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Planning during Execution

• Planning is a repeated process! 

Reasons?
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Planning during Execution

ATRV navigating 

initially-unknown environment planning map and path

• Planning is a repeated process! 
– partially-known environments

– dynamic environments

– imperfect execution of plans

– imprecise localization 



Carnegie Mellon University 4

Planning during Execution

• Planning is a repeated process! 
– partially-known environments

– dynamic environments

– imperfect execution of plans

– imprecise localization 

planning in dynamic environments repeated planning outside of robotics
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Planning during Execution

• Planning is a repeated process! 
– partially-known environments

– dynamic environments

– imperfect execution of plans

– imprecise localization

• Need to be able to re-plan fast!

• Several methodologies to achieve this:

– anytime heuristic search: return the best plan possible within T msecs

– incremental heuristic search: speed up search by reusing previous efforts

– real-time heuristic search: plan few steps towards the goal and re-plan later
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Planning during Execution

• Planning is a repeated process! 
– partially-known environments

– dynamic environments

– imperfect execution of plans

– imprecise localization

• Need to be able to re-plan fast!

• Several methodologies to achieve this:

– anytime heuristic search: return the best plan possible within T msecs

– incremental heuristic search: speed up search by reusing previous efforts

– real-time heuristic search: plan few steps towards the goal and re-plan later

this class

next class
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Planning during Execution

• Planning is a repeated process! 
– partially-known environments

– dynamic environments

– imperfect execution of plans

– imprecise localization

• Need to be able to re-plan fast!

• Several methodologies to achieve this:

– anytime heuristic search: return the best plan possible within T msecs

– incremental heuristic search: speed up search by reusing previous efforts

– real-time heuristic search: plan few steps towards the goal and re-plan later
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Anytime Heuristic Search: Straw Man Approach

• Constructing anytime search based on weighted A*:

- find the best path possible given some amount of time for planning

- do it by running a series of weighted A* searches with decreasing ε:

ε =2.5

13 expansions 

solution=11 moves

ε =1.5

15 expansions 

solution=11 moves

ε =1.0

20 expansions 

solution=10 moves

Carnegie Mellon University
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Anytime Heuristic Search: Straw Man Approach

• Constructing anytime search based on weighted A*:

- find the best path possible given some amount of time for planning

- do it by running a series of weighted A* searches with decreasing ε:

ε =2.5

13 expansions 

solution=11 moves

ε =1.5

15 expansions 

solution=11 moves

ε =1.0

20 expansions 

solution=10 moves

• Inefficient because

– many state values remain the same between search iterations

– we should be able to reuse the results of previous searches

Carnegie Mellon University
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• Constructing anytime search based on weighted A*:

- find the best path possible given some amount of time for planning

- do it by running a series of weighted A* searches with decreasing ε:

ε =2.5

13 expansions 

solution=11 moves

ε =1.5

15 expansions 

solution=11 moves

ε =1.0

20 expansions 

solution=10 moves

• ARA* [Likhachev et al., ‘04]

- efficient version of above that reuses state values between iterations

Carnegie Mellon University

Anytime Heuristic Search: Straw Man Approach
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ComputePath function

while(sgoal is not expanded AND OPEN ≠ 0)

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

all v-values initially are infinite;

A* with Reuse of State Values

• Alternative view of A*
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ComputePath function

while(sgoal is not expanded AND OPEN ≠ 0)

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

all v-values initially are infinite;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

v-value – the value of a state 

during its expansion (infinite if 

state was never expanded)

A* with Reuse of State Values

• Alternative view of A*
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ComputePath function

while(sgoal is not expanded AND OPEN ≠ 0)

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

• g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

all v-values initially are infinite;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > (s) + c(s,s’)

g(s’) =   (s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

g

g

A* with Reuse of State Values

• Alternative view of A*
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ComputePath function

while(sgoal is not expanded AND OPEN ≠ 0)

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

• g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

all v-values initially are infinite;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > (s) + c(s,s’)

g(s’) =   (s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

g

g

A* with Reuse of State Values

• Alternative view of A*

Why?
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ComputePath function

while(sgoal is not expanded AND OPEN ≠ 0)

