15-887 Planning, Execution and Learning

Low-level Planning Representations

Maxim Likhachev
Robotics Institute
Carnegie Mellon University

Example of Lower-level Planning

• Opening and moving through a door

Example of Lower-level Planning

Opening and moving through a door

- $-State: \langle B_x, B_y, B_{\Theta}, LArm_{ql}, ..., LArm_{qq}, RArm_{ql}, ..., RArm_{qq}, \lambda, Gripper=\{open, close\} > 1$
- $-Actions: \langle dB_x, dB_y, dB_{\Theta}, dLArm_{ql}, ..., dLArm_{ql}, dRArm_{ql}, ..., dRArm_{ql}, dGripper \rangle$
- Goal: $B_x = B_{xg}$, $B_y = B_{yg}$, $B_{\Theta} = B_{\Theta g}$
- Constraints:
 - Environmental (e.g., obstacles)
 - Kinematics of the robot

Planning as Graph Search Problem

1. Construct a graph representing the planning problem

2. Search the graph for a (hopefully, close-to-optimal) path

The two steps above are often interleaved

Planning as Graph Search Problem

1. Construct a graph representing the planning problem

2. Search the graph for a (hopefully, close-to-optimal) path

The two steps above are often interleaved

Interleaving Search and Graph Construction

Graph Search using an **Implicit Graph** (allocated as needed by the search):

- 1. Instantiate Start state
- 2. Start searching with the Start state using functions
 - a) Succs = GetSuccessors (State s, Action)
 - b) ComputeEdgeCost (State s, Action a, State s')

and allocating memory for the generated states

Using Implicit Graphs
is critical for most (>2D) problems
in Robotics

Planning as Graph Search Problem

1. Construct a graph representing the planning problem

2. Search the graph for a (hopefully, close-to-optimal) path

The two steps above are often interleaved

Configuration Space

• Configuration is legal if it does not intersect any obstacles and is valid

Configuration Space is the set of legal configurations

Simple problem of planning for the base:

Configuration Space

• Configuration is legal if it does not intersect any obstacles and is valid

• Configuration Space is the set of legal configurations

Configuration space for rigid-body objects in 2D world is:
2D if object is circular

- expand all obstacles by the radius of the object r
- planning can be done for a point R (and not a circle anymore)

• Configuration space for rigid-body objects in 2D world is:

- 2D if object is circular

C-Space Transform

- expand all obstacles by the radius of the object r
- planning can be done for a point R (and not a circle anymore)

• Configuration space for rigid-body objects in 2D world is: - 2D if object is circular

- advantage: planning is faster for a single point
- disadvantage: need to expand obstacles every time map is

updated (O(n) methods exist to compute distance transforms)

• Configuration space for arbitrary objects in 2D world is:

- advantage: planning is faster for a single point
- disadvantage: constructing C-space is expensive

Example of Lower-level Planning

Opening and moving through a door

- $-State: \langle B_x, B_y, B_{\Theta}, LArm_{ql}, ..., LArm_{qq}, RArm_{ql}, ..., RArm_{qq}, \lambda, Gripper=\{open, close\} > 1$
- $-Actions: \langle dB_x, dB_y, dB_{\Theta}, dLArm_{q1}, ..., dLArm_{q7}, dRArm_{q1}, ..., dRArm_{q7}, dGripper \rangle$
- Goal: $B_x = B_{xg}$, $B_y = B_{yg}$, $B_{\Theta} = B_{\Theta g}$
- Constraints:
 - Environmental (e.g., obstacles)
 - *Kinematics of the robot*

What is the dimensionality of this configuration space?

Example of Lower-level Planning

Opening and moving through a door

- $-State: \langle B_x, B_y, B_{\Theta}, LArm_{ql}, ..., LArm_{qq}, RArm_{ql}, ..., RArm_{qq}, \lambda, Gripper=\{open, close\} > 1$
- $-Actions: \langle dB_x, dB_y, dB_{\Theta}, dLArm_{q1}, ..., dLArm_{q7}, dRArm_{q1}, ..., dRArm_{q7}, dGripper \rangle$
- Goal: $B_x = B_{xg}$, $B_y = B_{yg}$, $B_{\Theta} = B_{\Theta g}$
- Constraints:
 - Environmental (e.g., obstacles)
 - Kinematics of the robot

What is the dimensionality of this configuration space?

