s}\left\{T\left(s, a, s^{\prime}\right) * b(s)\right\}}{P(o \mid b, a)}$

Derivation:

$$
P\left(s^{\prime} \mid b, a, o\right)=\frac{P\left(o \mid b, a, s^{\prime}\right) P\left(s^{\prime} \mid b, a\right)}{P(o \mid b, a)}=\frac{P\left(o \mid s^{\prime}, a\right) \sum_{s}\left\{P\left(s^{\prime} \mid s, a\right) * P(s)\right\}}{P(o \mid b, a)}
$$

ations)

POMDP: $\{S, A, T, R, \Omega, O\}$, where $T\left(s, a, s^{\prime}\right)=P\left(s^{\prime} \mid s, a\right), R(s, a), O\left(s^{\prime}, a, o\right)=\operatorname{Prob}\left(o \mid s^{\prime}, a\right)$

Belief State Space

- Belief state \boldsymbol{b} : Probability distribution over the states the robot believes it is currently in

What is Belief State Space?

It is MDP!
We just need to compute transition probabilities $\tau\left(b, a, b^{\prime}\right)=P\left(b^{\prime} \mid b, a\right)$ and reward function $\rho(b, a)$

Belief State Space
(for K actions, M possible observations)

POMDP:
$\{S, A, T, R, \Omega, O\}$, where $T\left(s, a, s^{\prime}\right)=P\left(s^{\prime} \mid s, a\right), R(s, a), O\left(s^{\prime}, a, o\right)=\operatorname{Prob}\left(o \mid s^{\prime}, a\right)$

Belief State Space

- Belief state \boldsymbol{b} : Probability distribution over the states the robot believes it is currently in

$$
\tau\left(b, a, b^{\prime}\right)=P\left(b^{\prime} \mid b, a\right)=\sum_{o \text { leading to } b^{\prime}} P(o \mid b, a)=\sum_{o \text { leading to } b^{\prime}} \sum_{s^{\prime}} P\left(o \mid s^{\prime}, a\right) \sum_{s} P\left(s^{\prime} \mid s, a\right) b(s)
$$

Belief State Space (for K actions, M possible observations)

Belief State Space

- Belief state \boldsymbol{b} : Probability distribution over the states the robot believes it is currently in

$$
\tau\left(b, a, b^{\prime}\right)=P\left(b^{\prime} \mid b, a\right)=\sum_{o \text { leading to } b^{\prime}} P(o \mid b, a)=\sum_{o \text { leading to } b^{\prime}} \sum_{s^{\prime}} P\left(o \mid s^{\prime}, a\right) \sum_{s} P\left(s^{\prime} \mid s, a\right) b(s)
$$

$$
\rho(b, a)=\sum_{s} R(s, a) b(s)
$$

Belief State Space

 (for K actions, M possible observations)

Belief State Space

- Belief state \boldsymbol{b} : Probability distribution over the states the robot believes it is currently in

$$
\tau\left(b, a, b^{\prime}\right)=P\left(b^{\prime} \mid b, a\right)=\sum_{o \text { leading to } b^{\prime}} P(o \mid b, a)=\sum_{o \text { leading to } b^{\prime}} \sum_{s^{\prime}} P\left(o \mid s^{\prime}, a\right) \sum_{s} P\left(s^{\prime} \mid s, a\right) b(s)
$$

$$
\rho(b, a)=\sum_{s} R(s, a) b(s)
$$

Belief State Space

 (for K actions, M possible observations)

The size of Belief MDP is infinite :

So, finding an optimal policy for POMDP = finding an optimal policy for Belief MDP ©)

Belief State Space

- Belief state \boldsymbol{b} : Probability distribution over the states the robot believes it is currently in
- Popular techniques for solving POMDPs
- by discretizing belief statespace into a finite \# of states [Lovejoy, '91]
- by taking advantage of the geometric nature of value function [Kaelbing, Littman \& Cassandra, '98]
- by sampling-based approximations [Pineau, Gordon \& Thrun, '03]

Belief State Space (for K actions, M possible observations)

POMDP:
$\{S, A, T, R, \Omega, O\}$, where $T\left(s, a, s^{\prime}\right)=P\left(s^{\prime} \mid s, a\right), R(s, a), O\left(s^{\prime}, a, o\right)=\operatorname{Prob}\left(o \mid s^{\prime}, a\right)$

Summary

- MDP generalizes Graph representation
- POMDP generalizes MDP representation
- POMDP - representation of problems where the state of relevant variables is NOT fully known
- Solving POMDP can be represented as solving a Belief MDP (whose size is infinite though)
- Approximation techniques exist but intractability is still a huge issue for using POMDP planning in real world

