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Example of Lower-level Planning 
• Opening and moving through a door
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Example of Lower-level Planning 
• Opening and moving through a door

– State: <Bx, By, BѲ, LArmq1,…, LArmq7, RArmq1,…, RArmq7, λ, Gripper={open,close}>

– Actions: <dBx, dBy, dBѲ, dLArmq1,…, dLArmq7, dRArmq1,…, dRArmq7, dGripper>

– Goal: Bx=Bxg, By=Byg, BѲ =BѲg

– Constraints:
• Environmental (e.g., obstacles)

• Kinematics of the robot

λ

Bxg, Byg, BѲg



1. Construct a graph representing the planning problem

2. Search the graph for a (hopefully, close-to-optimal) 

path

The two steps above are often interleaved

Planning as Graph Search Problem
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1. Construct a graph representing the planning problem

2. Search the graph for a (hopefully, close-to-optimal) 

path

The two steps above are often interleaved

Planning as Graph Search Problem
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Graph Search using an Implicit Graph (allocated as 

needed by the search):

1. Instantiate Start state

2. Start searching with the Start state using functions

a) Succs = GetSuccessors (State s, Action)

b) ComputeEdgeCost (State s, Action a, State s’)

and allocating memory for the generated states

Interleaving Search and Graph Construction
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Using Implicit Graphs 

is critical for most (>2D) problems 

in Robotics



1. Construct a graph representing the planning problem

2. Search the graph for a (hopefully, close-to-optimal) 

path

The two steps above are often interleaved

Planning as Graph Search Problem
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Configuration Space

• Configuration is legal if it does not intersect any obstacles 

and is valid

• Configuration Space is the set of legal configurations

8

Simple problem of planning for the base:
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Configuration Space

• Configuration is legal if it does not intersect any obstacles 

and is valid

• Configuration Space is the set of legal configurations

9

Simple problem of planning for the base:

What is the dimensionality of this

configuration space?
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C-Space Transform

• Configuration space for rigid-body objects in 2D world is:

- 2D if object is circular

R R

r

C-Space 

Transform

• expand all obstacles by the radius of the object r

• planning can be done for a point R (and not a circle anymore)

10
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C-Space Transform

• Configuration space for rigid-body objects in 2D world is:

- 2D if object is circular

R R

r

C-Space 

Transform

• expand all obstacles by the radius of the object r

• planning can be done for a point R (and not a circle anymore)

Is this a correct 

expansion?
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C-Space Transform

• Configuration space for rigid-body objects in 2D world is:

- 2D if object is circular

R R

r

C-Space 

Transform

• advantage: planning is faster for a single point

• disadvantage: need to expand obstacles every time map is 

updated (O(n) methods exist to compute distance transforms)

why?

12
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C-Space Transform

• Configuration space for arbitrary objects in 2D world is:

- 3D if object is non-circular

C-Space 

Transform

• advantage: planning is faster for a single point

• disadvantage: constructing C-space is expensive

R

R

r

x

y



 = 0º

 = 0º
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Example of Lower-level Planning 
• Opening and moving through a door

– State: <Bx, By, BѲ, LArmq1,…, LArmq7, RArmq1,…, RArmq7, λ, Gripper={open,close}>

– Actions: <dBx, dBy, dBѲ, dLArmq1,…, dLArmq7, dRArmq1,…, dRArmq7, dGripper>

– Goal: Bx=Bxg, By=Byg, BѲ =BѲg

– Constraints:
• Environmental (e.g., obstacles)

• Kinematics of the robot

λ

Bxg, Byg, BѲg

What is the dimensionality of this

configuration space?
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Example of Lower-level Planning 
• Opening and moving through a door

– State: <Bx, By, BѲ, LArmq1,…, LArmq7, RArmq1,…, RArmq7, λ, Gripper={open,close}>

– Actions: <dBx, dBy, dBѲ, dLArmq1,…, dLArmq7, dRArmq1,…, dRArmq7, dGripper>

– Goal: Bx=Bxg, By=Byg, BѲ =BѲg

– Constraints:
• Environmental (e.g., obstacles)

• Kinematics of the robot

λ

Bxg, Byg, BѲg

What is the dimensionality of this

configuration space?

That’s why usually 

configuration space is NOT explicitly constructed 

and collision checking is done on demand
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• Cell decomposition 

- X-connected grids

- lattice-based graphs

• Skeletonization of the environment/C-Space

-Visibility graphs

- Voronoi diagrams

- Probabilistic roadmaps

Graph Construction

replicate action 

template online

16
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Planning via Cell Decomposition

• Exact Cell Decomposition:

- overlay convex exact polygons over the free C-space

- construct a graph, search the graph for a path

- overly expensive for non-trivial environments and/or 

above 2D

17
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Planning via Cell Decomposition

• Approximate Cell Decomposition:

- overlay uniform grid over the C-space (discretize)

discretize

planning map

18
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Planning via Cell Decomposition

• Approximate Cell Decomposition:

- construct a graph and search it for a least-cost path

discretize

planning map

S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph
search the graph 

for a least-cost path 

from sstart to sgoal
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Planning via Cell Decomposition

• Approximate Cell Decomposition:

- construct a graph and search it for a least-cost path

discretize

planning map

S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph
search the graph 

for a least-cost path 

from sstart to sgoal

eight-connected grid

(one way to construct a graph)
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Planning via Cell Decomposition

• Approximate Cell Decomposition:

- construct a graph and search it for a least-cost path

- VERY popular due to its simplicity

- expensive in high-dimensional spaces 
construct the grid on-the-fly, i.e. while planning – still expensive

discretize

21
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Planning via Cell Decomposition

• Approximate Cell Decomposition:

- what to do with partially blocked cells?

