
15-887

Planning, Execution and Learning

Learning in Planning:

Experience Graphs

Maxim Likhachev

Robotics Institute

Carnegie Mellon University

Robots Often Perform Repetitive Tasks

Carnegie Mellon University 2

[Cowley et al., ‘13]

Robots Often Perform Repetitive Tasks

Carnegie Mellon University 3

[Cowley et al., ‘13]

Can we re-use prior experiences

to accelerate heuristic search?

Can we re-use prior experiences

to accelerate heuristic search?

Learning from Demonstrations

Carnegie Mellon University 4

[Phillips et al., ‘13]

Learning from Demonstrations

Carnegie Mellon University 5

[Phillips et al., ‘13]

Can we re-use prior demonstrations

to accelerate heuristic search?

Can we re-use prior demonstrations

to accelerate heuristic search?

Experience Graphs [Phillips et al., RSS’12]

Consider original graph G = {V,E}

Carnegie Mellon University 6

Experience Graphs [Phillips et al., RSS’12]

Given a set of previous paths (experiences or demonstrations)…

Carnegie Mellon University 7

Experience Graphs [Phillips et al., RSS’12]

Put them together into an E-graph (Experience graph), GE={VE,EE}

Carnegie Mellon University 8

Given a new planning query…

Carnegie Mellon University 9

Experience Graphs [Phillips et al., RSS’12]

…re-use E-graph GE. For repetitive tasks, planning becomes much faster

goal

start

Carnegie Mellon University 10

Experience Graphs [Phillips et al., RSS’12]

states expanded shown in grey

…re-use E-graph GE. For repetitive tasks, planning becomes much faster

goal

start

Carnegie Mellon University 11

Experience Graphs [Phillips et al., RSS’12]

states expanded shown in grey

for which domains it would be useful

and for which useless?

…re-use E-graph GE. For repetitive tasks, planning becomes much faster

goal

start

Carnegie Mellon University 12

Experience Graphs [Phillips et al., RSS’12]

states expanded shown in grey

General idea:
Instead of using traditional heuristic to bias the search
towards the goal, compute a new heuristics hE(s) that

biases the search towards a set of paths in GE.

General idea:
Instead of using traditional heuristic to bias the search
towards the goal, compute a new heuristics hE(s) that

biases the search towards a set of paths in GE.

…re-use E-graph GE. For repetitive tasks, planning becomes much faster

goal

start

Carnegie Mellon University 13

For any state s0 in G, the new heuristic hE() function is:

Experience Graphs [Phillips et al., RSS’12]

states expanded shown in grey

…re-use E-graph GE. For repetitive tasks, planning becomes much faster

goal

start

Carnegie Mellon University 14

For any state s0 in G, the new heuristic hE() function is:

Experience Graphs [Phillips et al., RSS’12]

states expanded shown in grey

heuristics hE(s) biases the search towards those paths that
can be used to get to the goal with the least amount of
traversal outside of GE.

heuristics hE(s) biases the search towards those paths that
can be used to get to the goal with the least amount of
traversal outside of GE.

Planning with Experience Graphs Pseudocode

Carnegie Mellon University 15

Given a planning graph G = {V, E}

Initialize E-graph GE = {VE=0,EE=0}

Every time a new planning query (sstart, sgoal) comes in

re-compute heuristic hE

run weighted A* search with heuristics hE inflated by weight w;

execute the found path π

GE = GE U π //add the found path to the E-graph

Planning with Experience Graphs Pseudocode

Carnegie Mellon University 16

Given a planning graph G = {V, E}

Initialize E-graph GE = {VE=0,EE=0}

Every time a new planning query (sstart, sgoal) comes in

re-compute heuristic hE

run weighted A* search with heuristics hE inflated by weight w;

execute the found path π

GE = GE U π //add the found path to the E-graph

For any state s, hE(s) is the cost of a least cost path from s to s goal

in a graph G’ ={ V, E’}, where E’ consists of:
a) All edges (u,v) in EE with cost cE(u,v) (i.e., original cost c(u,v))
b) All pairs (u,v) in V with cost ƐEhG(u,v)