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

• g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

• OPEN: a set of states with v(s) > g(s)

all other states have v(s) = g(s) 

all v-values initially are infinite;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > (s) + c(s,s’)

g(s’) =   (s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

g

g

overconsistent state

consistent state

A* with Reuse of State Values

• Alternative view of A*
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ComputePath function

while(sgoal is not expanded AND OPEN ≠ 0)

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

• g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

• OPEN: a set of states with v(s) > g(s)

all other states have v(s) = g(s) 

all v-values initially are infinite;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > (s) + c(s,s’)

g(s’) =   (s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

g

g

overconsistent state

consistent state

A* with Reuse of State Values

• Alternative view of A*

Why?
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ComputePath function

while(sgoal is not expanded AND OPEN ≠ 0)

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

• g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

• OPEN: a set of states with v(s) > g(s)

all other states have v(s) = g(s)

• A* expands overconsistent states in the order of their f-values

all v-values initially are infinite;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > (s) + c(s,s’)

g(s’) =   (s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

g

g

A* with Reuse of State Values

• Alternative view of A*
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ComputePathwithReuse function

while(f(sgoal) > minimum f-value in OPEN )

remove s with the smallest [g(s)+ h(s)] from OPEN;

insert s into CLOSED;

• g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

• OPEN: a set of states with v(s) > g(s)

all other states have v(s) = g(s) 

• A* expands overconsistent states in the order of their f-values

initialize OPEN with all overconsistent states;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > (s) + c(s,s’)

g(s’) =   (s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

g

g

all you need to do to 

make it reuse old values!

• Making A* reuse old values:

A* with Reuse of State Values
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S2 S1

Sgoal

2

g=1

v= 1

h=2

g= 3

v= 3

h=1 g= 5

v= 
h=02

S4 S3

3

g= 2

v= 
h=2

g= 
v= 
h=1

1

Sstart

1

1

g=0

v=0

h=3

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

initially OPEN contains all overconsistent states

CLOSED = {}

OPEN = {s4,sgoal}

next state to expand: s4

A* with Reuse of State Values
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S2 S1

Sgoal

2

g=1

v= 1

h=2

g= 3

v= 3

h=1 g= 5

v= 
h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 
h=1

1

Sstart

1

1

g=0

v=0

h=3

CLOSED = {s4}

OPEN = {s3,sgoal}

next state to expand: sgoal

A* with Reuse of State Values
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S2 S1

Sgoal

2

g=1

v= 1

h=2

g= 3

v= 3

h=1 g= 5

v= 5

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 
h=1

1

Sstart

1

1

g=0

v=0

h=3

after ComputePathwithReuse terminates: 

all g-values of states are equal to final A* g-values

CLOSED = {s4,sgoal}

OPEN = {s3}

done

A* with Reuse of State Values
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S2 S1

Sgoal

2

g=1

v= 1

h=2

g= 3

v= 3

h=1 g= 5

v= 5

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 
h=1

1

Sstart

1

1

g=0

v=0

h=3

we can now compute a least-cost path

A* with Reuse of State Values
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ComputePathwithReuse function

while(f(sgoal) > minimum f-value in OPEN )

remove s with the smallest [g(s)+ εh(s)] from OPEN;

insert s into CLOSED;

initialize OPEN with all overconsistent states;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) =  g(s) + c(s,s’);

insert s’ into OPEN;

v(s)=g(s);

the exact same 

thing as with A*

• Making weighted A* reuse old values:

A* with Reuse of State Values
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ComputePathwithReuse function

while(f(sgoal) > minimum f-value in OPEN )

remove s with the smallest [g(s)+ εh(s)] from OPEN;

insert s into CLOSED;

initialize OPEN with all overconsistent states;

for every successor s’ of s

if g(s’) > g(s) + c(s,s’)

g(s’) =  g(s) + c(s,s’);

if s’ not in CLOSED then insert s’ into OPEN;

v(s)=g(s);

the exact same 

thing as with A*

• Making weighted A* reuse old values:

A* with Reuse of State Values

To maintain the invariant:

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’) 
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• Efficient series of weighted A* searches with decreasing ε:

Anytime Repairing A* (ARA*)

set  to large value;

g(sstart) = 0; v-values of all states are set to infinity; OPEN = {sstart}; 

while  ≥ 1

CLOSED = {};

