
15-887 

Planning, Execution and Learning

Learning in Planning: 

Learning Cost Function

Maxim Likhachev

Robotics Institute

Carnegie Mellon University



• Imitation Learning/Apprenticeship Learning/Learning from 

Demonstrations/Robot Programming by Demonstrations

– Methods for programming robot behavior via demonstrations [Schaal & Atkeson, 

‘94], [Abbeel & Ng, ’04], [Pomerleau et al., ‘89], [Ratliff & Bagnell, ‘06], [Billard, 

Calinon & Dillmann, ’13], [Sammut et al., ‘92],…

• Major classes of Imitation Learning:

– Learning policies directly from demonstrated trajectories or supervised learning 

[Schaal & Atkeson, ‘94], [Pomerleau et al., ‘89],…

– Learning a cost function (or reward function) from demonstrations and then using it 

to generate plans (policies) [Abbeel & Ng, ’04], [Ratliff & Bagnell, ‘06], ...

A bit of terminology

Carnegie Mellon University 2



• Imitation Learning/Apprenticeship Learning/Learning from 

Demonstrations/Robot Programming by Demonstrations

– Methods for programming robot behavior via demonstrations [Schaal & Atkeson, 

‘94], [Abbeel & Ng, ’04], [Pomerleau et al., ‘89], [Ratliff & Bagnell, ‘06], [Billard, 

Calinon & Dillmann, ’13], [Sammut et al., ‘92],…

• Major classes of Imitation Learning:

– Learning policies directly from demonstrated trajectories or supervised learning 

[Schaal & Atkeson, ‘94], [Pomerleau et al., ‘89],…

– Learning a cost function (or reward function) from demonstrations and then using it 

to generate plans (policies) [Abbeel & Ng, ’04], [Ratliff & Bagnell, ‘06], ...

A bit of terminology

Carnegie Mellon University 3

Inverse Reinforcement Learning (IRL), Inverse Optimal ControlInverse Reinforcement Learning (IRL), Inverse Optimal Control



• Recover a cost function that makes given demonstrations optimal 

plans [Ratliff, Silver & Bagnell, ’09]

Learning a cost function

Carnegie Mellon University 4



• Consider a (simple) outdoor navigation example

Example

Carnegie Mellon University 5

R G
slippery area

cliff

Modeled as graph search



• Consider a (simple) outdoor navigation example

Example

Carnegie Mellon University 6

R G
slippery area

cliff

Can we teach the planner to avoid slippery areas and driving close to the 

cliff (without manually tweaking a cost function)? 

Modeled as graph search



• Consider a (simple) outdoor navigation example

Example

Carnegie Mellon University 7

R G
slippery area

cliff

Can we teach the planner to avoid slippery areas and driving close to the 

cliff (without manually tweaking a cost function)? 

?

?

?

?

?

?
?

?

= learning the “right” cost function



• Consider a (simple) outdoor navigation example

Example

Carnegie Mellon University 8

R

G

slippery area

Can we teach the planner to avoid slippery areas and driving close to the 

cliff (without manually tweaking a cost function)? 

R

G

cliff

A user gives N demonstrations of what paths are good.

We want a cost function for which these demonstrated trajectories are least-cost plans



• Consider a (simple) outdoor navigation example

Example

Carnegie Mellon University 9

R

G

slippery area

R

G

cliff

Demonstration d1 on graph G1

S

G

Demonstration d2 on graph G2

S

G



• Consider a (simple) outdoor navigation example

Example

Carnegie Mellon University 10

R

G

slippery area

R

G

cliff

Demonstration d1 on graph G1

S

G

Demonstration d2 on graph G2

S

G

Compute cost function that
makes these demonstrations
optimal paths

Compute cost function that
makes these demonstrations
optimal paths

Cost function – a function of
features Φ: c(s,s’) = f(ɸ(s,s’))
Cost function – a function of
features Φ: c(s,s’) = f(ɸ(s,s’))

Why not learn edge costs directly?



• Consider a (simple) outdoor navigation example

Example

Carnegie Mellon University 11

R

G

cliff

R

G

slippery area

Demonstration d1 on graph G1

S

G

Demonstration d2 on graph G2

S

G

Compute cost function that
makes these demonstrations
optimal paths

Compute cost function that
makes these demonstrations
optimal paths

Cost function – a function of
features Φ: c(s,s’) = f(ɸ(s,s’))
Cost function – a function of
features Φ: c(s,s’) = f(ɸ(s,s’))

What Φ would make sense in this example?