For any state s, hE(s) is the cost of a least cost path from s to s goal

in a graph G’ ={ V, E’}, where E’ consists of:
a) All edges (u,v) in EE with cost cE(u,v) (i.e., original cost c(u,v))
b) All pairs (u,v) in V with cost ƐEhG(u,v)

Planning with Experience Graphs Pseudocode

Carnegie Mellon University 17

Given a planning graph G = {V, E}

Initialize E-graph GE = {VE=0,EE=0}

Every time a new planning query (sstart, sgoal) comes in

re-compute heuristic hE

run weighted A* search with heuristics hE inflated by weight w;

execute the found path π

GE = GE U π //add the found path to the E-graph

For any state s, hE(s) is the cost of a least cost path from s to s goal

in a graph G’ ={ V, E’}, where E’ consists of:
a) All edges (u,v) in EE with cost cE(u,v) (i.e., original cost c(u,v))
b) All pairs (u,v) in V with cost ƐEhG(u,v)

For any state s, hE(s) is the cost of a least cost path from s to s goal

in a graph G’ ={ V, E’}, where E’ consists of:
a) All edges (u,v) in EE with cost cE(u,v) (i.e., original cost c(u,v))
b) All pairs (u,v) in V with cost ƐEhG(u,v)

Time for the whiteboard exampleTime for the whiteboard example

What is hE() with no prior experiences (GE = 0}?

How do you efficiently compute hE()?

Efficient Computation of hE

Carnegie Mellon University 18

re-compute heuristic hE for all states s’ in {V E U sgoal }:

run a single Dijkstra’s on graph Gf = {Vf,Ef}, where

a) Vf = {V E U sgoal } and Ef = all pairs of states in Vf

b) cost(u,v) = c(u,v) if (u,v) in EE

cost(u,v) = ƐE hG(u,v) otherwise

during the weighted A* search itself, for any state s:

Planning with Experience Graphs Pseudocode

Carnegie Mellon University 19

Given a planning graph G = {V, E}

Initialize E-graph GE = {VE=0,EE=0}

Every time a new planning query (sstart, sgoal) comes in

re-compute heuristic hE

run weighted A* search with heuristics hE inflated by weight w;

execute the found path π

GE = GE U π //add the found path to the E-graph

heuristics hε(s) is guaranteed to be ε-consistentheuristics hε(s) is guaranteed to be ε-consistent

Planning with Experience Graphs Pseudocode

Carnegie Mellon University 20

Given a planning graph G = {V, E}

Initialize E-graph GE = {VE=0,EE=0}

Every time a new planning query (sstart, sgoal) comes in

re-compute heuristic hE

run weighted A* search with heuristics hE inflated by weight w;

execute the found path π

GE = GE U π //add the found path to the E-graph

heuristics hε(s) is guaranteed to be ε-consistentheuristics hε(s) is guaranteed to be ε-consistent

Theorem 1: Planning with E-graphs is complete
with respect to the original graph

Theorem 2: When running weighted A* with
inflation w:

cost(solution) ≤ w∙ƐE∙cost(optimal solution)

Theorem 1: Planning with E-graphs is complete
with respect to the original graph

Theorem 2: When running weighted A* with
inflation w:

cost(solution) ≤ w∙ƐE∙cost(optimal solution)

• ƐE controls how much the search can rely on experiences/demonstrations in

E-graph

Effect of ƐE

Carnegie Mellon University 21

• Planning with Experience Graphs – a method for biasing search

towards the reuse of previously planned paths and demonstrations

- Based on the idea of re-computing heuristics to guide the search towards a set of

paths rather than towards a goal

- Not all domains may benefit from reusing prior paths

- Useful in domains where a robot has a similar workspace across planning instances

(e.g., manipulation for manufacturing)

Summary

Carnegie Mellon University 22