S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph
search the graph 

for a least-cost path 

from sstart to sgoal
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Planning via Cell Decomposition

• Approximate Cell Decomposition:

- what to do with partially blocked cells?

- make it untraversable – incomplete (may not find a 

path that exists)

S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph
search the graph 

for a least-cost path 

from sstart to sgoal
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Planning via Cell Decomposition

• Approximate Cell Decomposition:

- what to do with partially blocked cells?

- make it traversable – unsound (may return invalid 

path)

S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph
search the graph 

for a least-cost path 

from sstart to sgoal

so, what’s the solution?

24
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Planning via Cell Decomposition

• Approximate Cell Decomposition:

- solution 1: 

- make the discretization very fine

- expensive, especially in high-D

S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph
search the graph 

for a least-cost path 

from sstart to sgoal
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Planning via Cell Decomposition

• Approximate Cell Decomposition:

- solution 2: 

- make the discretization adaptive

- various ways possible

S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph
search the graph 

for a least-cost path 

from sstart to sgoal

Any ideas?
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Planning via Cell Decomposition

• Graph construction:

- connect neighbors

S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph

eight-connected grid

27
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Planning via Cell Decomposition

• Graph construction:

- connect neighbors

- path is restricted to 45º degrees

28
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Planning via Cell Decomposition

• Graph construction:

- connect neighbors

- path is restricted to 45º degrees

Ideas to improve it? 

29
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Planning via Cell Decomposition

• Graph construction:

- connect cells to neighbor of neighbors

- path is restricted to 22.5º degrees 

S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph

16-connected grid
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Planning via Cell Decomposition

• Graph construction:

- connect cells to neighbor of neighbors

- path is restricted to 22.5º degrees 

S1 S2 S3

S4 S5

S6

S1 S2 S3

S4 S5

S6

convert into a graph

16-connected grid

Disadvantages? 

31

Dynamically generated directions (for low-d problems): 

Field D* [Ferguson & Stentz, ‘06], 

Theta* [Nash & Koenig, ‘13]
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Planning via Cell Decomposition

• Graph construction:
- lattice graph for computing feasible paths [Pivtoraiko & Kelly ’05]

motion primitives

replicate it 

online

each transition is feasible

(constructed beforehand)

outcome state is the center of the corresponding cell

32
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Planning via Cell Decomposition

• Graph construction:

- lattice graph [Pivtoraiko & Kelly ’05]

- pros: sparse graph, feasible paths

- cons: possible incompleteness

motion primitives

replicate it 

online

33



Planning via Cell Decomposition

• Graph construction:

- lattice graph [Pivtoraiko & Kelly ’05]

Carnegie Mellon University 34

example of 

motion primitives for PR2

Why forward motion primitives 

duplicated (one short, one long)? 

[Hornung et al., ’12]



Planning via Cell Decomposition

• Graph construction:

- lattice graph [Pivtoraiko & Kelly ’05]

Carnegie Mellon University 35

example of 

motion primitives for PR2

How is it different when planning 

dynamically feasible paths? 

[Hornung et al., ’12]



Carnegie Mellon University

Skeletonization of the C-Space

Skeletonization: construction of a unidimensional 

representation of the C-space

• Visibility graph

• Voronoi diagram

• Probabilistic road-map

36
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• Visibility Graphs [Wesley & Lozano-Perez ’79]

- based on idea that the shortest path consists of obstacle-free 

straight line segments connecting all obstacle vertices and start 

and goal

Planning via Skeletonization

start 

configuration

goal 

configuration

C-space or environment

suboptimal path

37
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• Visibility Graphs [Wesley & Lozano-Perez ’79]

- based on idea that the shortest path consists of obstacle-free 

straight line segments connecting all obstacle vertices and start 

and goal

Planning via Skeletonization

start 

configuration

goal 

configuration

C-space or environment

suboptimal path

Assumption?

38
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• Visibility Graphs [Wesley & Lozano-Perez ’79]

- construct a graph by connecting all vertices, start and goal by 

obstacle-free straight line segments (graph is O(n2), where n - # of vert.)

