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Searching Graphs for a Least-cost Path

 Once a graph 1S constructed (from skeletonization or uniform cell
decomposition or adaptive cell decomposition or lattice or whatever else), W€

need to search 1t for a least-cost path
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Searching Graphs for a Least-cost Path

* Many searches work by computing optimal g-values for
relevant states

— g(s) — an estimate of the cost of a least-cost path from s, . to s

— optimal values satisty:  g(s) =ming.._ .. &(s") + c(s”,s)

the cost ¢(S 1,8 goq) Of
an edge from s, 10 s,
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Searching Graphs for a Least-cost Path

* Many searches work by computing optimal g-values for
relevant states

— g(s) — an estimate of the cost of a least-cost path from s, . to s

— optimal values satisfy:  g(s) = ming.._ 4 &(5") +c(s",s)
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Searching Graphs for a Least-cost Path
» Least-cost path 1s a greedy path computed by backtracking:

— start with s, and from any state s move to the predecessor state
s’ such that . . . .
§ =arg mlns"epred(s) (g(S ) T C(S DS))

g=2 g=5
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A* Search [Hart, Nillson, Raphael, ‘68]

« Computes optimal g-values for relevant states

at any point of time:

the cost of a shortest path

from s, to s found so far

start

/g(s)

.
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an (under) estimate of the cost

of a shortest path from s 10 s,

o)




A* Search

« Computes optimal g-values for relevant states

at any point of time:

heuristic function

| h(s) -

6w

one popular heuristic function — Euclidean distance
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A* Search

minimal cost from s 10 s,

« Heuristic function must be:
— admussible: for every state s, /1(s) < c*(s,5,,,)
— consistent (satisfy triangle inequality):
RS gourSgoa) = 0 and for every s#s,,,, h(s) < c(s,succ(s)) + h(succ(s))

— admussibility provably follows from consistency and often (not
always) consistency follows from admissibility
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A* Search

« Computes optimal g-values for relevant states

Main function

g(S.,) = 0, all other g-values are infinite;, OPEN = {s_, .},

ComputePath();
publish solution;

ComputePath function

while(s,,,

set of candidates for expansion

1s not expanded and OPEN # 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
expand s;

\

for every expanded state
2(s) is optimal

if heuristics are consistent)
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A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,, 1s not expanded and OPEN # 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
expand s;
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A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

isert s into CLOSED;

for every successor s’ of s such that s 'not in CLOSED

if g(s) > g(s) + ¢(s.s) \
g(s) = g(s) tc(s,s);
/ insert s into OPEN;

set of states that have already been expanded

g=o0 g= o
. . h=2 h=1
tries to decrease g(s’) using the =0 @ 2
< g= o
found path from s, to s ?/ % h=0
Sl | Se

g§= X g~ X
Carnegie Mellon University h=2 h=1 11



A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

OPEN = {Sguyf

next state to expand: s, .. @ @/

8=
h=

—0 2 o

- @ , &

CLOSED = {} .2/ , =0
By !
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A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s, . 1s not expanded and OPEN # 0)

goal
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;

for every successor s’ of s such that s 'not in CLOSED

. y _|_ ’
lfg(S’) > g(s) C(S’S’) g(53) > &(Ssar) T (S5
g(s’) =g(s) +c(s,s), /
insert s ' into OPEN;
= 00
=1

OPEN = {Sguyf

next state to expand: s, .. @
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A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

ji
w D
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w2
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o
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A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

g= oo
h=1I
g=0 @—. g=
— h:3 2 h=0
CLOSED ={s,,.}
OPEN = {s,} &

next state to expand: s, @ @/
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A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

ji
w D

Q:

CL OSE D {S start’ }

@ % ‘220
OPEN = {s,s,} ,

next state to expand: s, @ @/

w2
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A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

@—
CLOSED = {5,555} , % h=0

NOQ
Il
on

OPEN = {54800/

next state to expand: s, @ @/
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A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

