
15-887

Planning, Execution and Learning

Execution I:

Anytime Incremental A*

Maxim Likhachev

Robotics Institute

Carnegie Mellon University

Carnegie Mellon University 2

Planning during Execution

• Planning is a repeated process!

Reasons?

Carnegie Mellon University 3

Planning during Execution

ATRV navigating

initially-unknown environment planning map and path

• Planning is a repeated process!
– partially-known environments

– dynamic environments

– imperfect execution of plans

– imprecise localization

Carnegie Mellon University 4

Planning during Execution

• Planning is a repeated process!
– partially-known environments

– dynamic environments

– imperfect execution of plans

– imprecise localization

planning in dynamic environments repeated planning outside of robotics

Carnegie Mellon University 5

Planning during Execution

• Planning is a repeated process!
– partially-known environments

– dynamic environments

– imperfect execution of plans

– imprecise localization

• Need to be able to re-plan fast!

• Several methodologies to achieve this:

– anytime heuristic search: return the best plan possible within T msecs

– incremental heuristic search: speed up search by reusing previous efforts

– real-time heuristic search: plan few steps towards the goal and re-plan later

Carnegie Mellon University 6

Planning during Execution

• Planning is a repeated process!
– partially-known environments

– dynamic environments

– imperfect execution of plans

– imprecise localization

• Need to be able to re-plan fast!

• Several methodologies to achieve this:

– anytime heuristic search: return the best plan possible within T msecs

– incremental heuristic search: speed up search by reusing previous efforts

– real-time heuristic search: plan few steps towards the goal and re-plan later

this class

next class

Carnegie Mellon University 7

Planning during Execution

• Planning is a repeated process!
– partially-known environments

– dynamic environments

– imperfect execution of plans

– imprecise localization

• Need to be able to re-plan fast!

• Several methodologies to achieve this:

– anytime heuristic search: return the best plan possible within T msecs

– incremental heuristic search: speed up search by reusing previous efforts

– real-time heuristic search: plan few steps towards the goal and re-plan later

8

Anytime Heuristic Search: Straw Man Approach

• Constructing anytime search based on weighted A*:

- find the best path possible given some amount of time for planning

- do it by running a series of weighted A* searches with decreasing ε:

ε =2.5

13 expansions

solution=11 moves

ε =1.5

15 expansions

solution=11 moves

ε =1.0

20 expansions

solution=10 moves

Carnegie Mellon University

9

Anytime Heuristic Search: Straw Man Approach

• Constructing anytime search based on weighted A*:

- find the best path possible given some amount of time for planning

- do it by running a series of weighted A* searches with decreasing ε:

ε =2.5

13 expansions

solution=11 moves

ε =1.5

15 expansions

solution=11 moves

ε =1.0

20 expansions

solution=10 moves

• Inefficient because

– many state values remain the same between search iterations

– we should be able to reuse the results of previous searches

Carnegie Mellon University

10

• Constructing anytime search based on weighted A*:

- find the best path possible given some amount of time for planning

- do it by running a series of weighted A* searches with decreasing ε:

ε =2.5

13 expansions

solution=11 moves

ε =1.5

15 expansions

solution=11 moves

ε =1.0

20 expansions

solution=10 moves

• ARA* [Likhachev et al., ‘04]

- efficient version of above that reuses state values between iterations

Carnegie Mellon University

Anytime Heuristic Search: Straw Man Approach

Carnegie Mellon University 11

ComputePath function

while(sgoal is not expanded AND OPEN ≠ 0)

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

all v-values initially are infinite;

A* with Reuse of State Values

• Alternative view of A*

Carnegie Mellon University 12

ComputePath function

while(sgoal is not expanded AND OPEN ≠ 0)

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

all v-values initially are infinite;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

v-value – the value of a state

during its expansion (infinite if

state was never expanded)

A* with Reuse of State Values

• Alternative view of A*

Carnegie Mellon University 13

ComputePath function

while(sgoal is not expanded AND OPEN ≠ 0)

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

• g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

all v-values initially are infinite;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > (s) + c(s,s’)

g(s’) = (s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

g

g

A* with Reuse of State Values

• Alternative view of A*

Carnegie Mellon University 14

ComputePath function

while(sgoal is not expanded AND OPEN ≠ 0)

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

• g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

all v-values initially are infinite;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > (s) + c(s,s’)

g(s’) = (s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

g

g

A* with Reuse of State Values

• Alternative view of A*

Why?