That's why usually configuration space is NOT explicitly constructed and collision checking is done on demand University

Graph Construction

Cell decomposition

- X-connected grids

- lattice-based graphs

- -Visibility graphs
- Voronoi diagrams
- Probabilistic roadmaps

- Exact Cell Decomposition:
 - overlay convex exact polygons over the free C-space
 - construct a graph, search the graph for a path
 - overly expensive for non-trivial environments and/or above 2D

- Approximate Cell Decomposition:
 - overlay uniform grid over the C-space (discretize)

- Approximate Cell Decomposition:
 - construct a graph and search it for a least-cost path

- Approximate Cell Decomposition:
 - construct a graph and search it for a least-cost path

- Approximate Cell Decomposition:
 - construct a graph and search it for a least-cost path
 - VERY popular due to its simplicity
 - expensive in high-dimensional spaces

construct the grid on-the-fly, i.e. while planning – still expensive

- Approximate Cell Decomposition:
 - what to do with partially blocked cells?

- Approximate Cell Decomposition:
 - what to do with partially blocked cells?
 - make it untraversable incomplete (may not find a path that exists)

- Approximate Cell Decomposition:
 - what to do with partially blocked cells?
 - make it traversable unsound (may return invalid path)

so, what's the solution?

- Approximate Cell Decomposition:
 - solution 1:
 - make the discretization very fine
 - expensive, especially in high-D

- Approximate Cell Decomposition:
 - solution 2:
 - make the discretization adaptive
 - various ways possible

- Graph construction:
 - connect neighbors

eight-connected grid

- Graph construction:
 - connect neighbors
 - path is restricted to 45° degrees

- Graph construction:
 - connect neighbors
 - path is restricted to 45° degrees

Ideas to improve it?

- Graph construction:
 - connect cells to neighbor of neighbors

- path is restricted to 22.5° degrees

16-connected grid

convert into a graph

- Graph construction:
 - connect cells to neighbor of neighbors
 - path is restricted to 22.5° degrees

Dynamically generated directions (for low-d problems):
Field D* [Ferguson & Stentz, '06],
Theta* [Nash & Koenig, '13]

10-connected grid

convert into a graph

- Graph construction:
 - lattice graph for computing feasible paths [Pivtoraiko & Kelly '05]

- Graph construction:
 - lattice graph [Pivtoraiko & Kelly '05]
 - pros: sparse graph, feasible paths

- Graph construction:
 - lattice graph [Pivtoraiko & Kelly '05]

example of motion primitives for PR2

[Hornung et al., '12]

- Graph construction:
 - lattice graph [Pivtoraiko & Kelly '05]

example of motion primitives for PR2

[Hornung et al., '12]

Skeletonization of the C-Space

Skeletonization: construction of a unidimensional representation of the C-space

- Visibility graph
- Voronoi diagram
- Probabilistic road-map

• Visibility Graphs [Wesley & Lozano-Perez '79]

- based on idea that the shortest path consists of obstacle-free straight line segments connecting all obstacle vertices and start and goal

• Visibility Graphs [Wesley & Lozano-Perez '79]

- based on idea that the shortest path consists of obstacle-free straight line segments connecting all obstacle vertices and start

- Visibility Graphs [Wesley & Lozano-Perez '79]
 - construct a graph by connecting all vertices, start and goal by obstacle-free straight line segments (graph is O(n²), where n # of vert.)
 - search the graph for a shortest path

- Visibility Graphs
 - advantages:
 - independent of the size of the environment
 - disadvantages:
 - path is too close to obstacles
 - hard to deal with non-uniform cost function
 - hard to deal with non-polygonal obstacles

- Voronoi diagrams [Rowat '79]
 - voronoi diagram: set of all points that are equidistant to two nearest obstacles
 - based on the idea of maximizing clearance instead of minimizing travel distance

the example above is borrowed from "AI: A Modern Approach" by S. Russell & P. Norvig

Voronoi diagrams

- compute voronoi diagram (O (n $\log n$), where n # of invalid configurations)
- add a shortest path segment from start to the nearest segment of voronoi diagram
- add a shortest path segment from goal to the nearest segment of voronoi diagram
- compute shortest path in the graph

the example above is borrowed from "AI: A Modern Approach" by S. Russell & P. Norvig

- Voronoi diagrams
 - advantages:
 - tends to stay away from obstacles
 - independent of the size of the environment
 - disadvantages:
 - can result in highly suboptimal paths

the example above is borrowed from "AI: A Modern Approach" by S. Russell & P. Norvig