@—
CLOSED = {s, . .,5,5,5, , % h=0

NOQ
Il
on

OPEN = {s 3,Sg0al}

next state to expand: S g0al @ @/

Carnegie Mellon University h 2 h ] 18



A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

g=3
h=I
g=0 @—> g=)
B h=3 2 p=0
CLOSED = {sm,sz,sl,s4,sgoaz}
OPEN = {s,} =

done _» @/
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A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s " into OPEN;,

g=1 g=3
h=2 ) h=1
0 G, e
h=3 % h—0
S|
for every expanded state g(s) is optimal

|
for every other state g(s) is an upper bound —>3 @/

we can now compute a least-cost path g=2 g=5
Carnegie Mellon University /h=2 h=1 20



A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s " into OPEN;,

g=1 g=3
h=2 ) h=1
0 Gl e
h=3 % h=0
|
for every expanded state g(s) is optimal

|
for every other state g(s) is an upper bound —>3 @/

we can now compute a least-cost path g=2 g=5
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A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,, 1s not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s " into OPEN;,
g=1
h=2

g=0 _ 2 _
PO
1
for every expanded state g(s) is optimal ,

|
for every other state g(s) is an upper bound.—>@/

we can now compute a least-cost path g=2 =5
h=2 h 1 22
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A* Search

* Is guaranteed to return an optimal path (in fact, for every
expanded state) — optimal in terms of the solution

e Performs provably minimal number of state expansions
required to guarantee optimality — optimal in terms of the
computations

Carnegie Mellon University 23



A* Search

 Is guaranteed to return an optimal path (in fact, for every
expanded state) — optimal in terms of the solution
Sketch of proof by induction for h = 0:
assume all previously expanded states have optimal g-values
next state to expand is s: f(s) = g(s) — min among states in OPEN
OPEN separates expanded states from never seen states

thus, path to s via a state in OPEN or an unseen state will be
worse than g(s) (assuming positive costs)

Carnegie Mellon University 24



Eftect of the Heuristic Function

« A* Search: expands states in the order of f = g+/h values

Carnegie Mellon University 25



Eftect of the Heuristic Function

« A* Search: expands states in the order of f = g+/h values
Sketch of proof of optimality by induction for consistent h.:
1. assume all previously expanded states have optimal g-values

2. next state to expand is s: f(s) = g(s)+h(s) — min among states in
OPEN

3. assume g(s) is suboptimal

4. then there must be at least one state s’ on an optimal path from
start to s such that it is in OPEN but wasn’t expanded

5.8(s) + h(s’) =2g(s)+h(s)

6. but g(s’) + c*(s’,s) < g(s) =>
g(s) +c*(s’s) + h(s) <g(s) + h(s) =>
g(s) + h(s’) <g(s) + h(s)

7. thus it must be the case that g(s) is optimal

Carnegie Mellon University 26



Eftect of the Heuristic Function

« A* Search: expands states in the order of f = g+/h values

* Dijkstra’s: expands states in the order of f = g values (pretty

much)

« Intuitively: f(s) — estimate of the cost of a least cost path

from start to goal via s

an (under) estimate of the cost
of a shortest path from s to s

goal

the cost of a shortest path
from s, to s found so far

/g(S) —

e AR

h(s)
—®—.
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Eftect of the Heuristic Function

« A* Search: expands states in the order of f = g+/h values

* Dijkstra’s: expands states in the order of f = g values (pretty
much)

 Weighted A*: expands states in the order of f = g+eh
values, ¢ > [ = bias towards states that are closer to goal

an (under) estimate of the cost
of a shortest path from s to s

goal

the cost of a shortest path | —" 8(s) h(s) -

from s, to s found so far
.
>
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1Istic Function

of f = g values




Eftect of the Heuristic Function

« A* Search: expands states in the order of f = g+/h values
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Effect of the Heuristic Function