Carnegie Mellon University 15

ComputePath function

while(sgoal is not expanded AND OPEN ≠ 0)

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

• g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

• OPEN: a set of states with v(s) > g(s)

all other states have v(s) = g(s)

all v-values initially are infinite;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > (s) + c(s,s’)

g(s’) = (s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

g

g

overconsistent state

consistent state

A* with Reuse of State Values

• Alternative view of A*

Carnegie Mellon University 16

ComputePath function

while(sgoal is not expanded AND OPEN ≠ 0)

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

• g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

• OPEN: a set of states with v(s) > g(s)

all other states have v(s) = g(s)

all v-values initially are infinite;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > (s) + c(s,s’)

g(s’) = (s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

g

g

overconsistent state

consistent state

A* with Reuse of State Values

• Alternative view of A*

Why?

Carnegie Mellon University 17

ComputePath function

while(sgoal is not expanded AND OPEN ≠ 0)

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

• g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

• OPEN: a set of states with v(s) > g(s)

all other states have v(s) = g(s)

• A* expands overconsistent states in the order of their f-values

all v-values initially are infinite;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > (s) + c(s,s’)

g(s’) = (s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

g

g

A* with Reuse of State Values

• Alternative view of A*

Carnegie Mellon University 18

ComputePathwithReuse function

while(f(sgoal) > minimum f-value in OPEN)

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

• g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

• OPEN: a set of states with v(s) > g(s)

all other states have v(s) = g(s)

• A* expands overconsistent states in the order of their f-values

initialize OPEN with all overconsistent states;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > (s) + c(s,s’)

g(s’) = (s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

g

g

all you need to do to

make it reuse old values!

• Making A* reuse old values:

A* with Reuse of State Values

Carnegie Mellon University 19

S2 S1

Sgoal

2

g=1

v= 1

h=2

g= 3

v= 3

h=1 g= 5

v= 
h=02

S4 S3

3

g= 2

v= 
h=2

g= 
v= 
h=1

1

Sstart

1

1

g=0

v=0

h=3

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

initially OPEN contains all overconsistent states

CLOSED = {}

OPEN = {s4,sgoal}

next state to expand: s4

A* with Reuse of State Values

Carnegie Mellon University 20

S2 S1

Sgoal

2

g=1

v= 1

h=2

g= 3

v= 3

h=1 g= 5

v= 
h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 
h=1

1

Sstart

1

1

g=0

v=0

h=3

CLOSED = {s4}

OPEN = {s3,sgoal}

next state to expand: sgoal

A* with Reuse of State Values

Carnegie Mellon University 21

S2 S1

Sgoal

2

g=1

v= 1

h=2

g= 3

v= 3

h=1 g= 5

v= 5

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 
h=1

1

Sstart

1

1

g=0

v=0

h=3

after ComputePathwithReuse terminates:

all g-values of states are equal to final A* g-values

CLOSED = {s4,sgoal}

OPEN = {s3}

done

A* with Reuse of State Values

Carnegie Mellon University 22

S2 S1

Sgoal

2

g=1

v= 1

h=2

g= 3

v= 3

h=1 g= 5

v= 5

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 
h=1

1

Sstart

1

1

g=0

v=0

h=3

we can now compute a least-cost path

A* with Reuse of State Values

Carnegie Mellon University 23

ComputePathwithReuse function

while(f(sgoal) > minimum f-value in OPEN)

remove s with the smallest [g(s)+ εh(s)] from OPEN;

insert s into CLOSED;

initialize OPEN with all overconsistent states;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

the exact same

thing as with A*

• Making weighted A* reuse old values:

A* with Reuse of State Values

Carnegie Mellon University 24

ComputePathwithReuse function

while(f(sgoal) > minimum f-value in OPEN)

remove s with the smallest [g(s)+ εh(s)] from OPEN;

insert s into CLOSED;

initialize OPEN with all overconsistent states;

for every successor s’ of s

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

if s’ not in CLOSED then insert s’ into OPEN;

v(s)=g(s);

the exact same

thing as with A*

• Making weighted A* reuse old values:

A* with Reuse of State Values

To maintain the invariant:

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

Carnegie Mellon University 25

• Efficient series of weighted A* searches with decreasing ε:

