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Can we re-use prior demonstrations 

to accelerate heuristic search?
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Experience Graphs [Phillips et al., RSS’12]

Consider original graph G = {V,E}
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Experience Graphs [Phillips et al., RSS’12]

Given a set of previous paths (experiences or demonstrations)…
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Experience Graphs [Phillips et al., RSS’12]

Put them together into an E-graph (Experience graph), GE={VE,EE}
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Given a new planning query…
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Experience Graphs [Phillips et al., RSS’12]



…re-use E-graph GE. For repetitive tasks, planning becomes much faster

goal

start
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Experience Graphs [Phillips et al., RSS’12]

states expanded shown in grey
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Experience Graphs [Phillips et al., RSS’12]

states expanded shown in grey

for which domains it would be useful 

and for which useless?



…re-use E-graph GE. For repetitive tasks, planning becomes much faster
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Experience Graphs [Phillips et al., RSS’12]

states expanded shown in grey

General idea:
Instead of using traditional heuristic to bias the search 
towards the goal, compute a new heuristics hE(s) that 

biases the search towards a set of paths in GE.
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For any state s0 in G, the new heuristic hE() function is:

Experience Graphs [Phillips et al., RSS’12]

states expanded shown in grey
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For any state s0 in G, the new heuristic hE() function is:

Experience Graphs [Phillips et al., RSS’12]

states expanded shown in grey

heuristics hE(s) biases the search towards those paths that
can be used to get to the goal with the least amount of
traversal outside of GE.

heuristics hE(s) biases the search towards those paths that
can be used to get to the goal with the least amount of
traversal outside of GE.



Planning with Experience Graphs Pseudocode
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Given a planning graph G = {V, E}

Initialize E-graph GE = {VE=0,EE=0}

Every time a new planning query (sstart, sgoal) comes in

re-compute heuristic hE

run weighted A* search with heuristics hE inflated by weight w;

execute the found path π

GE = GE U π //add the found path to the E-graph
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Given a planning graph G = {V, E}

Initialize E-graph GE = {VE=0,EE=0}

Every time a new planning query (sstart, sgoal) comes in

re-compute heuristic hE

run weighted A* search with heuristics hE inflated by weight w;

execute the found path π

GE = GE U π //add the found path to the E-graph

For any state s, hE(s) is the cost of a least cost path from s to s goal

in a graph G’ ={ V, E’}, where E’ consists of:
a) All edges (u,v) in EE with cost cE(u,v) (i.e., original cost c(u,v))
b) All pairs (u,v) in V with cost ƐEhG(u,v)
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Given a planning graph G = {V, E}

Initialize E-graph GE = {VE=0,EE=0}

Every time a new planning query (sstart, sgoal) comes in

re-compute heuristic hE

run weighted A* search with heuristics hE inflated by weight w;

execute the found path π

GE = GE U π //add the found path to the E-graph

For any state s, hE(s) is the cost of a least cost path from s to s goal

in a graph G’ ={ V, E’}, where E’ consists of:
a) All edges (u,v) in EE with cost cE(u,v) (i.e., original cost c(u,v))
b) All pairs (u,v) in V with cost ƐEhG(u,v)

For any state s, hE(s) is the cost of a least cost path from s to s goal

in a graph G’ ={ V, E’}, where E’ consists of:
a) All edges (u,v) in EE with cost cE(u,v) (i.e., original cost c(u,v))
b) All pairs (u,v) in V with cost ƐEhG(u,v)

Time for the whiteboard exampleTime for the whiteboard example

What is hE() with no prior experiences (GE = 0}?

How do you efficiently compute hE()?



Efficient Computation of hE
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re-compute heuristic hE for all states s’ in {V E U sgoal }:

run a single Dijkstra’s on graph Gf = {Vf,Ef}, where

a) Vf = {V E U sgoal } and  Ef = all pairs of states in Vf

b) cost(u,v) = c(u,v) if (u,v) in EE

cost(u,v) = ƐE hG(u,v) otherwise

during the weighted A* search itself, for any state s:
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Given a planning graph G = {V, E}

Initialize E-graph GE = {VE=0,EE=0}

Every time a new planning query (sstart, sgoal) comes in

re-compute heuristic hE

run weighted A* search with heuristics hE inflated by weight w;

execute the found path π

GE = GE U π //add the found path to the E-graph

heuristics hε(s) is guaranteed to be ε-consistentheuristics hε(s) is guaranteed to be ε-consistent
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Given a planning graph G = {V, E}

Initialize E-graph GE = {VE=0,EE=0}

Every time a new planning query (sstart, sgoal) comes in

re-compute heuristic hE

run weighted A* search with heuristics hE inflated by weight w;

execute the found path π

GE = GE U π //add the found path to the E-graph

heuristics hε(s) is guaranteed to be ε-consistentheuristics hε(s) is guaranteed to be ε-consistent

Theorem 1: Planning with E-graphs is complete 
with respect to the original graph

Theorem 2: When running weighted A* with 
inflation w:

cost(solution) ≤ w∙ƐE∙cost(optimal solution)

Theorem 1: Planning with E-graphs is complete 
with respect to the original graph

Theorem 2: When running weighted A* with 
inflation w:

cost(solution) ≤ w∙ƐE∙cost(optimal solution)



• ƐE controls how much the search can rely on experiences/demonstrations in 

E-graph

Effect of ƐE
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• Planning with Experience Graphs – a method for biasing search 

towards the reuse of previously planned paths and demonstrations

- Based on the idea of re-computing heuristics to guide the search towards a set of 

paths rather than towards a goal

- Not all domains may benefit from reusing prior paths

- Useful in domains where a robot has a similar workspace across planning instances 

(e.g., manipulation for manufacturing)

Summary
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