15-887 Planning, Execution and Learning

Learning in Planning: Experience Graphs

Maxim Likhachev
Robotics Institute
Carnegie Mellon University

Robots Often Perform Repetitive Tasks

[Cowley et al., '13]

Robots Often Perform Repetitive Tasks

[Cowley et al., '13]

Learning from Demonstrations

[Phillips et al., '13]

Learning from Demonstrations

Can we re-use prior **demonstrations** to accelerate heuristic search?

[Phillips et al., '13]

Consider original graph $G = \{V, E\}$

Given a set of previous paths (experiences or demonstrations)...

Put them together into an E-graph (Experience graph), $G^E = \{V^E, E^E\}$

Given a new planning query...

...re-use E-graph G^E . For repetitive tasks, planning becomes much faster

...re-use E-graph G^E . For repetitive tasks, planning becomes much faster

for which domains it would be useful and for which useless?

...re-use E-graph G^E . For repetitive tasks, planning becomes much faster

General idea:

Instead of using traditional heuristic to bias the search towards the goal, compute a new heuristics $h^{E}(s)$ that biases the search towards a set of paths in G^{E} .

states expanded shown in grey

...re-use E-graph G^E . For repetitive tasks, planning becomes much faster

For any state s_0 in G, the new heuristic $h^E()$ function is:

$$h^{E}(s_{0}) = \min_{\pi(s_{0},s_{goal})} \sum_{i=0}^{length(\pi)-1} \min(\varepsilon^{E}h^{G}(s_{i},s_{i+1}),c^{E}(s_{i},s_{i+1}))$$

$$start$$

$$states\ expanded\ shown\ in\ grey$$

heuristics $h^{E}(s)$ biases the search towards those paths that can be used to get to the goal with the least amount of traversal outside of G^{E} .

ester

states expanded shown in grey

```
Given a planning graph G = \{V, E\}

Initialize E-graph G^E = \{V^E = 0, E^E = 0\}

Every time a new planning query (s_{start}, s_{goal}) comes in re-compute heuristic h^E

run weighted A^* search with heuristics h^E inflated by weight w; execute the found path \pi

G^E = G^E U \pi //add the found path to the E-graph
```

```
Given a planning graph G = \{V, E\}
  Initialize E-graph G^E = \{V^E = 0, E^E = 0\}
  Every time a new planning query (s_{start}, s_{goal}) comes in
      re-compute heuristic h^E
      run weighted A^* search with heuristics h^E inflated by weight w;
     execute the found path \pi
      G^E = G^E U \pi //add the found path to the E-graph
                 length(\pi)-1
h^E(s_0) = \min_{\pi(s_0, s_{aoal})}
                           \min(\varepsilon^E h^G(s_i, s_{i+1}), c^E(s_i, s_{i+1}))
```

For any state s, $h^{E}(s)$ is the cost of a least cost path from s to s goal in a graph $G' = \{V, E'\}$, where E' consists of:

- a) All edges (u,v) in E^E with cost $c^E(u,v)$ (i.e., original cost c(u,v))
- b) All pairs (u,v) in V with cost $\mathcal{E}^E h^G(u,v)$

```
How do you <u>efficiently</u> compute h^{E}()?
  Given a planning
  Initialize E-graph G^E = \{V^E = 0, E^E = 0\}
  Every time a new planning query (s_{start}, s_{goal}) comes in
      The What is h^{E}() with no prior experiences \{G^{E}=0\}?
      execute the for
                                 Time for the whiteboard example
       G^E = G^E U \pi
                  length(\pi)-1
h^E(s_0) = \min_{\pi(s_0, s_{goal})}
                             \min\bigl(\varepsilon^E h^G(s_i,s_{i+1}),c^E(s_i,s_{i+1})\bigr)
```

For any state s, $h^{E}(s)$ is the cost of a least cost path from s to s goal in a graph $G' = \{V, E'\}$, where E' consists of:

- a) All edges (u,v) in E^E with cost $c^E(u,v)$ (i.e., original cost c(u,v))
- b) All pairs (u,v) in V with cost $\mathcal{E}^E h^G(u,v)$

Efficient Computation of h^E

re-compute heuristic h^E for all states s in $\{V^E U s_{goal}\}$:

run a <u>single</u> Dijkstra's on graph $G^f = \{V^f, E^f\}$, where

a) $V^f = \{V^E U s_{goal}\}$ and $E^f = all$ pairs of states in V^f b) cost(u,v) = c(u,v) if (u,v) in E^E $cost(u,v) = \mathcal{E}^E h^G(u,v)$ otherwise

during the weighted A* search itself, for any state s:

$$h^{E}(s) = \min_{s'in \ \{V^{E} \cup s_{qoal}\}} (\varepsilon^{E}h^{G}(s,s') + h^{E}(s'))$$

Given a planning graph $G = \{V, E\}$ Initialize E-graph $G^E = \{V^E = 0, E^E = 0\}$ Every time a new planning query (s_{start}, s_{goal}) comes in re-compute heuristic b^E

heuristics $h^{\varepsilon}(s)$ is guaranteed to be ε -consistent

$$G^E = G - G - K$$

$$ength(\pi) - 1$$

$$h^E(s_0) = \min_{\pi(s_0, s_{goal})} \sum_{i=0}^{length(\pi) - 1} \min(\varepsilon^E h^G(s_i, s_{i+1}), c^E(s_i, s_{i+1}))$$

Planning

Theorem 1: Planning with E-graphs is complete with respect to the original graph

Theorem 2: When running weighted A* with inflation w:

 $cost(solution) \leq w \cdot \varepsilon^{\varepsilon} \cdot cost(optimal\ solution)$

heuristics $h^{\varepsilon}(s)$ is guaranteed to be ε -consistent

$$h^{E}(s_{0}) = \min_{\pi(s_{0}, s_{goal})} \sum_{i=0}^{length(\pi)-1} \min(\varepsilon^{E} h^{G}(s_{i}, s_{i+1}), c^{E}(s_{i}, s_{i+1}))$$

Effect of \mathcal{E}^E

• \mathcal{E}^E controls how much the search can rely on experiences/demonstrations in E-graph

Summary

- Planning with Experience Graphs a method for biasing search towards the reuse of previously planned paths and demonstrations
 - Based on the idea of re-computing heuristics to guide the search towards a set of paths rather than towards a goal
 - Not all domains may benefit from reusing prior paths
 - Useful in domains where a robot has a similar workspace across planning instances (e.g., manipulation for manufacturing)