Anytime Repairing A* (ARA*)

set  to large value;

g(sstart) = 0; v-values of all states are set to infinity; OPEN = {sstart};

while  ≥ 1

CLOSED = {};

ComputePathwithReuse();

publish current  suboptimal solution;

decrease ;

initialize OPEN with all overconsistent states;

Carnegie Mellon University 26

• Efficient series of weighted A* searches with decreasing ε:

ARA*

set  to large value;

g(sstart) = 0; v-values of all states are set to infinity; OPEN = {sstart};

while  ≥ 1

CLOSED = {};

ComputePathwithReuse();

publish current  suboptimal solution;

decrease ;

initialize OPEN with all overconsistent states;

need to keep track of those

Carnegie Mellon University 27

ComputePathwithReuse function

while(f(sgoal) > minimum f-value in OPEN)

remove s with the smallest [g(s)+ εh(s)] from OPEN;

insert s into CLOSED;

initialize OPEN with all overconsistent states;

for every successor s’ of s

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

if s’ not in CLOSED then insert s’ into OPEN;

v(s)=g(s);

• Efficient series of weighted A* searches with decreasing ε:

ARA*

Does OPEN contain ALL overconsistent states

(i.e., states s’ whose v(s’) > g(s’))?

Carnegie Mellon University 28

• Efficient series of weighted A* searches with decreasing ε:

ARA*

ComputePathwithReuse function

while(f(sgoal) > minimum f-value in OPEN)

remove s with the smallest [g(s)+ εh(s)] from OPEN;

insert s into CLOSED;

initialize OPEN with all overconsistent states;

for every successor s’ of s

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

if s’ not in CLOSED then insert s’ into OPEN;

otherwise insert s’ into INCONS

v(s)=g(s);

• OPEN U INCONS = all overconsistent states

Carnegie Mellon University 29

• Efficient series of weighted A* searches with decreasing ε:

ARA*

set  to large value;

g(sstart) = 0; v-values of all states are set to infinity; OPEN = {sstart};

while  ≥ 1

CLOSED = {}; INCONS = {};

ComputePathwithReuse();

publish current  suboptimal solution;

decrease ;

initialize OPEN = OPEN U INCONS;

all overconsistent states

(exactly what we need!)

Carnegie Mellon University 30

• A series of weighted A* searches

• ARA*

ε =2.5

13 expansions

solution=11 moves

ε =1.5

15 expansions

solution=11 moves

ε =1.0

20 expansions

solution=10 moves

ε =2.5

13 expansions

solution=11 moves

ε =1.5

1 expansion

solution=11 moves

ε =1.0

9 expansions

solution=10 moves

ARA*

Carnegie Mellon University 31

Anytime Heuristic Search in Action

• Anytime D* during Urban Challenge race

Carnegie Mellon University 32

Planning during Execution

• Planning is a repeated process!
– partially-known environments

– dynamic environments

– imperfect execution of plans

– imprecise localization

• Need to be able to re-plan fast!

• Several methodologies to achieve this:

– anytime heuristic search: return the best plan possible within T msecs

– incremental heuristic search: speed up search by reusing previous efforts

– real-time heuristic search: plan few steps towards the goal and re-plan later

Carnegie Mellon University 33

Incremental Heuristic Search
• Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed

Carnegie Mellon University 34

• Reuse state values from previous searches
cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed

These costs are optimal g-values if search is

done backwards

Incremental Heuristic Search

Carnegie Mellon University 35

• Reuse state values from previous searches
cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed

These costs are optimal g-values if search is

done backwards

Can we reuse these g-values from one search to

another? – incremental A*

Incremental Heuristic Search

Carnegie Mellon University 36

• Reuse state values from previous searches
cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed
Would # of changed g-values be

very different for forward A*?

