15-887 Planning, Execution and Learning

A* and Weighted A* Search

Maxim Likhachev
Robotics Institute
Carnegie Mellon University

• Once a graph is constructed (from skeletonization or uniform cell decomposition or adaptive cell decomposition or lattice or whatever else), We need to search it for a least-cost path

- Many searches work by computing optimal g-values for relevant states
 - -g(s) an estimate of the cost of a least-cost path from s_{start} to s
 - optimal values satisfy: $g(s) = \min_{s'' \in pred(s)} g(s'') + c(s'',s)$

- Many searches work by computing optimal g-values for relevant states
 - -g(s) an estimate of the cost of a least-cost path from s_{start} to s
 - optimal values satisfy: $g(s) = \min_{s'' \in pred(s)} g(s'') + c(s'',s)$

- Least-cost path is a greedy path computed by backtracking:
 - start with s_{goal} and from any state s move to the predecessor state s such that $s' = \arg\min_{s'' \in pred(s)} (g(s'') + c(s'', s))$

A* Search [Hart, Nillson, Raphael, '68]

• Computes optimal g-values for relevant states

at any point of time:

Computes optimal g-values for relevant states

at any point of time:

one popular heuristic function – Euclidean distance

 $minimal\ cost\ from\ s\ to\ s_{goal}$

- Heuristic function must be:
 - admissible: for every state s, $h(s) \le c *(s, s_{goal})$
 - consistent (satisfy triangle inequality): $h(s_{goal}, s_{goal}) = 0$ and for every $s \neq s_{goal}$, $h(s) \leq c(s, succ(s)) + h(succ(s))$
 - admissibility <u>provably</u> follows from consistency and often (<u>not always</u>) consistency follows from admissibility

Computes optimal g-values for relevant states

Main function

 $g(s_{start}) = 0$; all other g-values are infinite; $OPEN = \{s_{start}\}$; ComputePath(); publish solution;

ComputePath function

set of candidates for expansion

while(s_{goal} is not expanded and $OPEN \neq 0$) remove s with the smallest [f(s) = g(s) + h(s)] from *OPEN*; expand s;

for every expanded state g(s) is optimal (if heuristics are consistent)

Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove s with the smallest [f(s) = g(s) + h(s)] from OPEN; expand s;

Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$)

remove s with the smallest [f(s) = g(s) + h(s)] from *OPEN*;

insert s into CLOSED;

for every successor s' of s such that s'not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

$$g(s') = g(s) + c(s,s');$$
insert s' into OPEN;

tries to decrease g(s') using the found path from s_{start} to s

set of states that have already been expanded

Computes optimal g-values for relevant states

```
while (s_{goal}) is not expanded and OPEN \neq 0)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```

$$CLOSED = \{\}$$

 $OPEN = \{s_{start}\}$
 $next \ state \ to \ expand: \ s_{start}$

Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$) remove s with the smallest [f(s) = g(s) + h(s)] from *OPEN*; insert s into CLOSED; for every successor s' of s such that s'not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s')$;
insert s' into OPEN;

$$CLOSED = \{\}$$

 $OPEN = \{s_{start}\}$
 $next\ state\ to\ expand:\ s_{start}$

Computes optimal g-values for relevant states

```
while(s_{goal} is not expanded and OPEN \neq 0)
 remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
 insert s into CLOSED;
 for every successor s' of s such that s'not in CLOSED
     if g(s') > g(s) + c(s,s')
      g(s') = g(s) + c(s,s');
       insert s' into OPEN;
```


Computes optimal g-values for relevant states

```
while(s_{goal} is not expanded and OPEN \neq 0)
 remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
 insert s into CLOSED;
 for every successor s' of s such that s'not in CLOSED
     if g(s') > g(s) + c(s,s')
      g(s') = g(s) + c(s,s');
       insert s' into OPEN;
```

$$CLOSED = \{s_{start}\}$$

 $OPEN = \{s_2\}$
 $next \ state \ to \ expand: \ s_2$

Computes optimal g-values for relevant states