ComputePathwithReuse();

publish current  suboptimal solution;

decrease ;

initialize OPEN with all overconsistent states;
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• Efficient series of weighted A* searches with decreasing ε:

ARA*

set  to large value;

g(sstart) = 0; v-values of all states are set to infinity; OPEN = {sstart}; 

while  ≥ 1

CLOSED = {};

ComputePathwithReuse();

publish current  suboptimal solution;

decrease ;

initialize OPEN with all overconsistent states;

need to keep track of those
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ComputePathwithReuse function

while(f(sgoal) > minimum f-value in OPEN )

remove s with the smallest [g(s)+ εh(s)] from OPEN;

insert s into CLOSED;

initialize OPEN with all overconsistent states;

for every successor s’ of s

if g(s’) > g(s) + c(s,s’)

g(s’) =  g(s) + c(s,s’);

if s’ not in CLOSED then insert s’ into OPEN;

v(s)=g(s);

• Efficient series of weighted A* searches with decreasing ε:

ARA*

Does OPEN contain ALL overconsistent states 

(i.e., states s’ whose v(s’) > g(s’))?
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• Efficient series of weighted A* searches with decreasing ε:

ARA*

ComputePathwithReuse function

while(f(sgoal) > minimum f-value in OPEN )

remove s with the smallest [g(s)+ εh(s)] from OPEN;

insert s into CLOSED;

initialize OPEN with all overconsistent states;

for every successor s’ of s

if g(s’) > g(s) + c(s,s’)

g(s’) =  g(s) + c(s,s’);

if s’ not in CLOSED then insert s’ into OPEN;

otherwise insert s’ into INCONS

v(s)=g(s);

• OPEN U INCONS =  all overconsistent states  
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• Efficient series of weighted A* searches with decreasing ε:

ARA*

set  to large value;

g(sstart) = 0; v-values of all states are set to infinity; OPEN = {sstart}; 

while  ≥ 1

CLOSED = {}; INCONS = {};

ComputePathwithReuse();

publish current  suboptimal solution;

decrease ;

initialize OPEN = OPEN U INCONS;

all overconsistent states

(exactly what we need!)
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• A series of weighted A* searches 

• ARA*

ε =2.5

13 expansions 

solution=11 moves

ε =1.5

15 expansions 

solution=11 moves

ε =1.0

20 expansions 

solution=10 moves

ε =2.5

13 expansions 

solution=11 moves

ε =1.5

1 expansion 

solution=11 moves

ε =1.0

9 expansions 

solution=10 moves

ARA*
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Anytime Heuristic Search in Action

• Anytime D* during Urban Challenge race
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Planning during Execution

• Planning is a repeated process! 
– partially-known environments

– dynamic environments

– imperfect execution of plans

– imprecise localization

• Need to be able to re-plan fast!

• Several methodologies to achieve this:

– anytime heuristic search: return the best plan possible within T msecs

– incremental heuristic search: speed up search by reusing previous efforts

– real-time heuristic search: plan few steps towards the goal and re-plan later
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Incremental Heuristic Search
• Reuse state values from previous searches

cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed
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• Reuse state values from previous searches
cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed

These costs are optimal g-values if search is 

done backwards

Incremental Heuristic Search
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• Reuse state values from previous searches
cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed

These costs are optimal g-values if search is 

done backwards

Can we reuse these g-values from one search to

another? – incremental A*

Incremental Heuristic Search
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• Reuse state values from previous searches
cost of least-cost paths to sgoal initially

cost of least-cost paths to sgoal after the door turns out to be closed
Would # of changed g-values be 

very different for  forward A*?