• Consider a (simple) outdoor navigation example

Example

Carnegie Mellon University 12

R

G

slippery area

R

G

cliff

Demonstration d1 on graph G1

S

G

Demonstration d2 on graph G2

S

G

Compute cost function that
makes these demonstrations
optimal paths

Compute cost function that
makes these demonstrations
optimal paths

Cost function – a function of
features Φ: c(s,s’) = f(ɸ(s,s’))
Cost function – a function of
features Φ: c(s,s’) = f(ɸ(s,s’))

Example of f()?



• Consider a (simple) outdoor navigation example

Example

Carnegie Mellon University 13

R

G

slippery area

R

G

cliff

Demonstration d1 on graph G1

S

G

Demonstration d2 on graph G2

S

G

Compute cost function that
makes these demonstrations
optimal paths

Compute cost function that
makes these demonstrations
optimal paths

Cost function – a function of
features Φ: c(s,s’) = f(ɸ(s,s’))
Cost function – a function of
features Φ: c(s,s’) = f(ɸ(s,s’))

Example of f()?

Most common example:
f(ɸ(s,s’)) = Σwiɸi(s,s’)

Most common example:
f(ɸ(s,s’)) = Σwiɸi(s,s’)



• Consider a (simple) outdoor navigation example

Example

Carnegie Mellon University 14

R

G

cliff

Demonstration d2 on graph G2

S

G

Most common example:
f(ɸ(s,s’)) = Σwiɸi(s,s’)

Most common example:
f(ɸ(s,s’)) = Σwiɸi(s,s’)

For example:
ɸ0 : 1/(distance to slippery area)
ɸ1 : 1/(distance to cliff)
ɸ2 : length of the transition

Need to compute (learn) w0,w1,w2 based on demonstrations



LEARCH (LEArning to searCH) 
[Ratliff, Silver, Bagnell, 09]

Carnegie Mellon University 15

Given demonstrations {d1,…dN} on graphs {G1,…,GN} and features function Φ

Need to compute c(s,s’) = f(ɸ(s,s’)) s.t. 𝑑𝑖 = argmin
𝜋𝑖
 𝑖=1
𝑁 𝑐(𝜋𝑖)

While (Not Converged)

for i=1…N

update edge costs in graph Gi using the current function f(ɸ(,))

plan an optimal path 𝜋𝑖
∗ = argmin

𝜋𝑖
 𝑘=0
𝑙𝑒𝑛𝑔𝑡ℎ 𝜋𝑖 −1 𝑐(𝑠𝑘 , 𝑠𝑘+1)

increase f(ɸ(,)) for edges (u,v) s.t. {(u,v) in 𝜋𝑖
∗ AND (u,v) not in 𝑑𝑖}

decrease f(ɸ(,)) for edges (u,v) s.t. {(u,v) not in 𝜋𝑖
∗ AND (u,v) in 𝑑𝑖}



LEARCH (LEArning to searCH) 
[Ratliff, Silver, Bagnell, 09]

Carnegie Mellon University 16

Given demonstrations {d1,…dN} on graphs {G1,…,GN} and features function Φ

Need to compute c(s,s’) = f(ɸ(s,s’)) s.t. 𝑑𝑖 = argmin
𝜋𝑖
 𝑖=1
𝑁 𝑐(𝜋𝑖)

While (Not Converged)

for i=1…N

update edge costs in graph Gi using the current function f(ɸ(,))

plan an optimal path 𝜋𝑖
∗ = argmin

𝜋𝑖
 𝑘=0
𝑙𝑒𝑛𝑔𝑡ℎ 𝜋𝑖 −1 𝑐(𝑠𝑘 , 𝑠𝑘+1)

increase f(ɸ(,)) for edges (u,v) s.t. {(u,v) in 𝜋𝑖
∗ AND (u,v) not in 𝑑𝑖}

decrease f(ɸ(,)) for edges (u,v) s.t. {(u,v) not in 𝜋𝑖
∗ AND (u,v) in 𝑑𝑖}

Is 𝜋𝑖
∗ always guaranteed to converge to di?