Incremental Heuristic Search

Carnegie Mellon University 37

• Reuse state values from previous searches

initial search by backwards A*

second search by backwards A*

initial search by D* Lite

second search by D* Lite

Incremental Heuristic Search

Carnegie Mellon University 38

• Three general approaches to reusing previous search efforts:

– Identifying the boundaries of the previously generated search tree that

remains to be valid and re-starting the search from it
• Differential A* [Trovato & Dorst, ‘02], Fringe-Saving A* [Sun & Koenig, ’07], Tree-restoring

weighted A* [Gochev et al., ‘14]

– Fixing the previously generated search tree by re-using as much of it as

possible
• D* [Stentz, ’95], D* Lite [Koenig & Likhachev, ’02], Anytime D* [Likhachev et al., ‘08]

– Restarting search from scratch but “learning” heuristics values
• Hierarchical A* [Holte et al., 96], Adaptive A* [Koenig & Likhachev, ‘06], Generalized

Adaptive A* [Sun et al., 08]

Incremental Heuristic Search

Carnegie Mellon University 39

• Three general approaches to reusing previous search efforts:

– Identifying the boundaries of the previously generated search tree that

remains to be valid and re-starting the search from it
• Differential A* [Trovato & Dorst, ‘02], Fringe-Saving A* [Sun & Koenig, ’07], Tree-restoring

weighted A* [Gochev et al., ‘14]

– Fixing the previously generated search tree by re-using as much of it as

possible
• D* [Stentz, ’95], D* Lite [Koenig & Likhachev, ’02], Anytime D* [Likhachev et al., ‘08]

– Restarting search from scratch but “learning” heuristics values
• Hierarchical A* [Holte et al., 96], Adaptive A* [Koenig & Likhachev, ‘06], Generalized

Adaptive A* [Sun et al., 08]

Incremental Heuristic Search

this lecture

next lecture

Carnegie Mellon University 40

2

• So far, ComputePathwithReuse() could only deal with

states whose v(s) ≥ g(s) (overconsistent or consistent)

• Edge cost increases may introduce underconsistent states

(v(s) < g(s))

S2 S1

Sgoal

g=1

v= 1

h=2

g= 3

v= 3

h=1 g= 5

v= 5

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

Carnegie Mellon University 41

2

• So far, ComputePathwithReuse() could only deal with

states whose v(s) ≥ g(s) (overconsistent or consistent)

• Edge cost increases may introduce underconsistent states

(v(s) < g(s))

S2 S1

Sgoal

g=1

v= 1

h=2

g= 3

v= 3

h=1 g= 5

v= 5

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

4

suppose the robot

updates an edge cost

Carnegie Mellon University 42

4S2 S1

Sgoal

g=1

v= 1

h=2

g= 3

v= 3

h=1 g= 5

v= 5

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

• Edge cost increases may introduce underconsistent states (v(s) < g(s))
ComputePathwithReuse invariant:

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

need to update g(s1)

Carnegie Mellon University 43

4S2 S1

Sgoal

g=1

v= 1

h=2

g= 3

v= 3

h=1 g= 5

v= 5

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

5

• Edge cost increases may introduce underconsistent states (v(s) < g(s))
ComputePathwithReuse invariant:

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

need to update g(s1)

v(s1) < g(s1)

Carnegie Mellon University 44

4S2 S1

Sgoal

g=1

v= 1

h=2

g= 5

v= 3

h=1 g= 5

v= 5

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values



• Edge cost increases may introduce underconsistent states (v(s) < g(s))

• Fix these by setting v(s) =  ComputePathwithReuse invariant:

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

Carnegie Mellon University 45

4S2 S1

Sgoal

g=1

v= 1

h=2

g= 5

v= 

h=1 g= 5

v= 5

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

• Edge cost increases may introduce underconsistent states (v(s) < g(s))

• Fix these by setting v(s) = 

• Makes s overconsistent or consistent v(s) ≥ g(s)

ComputePathwithReuse invariant:

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

Carnegie Mellon University 46

4

• Edge cost increases may introduce underconsistent states (v(s) < g(s))

• Fix these by setting v(s) = 

• Makes s overconsistent or consistent v(s) ≥ g(s)

• Propagate the changes

S2 S1

Sgoal

g=1

v= 1

h=2

g= 5

v= 

h=1 g= 

v= 5

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

ComputePathwithReuse invariant:

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

update g(sgoal)

Carnegie Mellon University 47

4

• Edge cost increases may introduce underconsistent states (v(s) < g(s))

• Fix these by setting v(s) = 

• Makes s overconsistent or consistent v(s) ≥ g(s)

• Propagate the changes

S2 S1

Sgoal

g=1

v= 1

h=2

g= 5

v= 

h=1 g= 

v= 

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

ComputePathwithReuse invariant:

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

fix sgoal

no more underconsistent states!