Incremental Heuristic Search
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• Reuse state values from previous searches

initial search by backwards A*

second search by backwards A*

initial search by D* Lite

second search by D* Lite

Incremental Heuristic Search
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• Three general approaches to reusing previous search efforts:

– Identifying the boundaries of the previously generated search tree that 

remains to be valid and re-starting the search from it 
• Differential A* [Trovato & Dorst, ‘02], Fringe-Saving A* [Sun & Koenig, ’07], Tree-restoring 

weighted A* [Gochev et al., ‘14]

– Fixing the previously generated search tree by re-using as much of it as 

possible
• D* [Stentz, ’95], D* Lite [Koenig & Likhachev, ’02], Anytime D* [Likhachev et al., ‘08]

– Restarting search from scratch but “learning” heuristics values
• Hierarchical A* [Holte et al., 96], Adaptive A* [Koenig & Likhachev, ‘06], Generalized 

Adaptive A* [Sun et al., 08]

Incremental Heuristic Search
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• Three general approaches to reusing previous search efforts:

– Identifying the boundaries of the previously generated search tree that 

remains to be valid and re-starting the search from it 
• Differential A* [Trovato & Dorst, ‘02], Fringe-Saving A* [Sun & Koenig, ’07], Tree-restoring 

weighted A* [Gochev et al., ‘14]

– Fixing the previously generated search tree by re-using as much of it as 

possible
• D* [Stentz, ’95], D* Lite [Koenig & Likhachev, ’02], Anytime D* [Likhachev et al., ‘08]

– Restarting search from scratch but “learning” heuristics values
• Hierarchical A* [Holte et al., 96], Adaptive A* [Koenig & Likhachev, ‘06], Generalized 

Adaptive A* [Sun et al., 08]

Incremental Heuristic Search

this lecture

next lecture
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2

• So far, ComputePathwithReuse() could only deal with 

states whose v(s) ≥ g(s) (overconsistent or consistent)

• Edge cost increases may introduce underconsistent states 

(v(s) < g(s))

S2 S1

Sgoal

g=1

v= 1

h=2

g= 3

v= 3

h=1 g= 5

v= 5

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values



Carnegie Mellon University 41

2

• So far, ComputePathwithReuse() could only deal with 

states whose v(s) ≥ g(s) (overconsistent or consistent)

• Edge cost increases may introduce underconsistent states 

(v(s) < g(s))

S2 S1

Sgoal

g=1

v= 1

h=2

g= 3

v= 3

h=1 g= 5

v= 5

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

4

suppose the robot 

updates an edge cost 
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4S2 S1

Sgoal

g=1

v= 1

h=2

g= 3

v= 3

h=1 g= 5

v= 5

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

• Edge cost increases may introduce underconsistent states (v(s) < g(s))
ComputePathwithReuse invariant: 

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

need to update g(s1)
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4S2 S1

Sgoal

g=1

v= 1

h=2

g= 3

v= 3

h=1 g= 5

v= 5

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

5

• Edge cost increases may introduce underconsistent states (v(s) < g(s))
ComputePathwithReuse invariant: 

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

need to update g(s1)

v(s1) <  g(s1)
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4S2 S1

Sgoal

g=1

v= 1

h=2

g= 5

v= 3

h=1 g= 5

v= 5

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values



• Edge cost increases may introduce underconsistent states (v(s) < g(s))

• Fix these by setting v(s) =  ComputePathwithReuse invariant: 

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)
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4S2 S1

Sgoal

g=1

v= 1

h=2

g= 5

v= 

h=1 g= 5

v= 5

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

• Edge cost increases may introduce underconsistent states (v(s) < g(s))

• Fix these by setting v(s) = 

• Makes s overconsistent or consistent v(s) ≥ g(s)

ComputePathwithReuse invariant: 

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)
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4

• Edge cost increases may introduce underconsistent states (v(s) < g(s))

• Fix these by setting v(s) = 

• Makes s overconsistent or consistent v(s) ≥ g(s)

• Propagate the changes

S2 S1

Sgoal

g=1

v= 1

h=2

g= 5

v= 

h=1 g= 

v= 5

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

ComputePathwithReuse invariant: 

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

update g(sgoal)
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4

• Edge cost increases may introduce underconsistent states (v(s) < g(s))

• Fix these by setting v(s) = 

• Makes s overconsistent or consistent v(s) ≥ g(s)

• Propagate the changes

S2 S1

Sgoal

g=1

v= 1

h=2

g= 5

v= 

h=1 g= 

v= 

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

ComputePathwithReuse invariant: 

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

fix sgoal

no more underconsistent states!
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4

• Edge cost increases may introduce underconsistent states (v(s) < g(s))

• Fix these by setting v(s) = 

• Makes s overconsistent or consistent v(s) ≥ g(s)