LEARCH (LEArning to searCH) 
[Ratliff, Silver, Bagnell, 09]

Carnegie Mellon University 17

Given demonstrations {d1,…dN} on graphs {G1,…,GN} and features function Φ

Need to compute c(s,s’) = f(ɸ(s,s’)) s.t. 𝑑𝑖 = argmin
𝜋𝑖
 𝑖=1
𝑁 𝑐(𝜋𝑖)

While (Not Converged)

for i=1…N

update edge costs in graph Gi using the current function f(ɸ(,))

plan an optimal path 𝜋𝑖
∗ = argmin

𝜋𝑖
 𝑘=0
𝑙𝑒𝑛𝑔𝑡ℎ 𝜋𝑖 −1 𝑐(𝑠𝑘 , 𝑠𝑘+1)

increase f(ɸ(,)) for edges (u,v) s.t. {(u,v) in 𝜋𝑖
∗ AND (u,v) not in 𝑑𝑖}

decrease f(ɸ(,)) for edges (u,v) s.t. {(u,v) not in 𝜋𝑖
∗ AND (u,v) in 𝑑𝑖}

Any problem with arbitrary decrease of f(ɸ(,))?

Any solutions?



LEARCH (LEArning to searCH) 
[Ratliff, Silver, Bagnell, 09]

Carnegie Mellon University 18

Given demonstrations {d1,…dN} on graphs {G1,…,GN} and features function Φ

Need to compute c(s,s’) = f(ɸ(s,s’)) s.t. 𝑑𝑖 = argmin
𝜋𝑖
 𝑖=1
𝑁 𝑐(𝜋𝑖)

While (Not Converged)

for i=1…N

update edge costs in graph Gi using the current function f(ɸ(,))

plan an optimal path 𝜋𝑖
∗ = argmin

𝜋𝑖
 𝑘=0
𝑙𝑒𝑛𝑔𝑡ℎ 𝜋𝑖 −1 𝑐(𝑠𝑘 , 𝑠𝑘+1)

increase log f(ɸ(,)) for edges (u,v) s.t. {(u,v) in 𝜋𝑖
∗ AND (u,v) not in 𝑑𝑖}

decrease log f(ɸ(,)) for edges (u,v) s.t. {(u,v) not in 𝜋𝑖
∗ AND (u,v) in 𝑑𝑖}



• Consider a (simple) outdoor navigation example

Example

Carnegie Mellon University 19

Demonstration d1 on graph G1

S

G

R

G

slippery area

Suppose initial w0 = 0. Any problem learning W?

Need a loss function that makes the algorithm learn
harder to stay on the demonstrated paths (related to
maximizing the margin in a classifier)

Need a loss function that makes the algorithm learn
harder to stay on the demonstrated paths (related to
maximizing the margin in a classifier)



LEARCH (LEArning to searCH) 
[Ratliff, Silver, Bagnell, 09]

Carnegie Mellon University 20

Given demonstrations {d1,…dN} on graphs {G1,…,GN} and features function Φ

Need to compute c(s,s’) = f(ɸ(s,s’)) s.t. 𝑑𝑖 = argmin
𝜋𝑖
 𝑖=1
𝑁 𝑐(𝜋𝑖)

While (Not Converged)

for i=1…N

update edge costs in graph Gi using the current function f(ɸ(,))

plan an optimal path 𝜋𝑖
∗ = argmin

𝜋𝑖
 𝑘=0
𝑙𝑒𝑛𝑔𝑡ℎ 𝜋𝑖 −1{𝑐 𝑠𝑘 , 𝑠𝑘+1 − 𝒍 𝐬𝐤, 𝐬𝐤+𝟏 }

increase log f(ɸ(,)) for edges (u,v) s.t. {(u,v) in 𝜋𝑖
∗ AND (u,v) not in 𝑑𝑖}

decrease log f(ɸ(,)) for edges (u,v) s.t. {(u,v) not in 𝜋𝑖
∗ AND (u,v) in 𝑑𝑖}

Loss function penalizes being NOT on a demonstration path.
For example, 𝑙(s,s’)=0 if (s,s’) on di and 𝑙(s,s’)>1 otherwise