« A* Search: expands states in the order of f = g+/h values

for large problems this results in A™* quickly
running out of memory (memory: O(n))
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Eftect of the Heuristic Function

 Weighted A* Search: expands states 1n the order of f =

g+eh values, ¢ > [ = bias towards states that are closer to
goal

LV
=Slart

goal

key to finding solution fast:

shallow minima for h(s)-h*(s) function
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Eftect of the Heuristic Function

 Weighted A* Search: expands states 1n the order of f =

g+eh values, ¢ > [ = bias towards states that are closer to
goal

Lq 2 -
SLart

key to finding solution fast:

shallow minima for h(s)-h*(s) function
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Eftect of the Heuristic Function

 Weighted A* Search:
— trades off optimality for speed

— g-suboptimal:
cost(solution) < ecost(optimal solution)

— 1n many domains, 1t has been shown to be orders of magnitude
faster than A*

— research becomes to develop a heuristic function that has
shallow local minima

Carnegie Mellon University 34



Eftect of the Heuristic Function

 Weighted A* Search:
— trades off optimality for speed

— g-suboptimal:
cost(solution) < ecost(optimal solution)

— 1n many domains, 1t has been shown to be orders of magnitude
faster than A*

— research becomes to develop a heuristic function that has
shallow local minima

 Weighted A* Search

— with re-expansions (no Closed List) [Pohl, *70]
— without re-expansions (with Closed List) [Likhachev et al., ‘04]

¢ same sub-optimality guarantees but no more than 1 expansion per state
Carnegie Mellon University 35




Eftect of the Heuristic Function

 Weighted A* Search:
— trades off optimality for speed

— g-suboptimal:

cost(solution) < ecost(optimalzs

— 1n many domains, it has beg
faster than A*

— research becomes to develop a heuriStic roneaen tidt has
shallow local minima

 Weighted A* Search

— with re-expansions (no Closed List) [Pohl, *70]
— without re-expansions (with Closed List) [Likhachev et al., ‘04]

« same sub-optimality guarantees but no more than 1 expansion per state
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Backward A* Search

« Searches from goal towards states

e g-values are cost-to-goals
Main function

g(S..,) = 0, all other g-values are infinite;, OPEN = {s_, .},
ComputePath();
publish solution;

ComputePath function
while(s,,, 1s not expanded and OPEN # 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
expand s;
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Backward A* Search

« Searches from goal towards states

e g-values are cost-to-goals

Main function
2(S40q) = 0; all other g-values are infinite; OPEN = {s,,,,},
ComputePath();

publish solution;

ComputePath function
while(s,,,,, 1s not expanded and OPEN # 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
expand s;
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Backward A* Search

« Searches from goal towards states

e g-values are cost-to-goals

ComputePath function
while(s,,, 1s not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

8~ g:OO

h=1I
o BB
@ ,1 Sgoa

—@/
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Backward A* Search

« Searches from goal towards states

e g-values are cost-to-goals
ComputePath function
while(s,,,,, 1s not expanded and OPEN # 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every predecessor s’ of s such that s 'not in CLOSED
if g(s’) > c(s’,s) + g(s)
g(s’) = c(s’s) + g(s);
insert s ' into OPEN;

8~ g:OO

h=1I
o BB
@ ,1 Sgoa

—@/
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Using A* to Compute a Policy

« Imagine planning for the agent that can easily deviate off the path

STARI H

« Can A* compute least-cost paths from all the states of interest?

Carnegie Mellon University
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Using A* to Compute a Policy

« Imagine planning for the agent that can easily deviate off the path

« Can A* compute least-cost paths from all the states of interest?

— Run Backward A* search until all states of interest have been expanded

Carnegie Mellon University
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Using A* to Compute a Policy

« Backward A* search to compute least-cost paths for all states s € @

ComputePath function
while(at least one state in @ hasn’t been expanded and OPEN # 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every predecessor s’ of s such that s 'not in CLOSED
i g(s’) > c(s’,s) + g(s)
g(s) =c(s’.s) + g(s);
insert s ' into OPEN;

* Guaranteed to compute least-cost paths for all s € @ that can reach goal

Carnegie Mellon University
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Support for Multiple Goal Candidates

 How to compute a least-cost path to any one of the possible goals?