• Propagate the changes

S2 S1

Sgoal

g=1

v= 1

h=2

g= 5

v= 

h=1 g= 6

v= 

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 5

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

ComputePathwithReuse invariant: 

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

no more underconsistent states!

expand s3
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4

• Edge cost increases may introduce underconsistent states (v(s) < g(s))

• Fix these by setting v(s) = 

• Makes s overconsistent or consistent v(s) ≥ g(s)

• Propagate the changes

S2 S1

Sgoal

g=1

v= 1

h=2

g= 5

v= 

h=1 g= 6

v= 6

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 5

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

ComputePathwithReuse invariant: 

g(s’) = mins’’ pred(s’) v(s’’) + c(s’’,s’)

no more underconsistent states!

expand sgoal
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4

• Edge cost increases may introduce underconsistent states (v(s) < g(s))

• Fix these by setting v(s) = 

• Makes s overconsistent or consistent v(s) ≥ g(s)

• Propagate the changes

S2 S1

Sgoal

g=1

v= 1

h=2

g= 5

v= 

h=1 g= 6

v= 6

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 5

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

after ComputePathwithReuse terminates: 

all g-values of states are equal to final A* g-values

we can backtrack an optimal path

(start at sgoal, proceed to pred that minimizes g+c)
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4

• Edge cost increases may introduce underconsistent states (v(s) < g(s))

• Fix these by setting v(s) = 

• Makes s overconsistent or consistent v(s) ≥ g(s)

• Propagate the changes

S2 S1

Sgoal

g=1

v= 1

h=2

g= 5

v= 

h=1 g= 6

v= 6

h=02

S4 S3

3

g= 2

v= 2

h=2

g= 5

v= 5

h=1

1

Sstart

1

1

g=0

v=0

h=3

A* with Reuse of State Values

after ComputePathwithReuse terminates: 

all g-values of states are equal to final A* g-values

we can backtrack an optimal path

(start at sgoal, proceed to pred that minimizes g+c)
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D* Lite

• Optimal re-planning algorithm

• Simpler and with nicer theoretical properties version of 

D*

until goal is reached

ComputePathwithReuse();

publish optimal path;

follow the path until map is updated with new sensor information;

update the corresponding edge costs;

set sstart to the current state of the agent;

//modified to fix underconsistent states
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D* Lite

• Optimal re-planning algorithm

• Simpler and with nicer theoretical properties version of 

D*

until goal is reached

ComputePathwithReuse();

publish optimal path;

follow the path until map is updated with new sensor information;

update the corresponding edge costs;

set sstart to the current state of the agent;

//modified to fix underconsistent states

Important detail! search is done backwards:

search starts at sgoal, and searhes towards sstart

This way, root of the search tree remains the same and g-values are more likely to remain 

the same in between two calls to ComputePathwithReuse why?

why care?
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Anytime Incremental Heuristic Search

• Anytime D* [Likhachev et al., 08]: 

– decrease  and update edge costs at the same time

– re-compute a path by reusing previous state-values

set  to large value;

until goal is reached

ComputePathwithReuse();

publish  -suboptimal path;

follow the path until map is updated with new sensor information;

update the corresponding edge costs;

set sstart to the current state of the agent;

if significant changes were observed

increase  or replan from scratch;

else

decrease ;

//modified to fix underconsistent states

What for?
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Other Uses of Incremental Heuristic Search

• Whenever planning is a repeated process:

– improving a solution (e.g., in anytime planning)

– re-planning in dynamic and previously unknown environments

– adaptive discretization

– hierarchical planning

– multi-robot planning

– planning for contingencies

– many other planning problems can be solved via iterative planning

– …
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Summary

• A* can be viewed as a series of expansions of inconsistent states (states 

whose values at the time of their expansions are no longer correct)

• Anytime Heuristic search can be constructed via a series of decreasing 

heuristic inflations (ARA*)

• D*/D* Lite is an efficient incremental heuristic search for low-dimensional 

planning problems

• Anytime D* - anytime incremental heuristic search, also for low-

dimensional problems

• Some effective incremental heuristic searches for high-dimensional 

problems exist (i.e., Tree-restoring weighted A*) but need more research  