Loss function penalizes being NOT on a demonstration path.
For example, 𝑙(s,s’)=0 if (s,s’) on di and 𝑙(s,s’)>1 otherwise



Given demonstrations {d1,…dN} on graphs {G1,…,GN} and features function Φ

Need to compute c(s,s’) = f(ɸ(s,s’)) s.t. 𝑑𝑖 = argmin
𝜋𝑖
 𝑖=1
𝑁 𝑐(𝜋𝑖)

While (Not Converged)

for i=1…N

update edge costs in graph Gi using the current function f(ɸ(,))

plan an optimal path 𝜋𝑖
∗ = argmin

𝜋𝑖
 𝑘=0
𝑙𝑒𝑛𝑔𝑡ℎ 𝜋𝑖 −1{𝑐 𝑠𝑘 , 𝑠𝑘+1 − 𝑙 𝑠𝑘 , 𝑠𝑘+1 }

increase log f(ɸ(,)) for edges (u,v) s.t. {(u,v) in 𝜋𝑖
∗ AND (u,v) not in 𝑑𝑖}

decrease log f(ɸ(,)) for edges (u,v) s.t. {(u,v) not in 𝜋𝑖
∗ AND (u,v) in 𝑑𝑖}

LEARCH (LEArning to searCH) 
[Ratliff, Silver, Bagnell, 09]

Carnegie Mellon University 21

How do we decide how to increase/decrease f(ɸ(,))?



Given demonstrations {d1,…dN} on graphs {G1,…,GN} and features function Φ

Need to compute c(s,s’) = f(ɸ(s,s’)) s.t. 𝑑𝑖 = argmin
𝜋𝑖
 𝑖=1
𝑁 𝑐(𝜋𝑖)

While (Not Converged)

for i=1…N

update edge costs in graph Gi using the current function f(ɸ(,))

plan an optimal path 𝜋𝑖
∗ = argmin

𝜋𝑖
 𝑘=0
𝑙𝑒𝑛𝑔𝑡ℎ 𝜋𝑖 −1{𝑐 𝑠𝑘 , 𝑠𝑘+1 − 𝑙 𝑠𝑘 , 𝑠𝑘+1 }

increase log f(ɸ(,)) for edges (u,v) s.t. {(u,v) in 𝜋𝑖
∗ AND (u,v) not in 𝑑𝑖}

decrease log f(ɸ(,)) for edges (u,v) s.t. {(u,v) not in 𝜋𝑖
∗ AND (u,v) in 𝑑𝑖}

LEARCH (LEArning to searCH) 
[Ratliff, Silver, Bagnell, 09]

Carnegie Mellon University 22

How do we decide how to increase/decrease f(ɸ(,))?

Set dC vector as: +1 for all edges that need to be increased, 
and -1 for all edges that need to be decreased. 

Recompute f(ɸ(,)) to make a step in the direction of dC

Set dC vector as: +1 for all edges that need to be increased, 
and -1 for all edges that need to be decreased. 

Recompute f(ɸ(,)) to make a step in the direction of dC

For example, if f(ɸ(s,s’)) = Σwiɸi(s,s’)=ΦW, then:
1. Solve for vector dW from ΦdW = dC (e.g., dW = (ΦTΦ)-1Φ T dC )

2. Update W: W = W + ηdW

For example, if f(ɸ(s,s’)) = Σwiɸi(s,s’)=ΦW, then:
1. Solve for vector dW from ΦdW = dC (e.g., dW = (ΦTΦ)-1Φ T dC )

2. Update W: W = W + ηdW



• Learning cost framework can be generalized to learning rewards in 

MDPs (typical Inverse Reinforcement Learning)

• Two broad frameworks to Inverse Reinforcement Learning in MDPs:

– Max-margin [Ratliff & Bagnell, ‘06] – equivalent to the learning cost framework we 

just learned

– Feature expectation matching [Abbeel & Ng, ’04]

Learning cost in graphs vs. Learning rewards in MDPs 

Carnegie Mellon University 23



• Learning cost function is a way of learning from demonstrations

• Works by learning a cost function that makes demonstrations to be 

optimal solutions to planning problems

• Performance depends on the design of the features used to map states 

onto the cost function that is being learned

Summary

Carnegie Mellon University 24