```
while(s_{goal} is not expanded and OPEN \neq 0)
 remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
 insert s into CLOSED;
 for every successor s' of s such that s'not in CLOSED
     if g(s') > g(s) + c(s,s')
      g(s') = g(s) + c(s,s');
       insert s' into OPEN;
```

$$CLOSED = \{s_{start}, s_2\}$$

 $OPEN = \{s_1, s_4\}$
 $next \ state \ to \ expand: \ s_1$

Computes optimal g-values for relevant states

```
while(s_{goal} is not expanded and OPEN \neq 0)
 remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
 insert s into CLOSED;
 for every successor s' of s such that s'not in CLOSED
    if g(s') > g(s) + c(s,s')
      g(s') = g(s) + c(s,s');
      insert s' into OPEN;
```

$$CLOSED = \{s_{start}, s_2, s_1\}$$

 $OPEN = \{s_4, s_{goal}\}$
 $next \ state \ to \ expand: \ s_4$

Computes optimal g-values for relevant states

```
while(s_{goal} is not expanded and OPEN \neq 0)
 remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
 insert s into CLOSED;
 for every successor s' of s such that s'not in CLOSED
    if g(s') > g(s) + c(s,s')
      g(s') = g(s) + c(s,s');
      insert s' into OPEN;
```

$$CLOSED = \{s_{start}, s_2, s_1, s_4\}$$

 $OPEN = \{s_3, s_{goal}\}$
 $next \ state \ to \ expand: \ s_{goal}$

Computes optimal g-values for relevant states

```
while(s_{goal} is not expanded and OPEN \neq 0)
 remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
 insert s into CLOSED;
 for every successor s' of s such that s'not in CLOSED
     if g(s') > g(s) + c(s,s')
      g(s') = g(s) + c(s,s');
       insert s' into OPEN;
```

$$CLOSED = \{s_{start}, s_2, s_1, s_4, s_{goal}\}$$

 $OPEN = \{s_3\}$
 $done$

Computes optimal g-values for relevant states

ComputePath function

```
while (s_{goal}) is not expanded and OPEN \neq 0)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED

if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```

for every expanded state g(s) is optimal for every other state g(s) is an upper bound we can now compute a least-cost path

g=2 h=2 g=5 h=1

 S_2

 S_4

h=1

g=0

h=3

Computes optimal g-values for relevant states

ComputePath function

```
while(s_{goal} is not expanded and OPEN \neq 0)
 remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
 insert s into CLOSED;
 for every successor s' of s such that s'not in CLOSED
    if g(s') > g(s) + c(s,s')
      g(s') = g(s) + c(s,s');
      insert s' into OPEN;
```

for every expanded state g(s) is optimal for every other state g(s) is an upper bound we can now compute a least-cost path

h=1

g=0

h=3

Computes optimal g-values for relevant states

ComputePath function

```
while(s_{goal} is not expanded and OPEN \neq 0)
 remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
 insert s into CLOSED;
 for every successor s' of s such that s'not in CLOSED
    if g(s') > g(s) + c(s,s')
      g(s') = g(s) + c(s,s');
      insert s' into OPEN;
```

h=1g=0 S_2 h=3for every expanded state g(s) is optimal for every other state g(s) is an upper bound we can now compute a least-cost path g=5h=2h=1

• Is guaranteed to return an optimal path (in fact, for every expanded state) – optimal in terms of the solution

• Performs provably minimal number of state expansions required to guarantee optimality – optimal in terms of the computations

• Is guaranteed to return an optimal path (in fact, for every expanded state) — optimal in terms of the solution Sketch of proof by induction for h = 0: assume all previously expanded states have optimal g-values next state to expand is s: f(s) = g(s) — min among states in OPEN OPEN separates expanded states from never seen states thus, path to s via a state in OPEN or an unseen state will be worse than g(s) (assuming positive costs)

• A* Search: expands states in the order of f = g+h values

- A* Search: expands states in the order of f = g+h values Sketch of proof of optimality by induction for consistent h:
 - 1. assume all previously expanded states have optimal g-values
 - 2. next state to expand is s: f(s) = g(s) + h(s) min among states in *OPEN*
 - 3. assume g(s) is suboptimal
 - 4. then there must be at least one state s' on an optimal path from start to s such that it is in OPEN but wasn't expanded
 - 5. $g(s') + h(s') \ge g(s) + h(s)$
 - 6. but g(s') + c*(s',s) < g(s) => g(s') + c*(s',s) + h(s) < g(s) + h(s) => g(s') + h(s') < g(s) + h(s)
 - 7. thus it must be the case that g(s) is optimal

