About Me - My Research Interests: - Planning, Decision-making, Learning - Applications: planning for complex robotic systems including aerial and ground robots, manipulation platforms, small teams of heterogeneous robots - More info: http://www.cs.cmu.edu/~maxim - Search-based Planning Lab: http://www.sbpl.net ### What is Planning? • According to Wikipedia: "Planning is the process of thinking about an organizing the activities required to achieve a desired goal." #### • Given - model (states and actions) of the agent(s) $M^a = \langle S^a, A^a \rangle$ - -a model of the world M^w - belief b_c^a of the agent about its current state - belief b_c^w of the agent about the current state of the world - belief of the agent over the cost function C of its actions - -desired set of states for agent and world G ### • Compute a plan π that: - maps one or more belief tuples $\langle b^a, b^w \rangle$ onto actions a in A^a - reaches one of the desired states in G #### • Given - model (states and actions) of the agent(s) $M^a = \langle S^a, A^a \rangle$ - -a model of the world M^w - belief b_c of the agent about its current state - belief b_c^w of the agent about the current state of the world - belief of the agent over the cost function C of its actions - -desired set of states for agent and world G ### • Compute a plan π that: - maps one or more belief tuples $\langle b^a, b^w \rangle$ onto actions a in A^a - reaches one of the desired states in G ### 2D path planning for omnidirectional robot: What is M^a ? What is b_c^a ? What is b_c^{w} ? What is C? What is G? #### • Given - model (states and actions) of the agent(s) $M^a = \langle S^a, A^a \rangle$ - -a model of the world M^w - belief b_c of the agent about its current state - belief b_c^w of the agent about the current state of the world - belief of the agent over the cost function C of its actions - -desired set of states for agent and world G ### • Compute a plan π that: - maps one or more belief tuples $\langle b^a, b^w \rangle$ onto actions a in A^a - reaches one of the desired states in G 4D (x,y,heading,velocity) path planning for autonomous navigation: What is M^a ? What is $b_c{}^a$? What is $b_c{}^w$? What is C? What is G? part of efforts by Tartanracing team from CMU for the Urban Challenge 2007 race #### • Given - model (states and actions) of the agent(s) $M^a = \langle S^a, A^a \rangle$ - -a model of the world M^w - belief b_c^a of the agent about its current state - belief b_c^w of the agent about the current state of the world - belief of the agent over the cost function C of its actions - -desired set of states for agent and world G ### • Compute a plan π that: - maps one or more belief tuples $\langle b^a, b^w \rangle$ onto actions a in A^a - reaches one of the desired states in G 5D (x,y,z,heading,time) path planning for autonomous flight among people : What is M^a ? What is b_c^a ? What is b_c^w ? What is C? What is G? #### • Given - model (states and actions) of the agent(s) $M^a = \langle S^a, A^a \rangle$ - -a model of the world M^w - belief b_c of the agent about its current state - belief b_c^w of the agent about the current state of the world - belief of the agent over the cost function C of its actions - -desired set of states for agent and world G ### • Compute a plan π that: - maps one or more belief tuples $\langle b^a, b^w \rangle$ onto actions a in A^a - reaches one of the desired states in G Motion planning for a mobile manipulator PR2 opening a door: What is M^a ? What is $b_c{}^a$? What is $b_c{}^w$? What is C? What is G? Planning a travel from Pittsburgh, PA to Florence, Italy: What is M^a ? What is b_c^a ? What is b_c^{w} ? What is C? What is G? ## Example of Planning under Uncertainty #### • Given - model (states and actions) of the agent(s) $M^a = \langle S^a, A^a \rangle$ - -a model of the world M^w - belief b_c of the agent about its current state - belief b_c^w of the agent about the current state of the world - belief of the agent over the cost function C of its actions - -desired set of states for agent and world G ### • Compute a plan π that: - maps one or more belief tuples $\langle b^a, b^w \rangle$ onto actions a in A^a - reaches one of the desired states in G Planning for navigation under uncertainty in traversability: What is M^a ? What is b_c^a ? What is b_c^w ? What is C? What is G? ## Continuous vs. Discrete vs. Hybrid Model #### • Given - model (states and actions) of the agent(s) $M^a = \langle S^a, A^a \rangle$ - -a model of the world M^w - belief b_c^a of the agent about its current state - belief b_c^w of the agent about the current state of the world - belief of the agent over the cost function C of its actions - -desired set of states for agent and world G ### • Compute a plan π that: - maps one or more belief tuples $\langle b^a, b^w \rangle$ onto actions a in A^a - reaches one of the desired states in G #### continuous discrete hybrid ## Global vs. Local Planning Carnegie Mellon University # Planning vs. Control ## Some of the topics covered in class - Methods for constructing models - Methods for efficient planning on these models - Interleaving planning and execution - Improving planning via learning