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A bit of terminology

Imitation Learning/Apprenticeship Learning/Learning from
Demonstrations/Robot Programming by Demonstrations

— Methods for programming robot behavior via demonstrations [Schaal & Atkeson,
‘94], [Abbeel & Ng, *04], [Pomerleau et al., ‘89], [Ratliff & Bagnell, ‘06], [ Billard,

Calinon & Dillmann, *13], [Sammut et al., ‘92],...
Major classes of Imitation Learning:

— Learning policies directly from demonstrated trajectories or supervised learning
[Schaal & Atkeson, ‘94], [Pomerleau et al., ‘89],...

— Learning a cost function (or reward function) from demonstrations and then using it
to generate plans (policies) [Abbeel & Ng, *04], [Ratliff & Bagnell, ‘06], ...
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‘94], [Abbeel & Ng, *04], [Pomerleau et al., ‘89], [Ratliff & Bagnell, ‘06], [ Billard,
Calinon & Dillmann, ’13], [Sammut et al., ‘92],...

Major classes of Imitation Learning:

— Learning policies directly from demonstrated trajectories or supervised learning
[Schaal & Atkeson, ‘94], [Pomerleau et al., ‘89],...

— Learning a cost function (or reward function) from demonstrations and then using it
to generate plans (policies) [Abbeel & Ng, *04], [Ratliff & Bagnell, ‘06], ...

Inverse Reinforcement Learning (IRL), Inverse Optimal Control
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Learning a cost function

 Recover a cost function that makes given demonstrations optimal
plans [Ratliff, Silver & Bagnell, *09]
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Example

Consider a (simple) outdoor navigation example

slippery area

cliff
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Example

*  Consider a (simple) outdoor navigation example

Can we teach the planner to avoid slippery areas and driving close to the

cliff (without manually tweaking a cost function)?
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Can we teach the planner to avoid slippery areas and driving close to the
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Example

*  Consider a (simple) outdoor navigation example

Can we teach the planner to avoid slippery areas and driving close to the
cliff (without manually tweaking a cost function)?

A user gives N demonstrations of what paths are good.
We want a cost function for which these demonstrated trajectories are least-cost plans
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Example

*  Consider a (simple) outdoor navigation example

Demonstration d, on graph G,
Demonstration d, on graph G,

e £

S P

p—

slippery area

G

[

Carnegie Mellon University




Example

*  Consider a (simple) outdoor navigation example

Demonstration d, on graph G,
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Demonstration d, on graph G,

Compute cost function that
makes these demonstrations é < >

optimal paths

Cost function — a function of C
features @: c(s,s’) = f(¢p(s,s’)) i
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Example

Consider a (simple) outdoor navigation example

Demonstration d, on graph G,

Demonstration d, on graph G,

‘,

slippery area

Carnegie Mellon University




Example

Consider a (simple) outdoor navigation example

For example:

¢, 1/(distance to slippery area)

¢, : 1/(distance to cliff)
¢, : length of the transition

Need to compute (learn) w,w,,w, based on demonstrations

Demonstration d, on graph G,
Oad®
P
5
I

[~ ®

Most common example:

f(@(s,5°) = 2w (s,s")

J
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LEARCH (LEArning to searCH)

[Ratliff, Silver, Bagnell, 09]

Given demonstrations {d,,...d\} on graphs {G,, ...,Gy} and features function @
Need to compute c(s,s’) = f(§(s,s’)) s.t. d; = arg min Zlivzl c(m;)
i

While (Not Converged)
fori=I..N
update edge costs in graph G, using the current function f(¢(,))

length(nl) 1
C(Sk» Sk+1)

increase f(¢(,)) for edges (u,v) s.t. {(u v) inw; AND (u,v) not in d;}
decrease f($(,)) for edges (u,v) s.t. {(u,v) notin w; AND (u,v) in d;}

plan an optimal path ] = arg mln Dke
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LEARCH (LEArning to searCH)

[Ratliff, Silver, Bagnell, 09]