- A* Search: expands states in the order of f = g + h values
- Dijkstra's: expands states in the order of f = g values (pretty much)

• Intuitively: f(s) – estimate of the cost of a least cost path from start to goal via s

- A* Search: expands states in the order of f = g + h values
- Dijkstra's: expands states in the order of f = g values (pretty much)
- Weighted A*: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1$ = bias towards states that are closer to goal

• Dijkstra's: expands states in the order of f = g values

• A* Search: expands states in the order of f = g+h values

• A* Search: expands states in the order of f = g+h values

for large problems this results in A^* quickly running out of memory (memory: O(n))

• Weighted A* Search: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1 =$ bias towards states that are closer to goal

what states are expanded?

Sexiart

key to finding solution fast:
shallow minima for h(s)-h*(s) function

• Weighted A* Search: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1 =$ bias towards states that are closer to

- Weighted A* Search:
 - trades off optimality for speed
 - ε -suboptimal: $cost(solution) \le \varepsilon cost(optimal\ solution)$
 - in many domains, it has been shown to be orders of magnitude faster than A*
 - research becomes to develop a heuristic function that has shallow local minima

- Weighted A* Search:
 - trades off optimality for speed
 - ε -suboptimal: $cost(solution) \le \varepsilon cost(optimal\ solution)$
 - in many domains, it has been shown to be orders of magnitude faster than A*
 - research becomes to develop a heuristic function that has shallow local minima
- Weighted A* Search
 - with re-expansions (no Closed List) [Pohl, '70]
 - without re-expansions (with Closed List) [Likhachev et al., '04]
 - same sub-optimality guarantees but no more than 1 expansion per state

- Weighted A* Search:
 - trades off optimality for speed
 - ε-suboptimal:
 - $cost(solution) \leq \varepsilon cost(optimal set)$
 - in many domains, it has been a state of the states of th
 - research becomes to develop a heuristic randition that has shallow local minima
- Weighted A* Search
 - with re-expansions (no Closed List) [Pohl, '70]
 - without re-expansions (with Closed List) [Likhachev et al., '04]
 - same sub-optimality guarantees but no more than 1 expansion per state

- Searches from goal towards states
- g-values are cost-to-goals

Main function

 $g(s_{start}) = 0$; all other g-values are infinite; $OPEN = \{s_{start}\}$;

ComputePath();

publish solution;

ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$)

remove s with the smallest [f(s) = g(s) + h(s)] from *OPEN*;

expand s;

What needs to be changed?

- Searches from goal towards states
- g-values are cost-to-goals

Main function

 $g(s_{goal}) = 0$; all other g-values are infinite; $OPEN = \{s_{goal}\}$; ComputePath();

publish solution;

ComputePath function

while (s_{start}) is not expanded and $OPEN \neq 0$)

remove s with the smallest [f(s) = g(s) + h(s)] from *OPEN*;

expand s;

What needs to be changed?

- Searches from goal towards states
- g-values are cost-to-goals

ComputePath function

while(s_{goal} is not expanded and $OPEN \neq 0$)

remove s with the smallest [f(s) = g(s) + h(s)] from *OPEN*;

insert s into CLOSED;

for every successor s' of s such that s'not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

$$g(s') = g(s) + c(s,s');$$

insert s' into OPEN;

What needs to be changed in here?

- Searches from goal towards states
- g-values are cost-to-goals

ComputePath function

while(s_{start} is not expanded and $OPEN \neq 0$)

remove s with the smallest [f(s) = g(s) + h(s)] from *OPEN*;

insert s into CLOSED;

for every **predecessor** s' of s such that s'not in CLOSED

if
$$g(s') > c(s',s) + g(s)$$

$$g(s') = c(s',s) + g(s);$$

insert s' into OPEN;

What needs to be changed in here?

Using A* to Compute a Policy

• Imagine planning for the agent that can easily deviate off the path

• Can A* compute least-cost paths from **all** the states of interest?