— Example 1: Computing a least-cost path to a parking spot given multiple parking
spaces

— Example 2: Greedy mapping (explore the map by always moving to the closest
cell that hasn’t been visited yet)

Cells that havent been visited yet
shown in grey
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Support for Multiple Goal Candidates

 How to compute a least-cost path to any one of the possible goals?

— Example 1: Computing a least-cost path to a parking spot given multiple parking
spaces

— Example 2: Greedy mapping (explore the map by always moving to the closest
cell that hasn’t been visited yet)

e
>
0%
>
X
<
X
X

KT HRRE
- EREXER - (A

Oz

0
G
RO
FoN

e

@ (= \
Cells that haven t been visited yet \\\
shown in grey A goal State (in.aaginary State) T new vertex (O
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Support for Time-consuming Edge Evaluations

« Lazy weighted A* [Cohen et al., ‘14]

— use lower bounds on edgecosts in computing g-values

— when selected for expansion, evaluate the cost of the transition from the
predecessor
« if the same as the lower bound, then expand
» Otherwise, re-insert back into the queue with the new g-value

Carnegie Mellon University
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Memory Issues

A* does provably minimum number of expansions (O(n)) for finding
a provably optimal solution

Memory requirements of A* (O(n)) can be improved though

Memory requirements of weighted A* are often but not always better
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Memory Issues

Alternatives:

— Depth-First Search (w/o coloring all expanded states):

 explore each every possible path at a time avoiding looping and keeping in the
memory only the best path discovered so far

« Complete and optimal (assuming finite state-spaces)
* Memory: O(bm), where b — max. branching factor, m — max. pathlength

» Complexity: O(b™), since it will repeatedly re-expand states

Carnegie Mellon University
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Memory Issues

Alternatives:
— Depth-First Search (w/o coloring all expanded states):

explore each every possible path at a time avoiding looping and keeping in the
memory only the best path discovered so far

Complete and optimal (assuming finite state-spaces)

Memory: O(bm), where b — max. branching factor, m — max. pathlength

Complexity: O(b™), since it will repeatedly re-expand states

Example:
— graph: a 4-connected grid of 40 by 40 cells, start: center of the grid
— A* expands up to 800 states, DFS may expand way over 420> 1012 states
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Memory Issues

Alternatives:

— Depth-First Search (w/o coloring all expanded states):

 explore each every possible path at a time avoiding looping and keeping in the
memory only the best path discovered so far

Complete and optimal (assuming finite state-spaces)

Memory: O(bm), where b — maz

Complexity: O(b™), since it Wi

Example:
— graph: a 4-connected grid of 40 by 40 cells, start: center of the grid
— A* expands up to 800 states, DFS may expand way over 420> 1012 states
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Memory Issues

e Alternatives:
— IDA* (Iterative Deepening A*) [Korf, ‘85]

1. setf, .= I (or some other small value)
. execute (previously explained) DFS that does not expand states with f>f,

max

2
3. If DFS returns a path to the goal, return it
4

. Otherwise f, =1, 11 (or larger increment) and go to step 2
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Memory Issues

Alternatives:
IDA* (Iterative Deepening A*) [Korf, ‘85]

.

2. execute (previously explained) DFS that does not expand states with f>f
3.
4. Otherwise f,

setf,... = 1 (or some other small value)

max

If DFS returns a path to the goal, return 1t
= faxT1 (Or larger increment) and go to step 2

max

Complete and optimal in any state-space (with positive costs)

Memory: O(bl), where b — max. branching factor, / — length of optimal
path

Complexity: O(kb'), where k is the number of times DFS is called
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