- search the graph for a shortest path

Planning via Skeletonization

39
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• Visibility Graphs
- advantages:

- independent of the size of the environment

- disadvantages: 

- path is too close to obstacles

- hard to deal with non-uniform cost function

- hard to deal with non-polygonal obstacles

Planning via Skeletonization

40
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• Voronoi diagrams [Rowat ’79]

- voronoi diagram: set of all points that are equidistant to two 

nearest obstacles

- based on the idea of maximizing clearance instead of 

minimizing travel distance

Planning via Skeletonization

the example above is borrowed from “AI: A Modern Approach” by S. RusselL & P. Norvig

41

2DOF arm Configuration space Voronoi diagram
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• Voronoi diagrams
- compute voronoi diagram (O (n log n), where n - # of invalid configurations)

- add a shortest path segment from start to the nearest segment 

of voronoi diagram

- add a shortest path segment from goal to the nearest segment 

of voronoi diagram

- compute shortest path in the graph

Planning via Skeletonization

the example above is borrowed from “AI: A Modern Approach” by S. RusselL & P. Norvig

42

2DOF arm Configuration space Voronoi diagram
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• Voronoi diagrams
- advantages:

- tends to stay away from obstacles

- independent of the size of the environment

- disadvantages:

- can result in highly suboptimal paths

Planning via Skeletonization

the example above is borrowed from “AI: A Modern Approach” by S. RusselL & P. Norvig

43

2DOF arm Configuration space Voronoi diagram
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• Voronoi diagrams
- advantages:

- tends to stay away from obstacles

- independent of the size of the environment

- disadvantages:

- can result in highly suboptimal paths

Planning via Skeletonization

In which environments?

the example above is borrowed from “AI: A Modern Approach” by S. RusselL & P. Norvig

44

2DOF arm Configuration space Voronoi diagram
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Planning via Skeletonization

• Sampling-based planning:
– generate a sparse (sample-based) representation (graph) of a free C-space (Cfree)

– search the generated representation for a solution

– can interleave the construction of the representation with the search

the example above is borrowed from “AI: A Modern Approach” by S. RusselL & P. Norvig



Carnegie Mellon University 46

Planning via Skeletonization

• Sampling-based planning:
– typically provides probabilistic completeness guarantees (guaranteed to find a 

solution, if one exists, in the limit of the number of samples)

– in many domains, is much faster and requires much less memory

– well-suited for high-dimensional planning

the example above is borrowed from “AI: A Modern Approach” by S. RusselL & P. Norvig
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Probabilistic Roadmaps (PRMs) [Kavraki et al. ’96]

Step 1. Preprocessing Phase: Build a roadmap (graph) G which, 

hopefully, should be accessible from any point in Cfree

Step 2. Query Phase: Given a start configuration qI and goal 

configuration qG, connect them to the roadmap G using a local planner, 

and then search the augmented roadmap for a shortest path from qI to 

qG



Carnegie Mellon University 48

Probabilistic Roadmaps (PRMs) [Kavraki et al. ’96]

Step 1. Preprocessing Phase: Build a roadmap (graph) G which, 

hopefully, should be accessible from any point in Cfree

Step 2. Query Phase: Given a start configuration qI and goal 

configuration qG, connect them to the roadmap G using a local planner, 

and then search the augmented roadmap for a shortest path from qI to 

qG Any ideas for the local planner?
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Probabilistic Roadmaps (PRMs) [Kavraki et al. ’96]

Step 1: Preprocessing Phase.

borrowed from“Planning Algorithms” by S. LaValle
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Probabilistic Roadmaps (PRMs) [Kavraki et al. ’96]

Step 1: Preprocessing Phase.

borrowed from“Planning Algorithms” by S. LaValle

new ith configuration sample

some region around

the configuration sample

can be connected

by a local planner
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Probabilistic Roadmaps (PRMs) [Kavraki et al. ’96]

Step 1: Preprocessing Phase.

borrowed from“Planning Algorithms” by S. LaValle

can be replaced with:

“number of successors of q < K”
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Probabilistic Roadmaps (PRMs) [Kavraki et al. ’96]

Step 1: Preprocessing Phase.

borrowed from“Planning Algorithms” by S. LaValle

Efficient implementation of q Є NEIGHBORHOOD(α(i),G)

- select K vertices closest to α(i)

- select K (often just 1) closest points from each of the components in G

- select all vertices within radius r from α(i)
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Probabilistic Roadmaps (PRMs) [Kavraki et al. ’96]

Step 1: Preprocessing Phase.

borrowed from“Planning Algorithms” by S. LaValle

Sampling strategies

- sample uniformly from Cfree

- select at random an existing vertex with a probability distribution inversely 

proportional to how well-connected a vertex is, and then generate a random motion 

from it to get a sample α(i)

- bias sampling towards obstacle boundaries
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Probabilistic Roadmaps (PRMs) [Kavraki et al. ’96]

Step 1: Preprocessing Phase.

borrowed from“Planning Algorithms” by S. LaValle

Sampling strategies

- sample q1 and q2 from Gaussian around q1 and if either is in Cobs, then the 

other one is set as α(i)

- sample q1, q2 , q3 and set q2 as α(i) if q2 is in Cfree, and q1 and q3 are in Cobs

- bias sampling away from obstacles



• Graph constructions

- Resolution complete methods
- N-dimensional grids 

- Lattice-based graphs

- Skeletonization methods
- Visibility graphs

- Voronoi diagrams

- Probabilistic Roadmaps

• Methods for searching the graph – in later classes

• Interleaving the above two steps is critical

Summary
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