Given demonstrations {d,,...d\} on graphs {G,, ...,Gy} and features function @
Need to compute c(s,s’) = f(§(s,s’)) s.t. d; = arg min Zlivzl c(m;)
i

While (Not Converged)
fori=I..N
update edge costs in graph G, using the current function f(¢(,))
¢(Sk, Sk+1)

increase f(¢(,)) for edges (u,v) s.t. {(u v) inw; AND (u,v) not in d;}
decrease f($(,)) for edges (u,v) s.t. {(u,v) notin w; AND (u,v) in d;}

plan an optimal path ] = arg mln Zlength(m) 1
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LEARCH (LEArning to searCH)

[Ratliff, Silver, Bagnell, 09]

Given demonstrations {d,,...d\} on graphs {G,, ...,Gy} and features function @
Need to compute c(s,s’) = f(§(s,s’)) s.t. d; = arg min Zlivzl c(m;)
i

While (Not Converged)
fori=I..N
update edge costs in graph G, using the current function f(¢(,))

length(nl) 1
C(Sk» Sk+1)

increase log f(¢(,)) for edges (u, v) s.t. {(u,v) in t; AND (u,v) not in d;}
decrease log f(§(,)) for edges (u,v) s.t. {(u,v) notin t; AND (u,v) in d;}

plan an optimal path ] = arg mln Dke
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Example

Consider a (simple) outdoor navigation example

Demonstration d; on graph G, skippery area

£
5
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LEARCH (LEArning to searCH)

[Ratliff, Silver, Bagnell, 09]

Given demonstrations {d,,...d\} on graphs {G,, ...,Gy} and features function @
Need to compute c(s,s’) = f(§(s,s’)) s.t. d; = arg min Zlivzl c(m;)
i

While (Not Converged)
fori=I..N
update edge costs in graph G, using the current function f(¢(,))

length(ﬂz) 1{C(5k' Sk+1) — L(Sk, Sk+1)}

increase log f(¢(,)) for edges (u, v) s.t. {(u,v) in t; AND (u,v) not in d;}
decrease log f(P(,)) for edges (u,v) s.t. {(u,v) notin t; AND (u,v) in d;}

plan an optimal path ] = arg mln Dke

Loss function penalizes being NOT on a demonstration path.
For example, l(s,s’)=0 if (s,s’) on d; and l(s,s’)>1 otherwise
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LEARCH (LEArning to searCH)

[Ratliff, Silver, Bagnell, 09]

Given demonstrations {d,,...d\} on graphs {G,, ...,Gy} and features function @
Need to compute c(s,s’) = f(§(s,s’)) s.t. d; = arg min Zlivzl c(m;)
i

While (Not Conyczes
fori=I..N
update edge costs 1n grup reee p—tton 1(P(,))

length(ﬂz) 1{C(5k15k+1) — l(Sk, Sk+1)}

increase log f(¢(,)) for edges (u, v) s.t. {(u,v) in t; AND (u,v) not in d;}
decrease log f(P(,)) for edges (u,v) s.t. {(u,v) notin t; AND (u,v) in d;}

=)

plan an optimal path ] = arg mln Z
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LEARCH (LEArning to searCH)

[Ratliff, Silver, Bagnell, 09]

Given demonstrations {d,,...dy} on graphs {G,,...,G\} and features function @
Need to compute c(s,s’) = f{$(s,s’) s.t. d; = argmin Y.\, c(m;)
i

While (Not Convezeass
fori=I...N
update edge co

plar

increase log

de /) £
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Learning cost in graphs vs. Learning rewards in MDPs

 Learning cost framework can be generalized to learning rewards in
MDPs (typical Inverse Reinforcement Learning)

e Two broad frameworks to Inverse Reinforcement Learning in MDPs:

— Max-margin [Ratliff & Bagnell, ‘06] — equivalent to the learning cost framework we
just learned

— Feature expectation matching [ Abbeel & Ng, *04]
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Summary

Learning cost function 1s a way of learning from demonstrations

Works by learning a cost function that makes demonstrations to be
optimal solutions to planning problems

Performance depends on the design of the features used to map states
onto the cost function that is being learned
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