Carnegie Mellon University 48

4

• Edge cost increases may introduce underconsistent states (v(s) < g(s))

• Fix these by setting v(s) = 

• Makes s overconsistent or consistent v(s) ≥ g(s)

• Propagate the changes

S2 S1

Sgoal

g=1

v= 1

h=2

g= 5

v= 

h=1 g= 6

v= 

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 5

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

ComputePathwithReuse invariant:

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

no more underconsistent states!

expand s3

Carnegie Mellon University 49

4

• Edge cost increases may introduce underconsistent states (v(s) < g(s))

• Fix these by setting v(s) = 

• Makes s overconsistent or consistent v(s) ≥ g(s)

• Propagate the changes

S2 S1

Sgoal

g=1

v= 1

h=2

g= 5

v= 

h=1 g= 6

v= 6

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 5

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

ComputePathwithReuse invariant:

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

no more underconsistent states!

expand sgoal

Carnegie Mellon University 50

4

• Edge cost increases may introduce underconsistent states (v(s) < g(s))

• Fix these by setting v(s) = 

• Makes s overconsistent or consistent v(s) ≥ g(s)

• Propagate the changes

S2 S1

Sgoal

g=1

v= 1

h=2

g= 5

v= 

h=1 g= 6

v= 6

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 5

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

after ComputePathwithReuse terminates:

all g-values of states are equal to final A* g-values

we can backtrack an optimal path

(start at sgoal, proceed to pred that minimizes g+c)

Carnegie Mellon University 51

4

• Edge cost increases may introduce underconsistent states (v(s) < g(s))

• Fix these by setting v(s) = 

• Makes s overconsistent or consistent v(s) ≥ g(s)

• Propagate the changes

S2 S1

Sgoal

g=1

v= 1

h=2

g= 5

v= 

h=1 g= 6

v= 6

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 5

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

after ComputePathwithReuse terminates:

all g-values of states are equal to final A* g-values

we can backtrack an optimal path

(start at sgoal, proceed to pred that minimizes g+c)

Carnegie Mellon University 52

D* Lite

• Optimal re-planning algorithm

• Simpler and with nicer theoretical properties version of

D*

until goal is reached

ComputePathwithReuse();

publish optimal path;

follow the path until map is updated with new sensor information;

update the corresponding edge costs;

set sstart to the current state of the agent;

//modified to fix underconsistent states

Carnegie Mellon University 53

D* Lite

• Optimal re-planning algorithm

• Simpler and with nicer theoretical properties version of

D*

until goal is reached

ComputePathwithReuse();

publish optimal path;

follow the path until map is updated with new sensor information;

update the corresponding edge costs;

set sstart to the current state of the agent;

//modified to fix underconsistent states

Important detail! search is done backwards:

search starts at sgoal, and searhes towards sstart

This way, root of the search tree remains the same and g-values are more likely to remain

the same in between two calls to ComputePathwithReuse why?

why care?

Carnegie Mellon University 54

Anytime Incremental Heuristic Search

• Anytime D* [Likhachev et al., 08]:

– decrease  and update edge costs at the same time

– re-compute a path by reusing previous state-values

set  to large value;

until goal is reached

ComputePathwithReuse();

publish  -suboptimal path;

follow the path until map is updated with new sensor information;

update the corresponding edge costs;

set sstart to the current state of the agent;

if significant changes were observed

increase  or replan from scratch;

else

decrease ;

//modified to fix underconsistent states

What for?

Carnegie Mellon University 55

Other Uses of Incremental Heuristic Search

• Whenever planning is a repeated process:

– improving a solution (e.g., in anytime planning)

– re-planning in dynamic and previously unknown environments

– adaptive discretization

– hierarchical planning

– multi-robot planning

– planning for contingencies

– many other planning problems can be solved via iterative planning

– …

Carnegie Mellon University 56

Summary

• A* can be viewed as a series of expansions of inconsistent states (states

whose values at the time of their expansions are no longer correct)

• Anytime Heuristic search can be constructed via a series of decreasing

heuristic inflations (ARA*)

• D*/D* Lite is an efficient incremental heuristic search for low-dimensional

planning problems

• Anytime D* - anytime incremental heuristic search, also for low-

dimensional problems

• Some effective incremental heuristic searches for high-dimensional

problems exist (i.e., Tree-restoring weighted A*) but need more research