Using A* to Compute a Policy

• Imagine planning for the agent that can easily deviate off the path

- Can A* compute least-cost paths from **all** the states of interest?
 - Run Backward A* search until all states of interest have been expanded

Using A* to Compute a Policy

• Backward A* search to compute least-cost paths for all states $s \in \Phi$

ComputePath function

```
while(at least one state in \Phi hasn't been expanded and OPEN \neq 0)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every predecessor s of s such that s not in CLOSED

if g(s') > c(s',s) + g(s)
g(s') = c(s',s) + g(s);
insert s into OPEN;
```

• Guaranteed to compute least-cost paths for all $s \in \Phi$ that can reach goal

Support for Multiple Goal Candidates

- How to compute a least-cost path to any one of the possible goals?
 - Example 1: Computing a least-cost path to a parking spot given multiple parking spaces
 - Example 2: Greedy mapping (explore the map by always moving to the closest cell that hasn't been visited yet)

Cells that haven't been visited yet shown in grey

Support for Multiple Goal Candidates

- How to compute a least-cost path to any one of the possible goals?
 - Example 1: Computing a least-cost path to a parking spot given multiple parking spaces
 - Example 2: Greedy mapping (explore the map by always moving to the closest cell that hasn't been visited yet)

Support for Time-consuming Edge Evaluations

- Lazy weighted A* [Cohen et al., '14]
 - use lower bounds on edgecosts in computing g-values
 - when selected for expansion, evaluate the cost of the transition from the predecessor
 - if the same as the lower bound, then expand
 - Otherwise, re-insert back into the queue with the new g-value

- A* does provably minimum number of expansions (O(n)) for finding a provably optimal solution
- Memory requirements of $A^*(O(n))$ can be improved though
- Memory requirements of weighted A* are often but not always better

- Depth-First Search (w/o coloring all expanded states):
 - explore each every possible path at a time avoiding looping and keeping in the memory only the best path discovered so far
 - Complete and optimal (assuming finite state-spaces)
 - Memory: O(bm), where $b \max$ branching factor, $m \max$ pathlength
 - Complexity: $O(b^m)$, since it will repeatedly re-expand states

- Depth-First Search (w/o coloring all expanded states):
 - explore each every possible path at a time avoiding looping and keeping in the memory only the best path discovered so far
 - Complete and optimal (assuming finite state-spaces)
 - Memory: O(bm), where $b \max$ branching factor, $m \max$ pathlength
 - Complexity: $O(b^m)$, since it will repeatedly re-expand states
 - Example:
 - graph: a 4-connected grid of 40 by 40 cells, start: center of the grid
 - A* expands up to 800 states, DFS may expand way over $4^{20} > 10^{12}$ states

Alternatives:

- Depth-First Search (w/o coloring all expanded states):
 - explore each every possible path at a time avoiding looping and keeping in the memory only the best path discovered so far
 - Complete and optimal (assuming finite state-spaces)
 - Memory: O(bm), where b max
 - Complexity: $O(b^m)$, since it with

What if goal is few steps away in a huge state-space?

• Example:

- graph: a 4-connected grid of 40 by 40 cells, start: center of the grid
- A* expands up to 800 states, DFS may expand way over $4^{20} > 10^{12}$ states

- IDA* (Iterative Deepening A*) [Korf, '85]
 - 1. $set f_{max} = 1$ (or some other small value)
 - 2. execute (previously explained) DFS that does not expand states with $f > f_{max}$
 - 3. If DFS returns a path to the goal, return it
 - 4. Otherwise $f_{max} = f_{max} + 1$ (or larger increment) and go to step 2

- IDA* (Iterative Deepening A*) [Korf, '85]
 - 1. $set f_{max} = 1$ (or some other small value)
 - 2. execute (previously explained) DFS that does not expand states with $f > f_{max}$
 - 3. If DFS returns a path to the goal, return it
 - 4. Otherwise $f_{max} = f_{max} + 1$ (or larger increment) and go to step 2

- Complete and optimal in any state-space (with positive costs)
- Memory: O(bl), where $b \max$ branching factor, l length of optimal path
- Complexity: $O(kb^l)$, where k is the number of times DFS is called