- Voronoi diagrams
 - advantages:
 - tends to stay away from obstacles
 - independent of the size of the environment
 - disadvantages:

the example above is borrowed from "AI: A Modern Approach" by S. Russell & P. Norvig

Sampling-based planning:

- generate a sparse (sample-based) representation (graph) of a free C-space (C_{free})
- search the generated representation for a solution
- can interleave the construction of the representation with the search

the example above is borrowed from "AI: A Modern Approach" by S. Russell & P. Norvig

Sampling-based planning:

- typically provides probabilistic completeness guarantees (guaranteed to find a solution, if one exists, in the limit of the number of samples)
- in many domains, is much faster and requires much less memory
- well-suited for high-dimensional planning

the example above is borrowed from "AI: A Modern Approach" by S. Russell & P. Norvig

Step 1. Preprocessing Phase: Build a roadmap (graph) \mathcal{G} which, hopefully, should be accessible from any point in C_{free}

Step 2. Query Phase: Given a start configuration q_I and goal configuration q_G , connect them to the roadmap \mathcal{G} using a local planner, and then search the augmented roadmap for a shortest path from q_I to q_G

Step 1. Preprocessing Phase: Build a roadmap (graph) \mathcal{G} which, hopefully, should be accessible from any point in C_{free}

Step 2. Query Phase: Given a start configuration q_I and goal configuration q_G , connect them to the roadmap \mathcal{G} using a local planner, and then search the augmented roadmap for a shortest path from q_I to

 q_G

Step 1: Preprocessing Phase.

```
BUILD_ROADMAP

1  \mathcal{G}.init(); i \leftarrow 0;

2  while i < N

3   if \alpha(i) \in \mathcal{C}_{free} then

4   \mathcal{G}.add\_vertex(\alpha(i)); i \leftarrow i + 1;

5   for each q \in NEIGHBORHOOD(\alpha(i),\mathcal{G})

6   if ((\mathbf{not} \mathcal{G}.same\_component(\alpha(i),q)) and CONNECT(\alpha(i),q)) then

7   \mathcal{G}.add\_edge(\alpha(i),q);
```


borrowed from "Planning Algorithms" by S. LaValle

Step 1: Preprocessing Phase.

Step 1: Preprocessing Phase.

```
BUILD ROADMAP
       \mathcal{G}.\operatorname{init}(); i \leftarrow 0;
       while i < N
                                                                                                    can be replaced with:
 3
            if \alpha(i) \in \mathcal{C}_{free} then
                                                                                            "number of successors of q < K"
                  \mathcal{G}.add\_vertex(\alpha(i)); i \leftarrow i + 1;
  5
                  for each q \in \text{NEIGHBORHOOD}(\alpha(i), \mathcal{G})
                        if ((\text{not } \mathcal{G}.\text{same\_component}(\alpha(i),q)) and \text{connect}(\alpha(i),q)) then
 6
                              \mathcal{G}.add_edge(\alpha(i), q);
                                                    \mathcal{C}_{obs}
```

borrowed from "Planning Algorithms" by S. LaValle

Step 1: Preprocessing Phase.

Efficient implementation of $q \in NEIGHBORHOOD(\alpha(i), \mathcal{G})$

- select K vertices closest to $\alpha(i)$
- select K (often just 1) closest points from each of the components in *G*
- select all vertices within radius r from $\alpha(i)$

borrowed from "Planning Algorithms" by S. LaValle

Step 1: Preprocessing Phase.

Sampling strategies

- sample uniformly from C_{free}
- select at random an existing vertex with a probability distribution inversely proportional to how well-connected a vertex is, and then generate a random motion from it to get a sample $\alpha(i)$
- bias sampling towards obstacle boundaries

borrowed from "Planning Algorithms" by S. LaValle

Step 1: Preprocessing Phase.

Sampling strategies

- sample q_1 and q_2 from Gaussian around q_1 and if either is in C_{obs} , then the other one is set as $\alpha(i)$
- sample q_1, q_2, q_3 and set q_2 as $\alpha(i)$ if q_2 is in C_{free} , and q_1 and q_3 are in C_{obs}
- bias sampling away from obstacles

borrowed from "Planning Algorithms" by S. LaValle

Summary

- Graph constructions
 - Resolution complete methods
 - N-dimensional grids
 - Lattice-based graphs
 - Skeletonization methods
 - Visibility graphs
 - Voronoi diagrams
 - Probabilistic Roadmaps
- Methods for searching the graph in later classes
- Interleaving the above two steps is critical