About Me

- My Research Interests:
 - Planning, Decision-making, Learning
 - Applications: planning for complex robotic systems including aerial and ground robots, manipulation platforms, small teams of heterogeneous robots
- More info: http://www.cs.cmu.edu/~maxim
- Search-based Planning Lab: http://www.sbpl.net

What is Planning?

• According to Wikipedia: "Planning is the process of thinking about an organizing the activities required to achieve a desired goal."

• Given

- model (states and actions) of the agent(s) $M^a = \langle S^a, A^a \rangle$
- -a model of the world M^w
- belief b_c^a of the agent about its current state
- belief b_c^w of the agent about the current state of the world
- belief of the agent over the cost function C of its actions
- -desired set of states for agent and world G

• Compute a plan π that:

- maps one or more belief tuples $\langle b^a, b^w \rangle$ onto actions a in A^a
- reaches one of the desired states in G

• Given

- model (states and actions) of the agent(s) $M^a = \langle S^a, A^a \rangle$
- -a model of the world M^w
- belief b_c of the agent about its current state
- belief b_c^w of the agent about the current state of the world
- belief of the agent over the cost function C of its actions
- -desired set of states for agent and world G

• Compute a plan π that:

- maps one or more belief tuples $\langle b^a, b^w \rangle$ onto actions a in A^a
- reaches one of the desired states in G

2D path planning for omnidirectional robot:

What is M^a ?

What is b_c^a ?

What is b_c^{w} ?

What is C?

What is G?

• Given

- model (states and actions) of the agent(s) $M^a = \langle S^a, A^a \rangle$
- -a model of the world M^w
- belief b_c of the agent about its current state
- belief b_c^w of the agent about the current state of the world
- belief of the agent over the cost function C of its actions
- -desired set of states for agent and world G

• Compute a plan π that:

- maps one or more belief tuples $\langle b^a, b^w \rangle$ onto actions a in A^a
- reaches one of the desired states in G

4D (x,y,heading,velocity) path planning for autonomous navigation:

What is M^a ?
What is $b_c{}^a$?
What is $b_c{}^w$?
What is C?
What is G?

part of efforts by Tartanracing team from CMU for the Urban Challenge 2007 race

• Given

- model (states and actions) of the agent(s) $M^a = \langle S^a, A^a \rangle$
- -a model of the world M^w
- belief b_c^a of the agent about its current state
- belief b_c^w of the agent about the current state of the world
- belief of the agent over the cost function C of its actions
- -desired set of states for agent and world G

• Compute a plan π that:

- maps one or more belief tuples $\langle b^a, b^w \rangle$ onto actions a in A^a
- reaches one of the desired states in G

5D (x,y,z,heading,time) path planning for autonomous flight among people :

What is M^a ? What is b_c^a ?

What is b_c^w ?

What is C?

What is G?

• Given

- model (states and actions) of the agent(s) $M^a = \langle S^a, A^a \rangle$
- -a model of the world M^w
- belief b_c of the agent about its current state
- belief b_c^w of the agent about the current state of the world
- belief of the agent over the cost function C of its actions
- -desired set of states for agent and world G

• Compute a plan π that:

- maps one or more belief tuples $\langle b^a, b^w \rangle$ onto actions a in A^a
- reaches one of the desired states in G

Motion planning for a mobile manipulator PR2 opening a door:

What is M^a ?
What is $b_c{}^a$?
What is $b_c{}^w$?
What is C?
What is G?

Planning a travel from Pittsburgh, PA to Florence, Italy:

What is M^a ?

What is b_c^a ?

What is b_c^{w} ?

What is C?

What is G?

Example of Planning under Uncertainty

• Given

- model (states and actions) of the agent(s) $M^a = \langle S^a, A^a \rangle$
- -a model of the world M^w
- belief b_c of the agent about its current state
- belief b_c^w of the agent about the current state of the world
- belief of the agent over the cost function C of its actions
- -desired set of states for agent and world G

• Compute a plan π that:

- maps one or more belief tuples $\langle b^a, b^w \rangle$ onto actions a in A^a
- reaches one of the desired states in G

Planning for navigation under uncertainty in traversability:

What is M^a ?
What is b_c^a ?
What is b_c^w ?
What is C?
What is G?

Continuous vs. Discrete vs. Hybrid Model

• Given

- model (states and actions) of the agent(s) $M^a = \langle S^a, A^a \rangle$
- -a model of the world M^w
- belief b_c^a of the agent about its current state
- belief b_c^w of the agent about the current state of the world
- belief of the agent over the cost function C of its actions
- -desired set of states for agent and world G

• Compute a plan π that:

- maps one or more belief tuples $\langle b^a, b^w \rangle$ onto actions a in A^a
- reaches one of the desired states in G

continuous

discrete

hybrid

Global vs. Local Planning

Carnegie Mellon University

Planning vs. Control

Some of the topics covered in class

- Methods for constructing models
- Methods for efficient planning on these models
- Interleaving planning and execution
- Improving planning via learning