
15-887

Planning, Execution and Learning

A* and Weighted A* Search

Maxim Likhachev

Robotics Institute

Carnegie Mellon University

2

S2 S1

Sgoal

2

2

S4 S3

3

1

Sstart

1

1

Searching Graphs for a Least-cost Path

• Once a graph is constructed (from skeletonization or uniform cell

decomposition or adaptive cell decomposition or lattice or whatever else), we

need to search it for a least-cost path

Carnegie Mellon University

3

• Many searches work by computing optimal g-values for
relevant states

– g(s) – an estimate of the cost of a least-cost path from sstart to s

– optimal values satisfy: g(s) = mins’’ pred(s) g(s’’) + c(s’’,s)

S2 S1

Sgoal

2
g=1 g=3

g=52

S4 S3

3

g=2 g=5

1

Sstart

1

1

g=0

the cost c(s1,sgoal) of

an edge from s1 to sgoal

Searching Graphs for a Least-cost Path

Carnegie Mellon University

4

• Many searches work by computing optimal g-values for
relevant states

– g(s) – an estimate of the cost of a least-cost path from sstart to s

– optimal values satisfy: g(s) = mins’’ pred(s) g(s’’) + c(s’’,s)

S2 S1

Sgoal

2
g=1 g=3

g=52

S4 S3

3

g=2 g=5

1

Sstart

1

1

g=0

the cost c(s1,sgoal) of

an edge from s1 to sgoal

Searching Graphs for a Least-cost Path

why?

Carnegie Mellon University

5

• Least-cost path is a greedy path computed by backtracking:

– start with sgoal and from any state s move to the predecessor state
s’ such that

)),''()''((minarg')('' sscsgs spreds

S2 S1

Sgoal

2
g=1 g=3

g=52

S4 S3

3

g=2 g=5

1

Sstart

1

1

g=0

Searching Graphs for a Least-cost Path

Carnegie Mellon University

6

• Computes optimal g-values for relevant states

h(s)
g(s)

Sstart

S

S2

S1

Sgoal…

the cost of a shortest path

from sstart to s found so far

an (under) estimate of the cost

of a shortest path from s to sgoal

at any point of time:

A* Search [Hart, Nillson, Raphael, ‘68]

Carnegie Mellon University

7

• Computes optimal g-values for relevant states

h(s)
g(s)

Sstart

S

S2

S1

Sgoal…

at any point of time:

A* Search

heuristic function

one popular heuristic function – Euclidean distance

Carnegie Mellon University

8

• Heuristic function must be:

– admissible: for every state s, h(s) ≤ c*(s,sgoal)

– consistent (satisfy triangle inequality):

h(sgoal,sgoal) = 0 and for every s≠sgoal, h(s) ≤ c(s,succ(s)) + h(succ(s))

– admissibility provably follows from consistency and often (not

always) consistency follows from admissibility

A* Search
minimal cost from s to sgoal

Carnegie Mellon University

9

• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

expand s;

Main function

g(sstart) = 0; all other g-values are infinite; OPEN = {sstart};

ComputePath();

publish solution;

S2 S1

Sgoal

2

g=

h=2

g=

h=1

g=

h=02

S4 S3

3

g=

h=2

g=

h=1

1

Sstart

1

1

g=0

h=3

set of candidates for expansion

for every expanded state

g(s) is optimal
(if heuristics are consistent)

A* Search

Carnegie Mellon University

10

• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

expand s;

S2 S1

Sgoal

2

g=

h=2

g=

h=1

g=

h=02

S4 S3

3

g=

h=2

g=

h=1

1

Sstart

1

1

g=0

h=3

A* Search

Carnegie Mellon University

11

• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

S2 S1

Sgoal

2

g=

h=2

g=

h=1

g=

h=02

S4 S3

3

g=

h=2

g=

h=1

1

Sstart

1

1

g=0

h=3

set of states that have already been expanded

tries to decrease g(s’) using the

found path from sstart to s

A* Search

Carnegie Mellon University

12

• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {}

OPEN = {sstart}

next state to expand: sstart

S2 S1

Sgoal

2

g=

h=2

g=

h=1

g=

h=02

S4 S3

3

g=

h=2

g=

h=1

1

Sstart

1

1

g=0

h=3

A* Search

Carnegie Mellon University

13

• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {}

OPEN = {sstart}

next state to expand: sstart

g(s2) > g(sstart) + c(sstart,s2)

S2 S1

Sgoal

2

g=

h=2

g=

h=1

g=

h=02

S4 S3

3

g=

h=2

g=

h=1

1

Sstart

1

1

g=0

h=3

A* Search

Carnegie Mellon University

14

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g=

h=1

g=

h=02

S4 S3

3

g=

h=2

g=

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

A* Search

Carnegie Mellon University

15

• Computes optimal g-values for relevant states

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart}

OPEN = {s2}

next state to expand: s2

S2 S1

Sgoal

2

g=1

h=2

g=

h=1

g=

h=02

S4 S3

3

g=

h=2

g=

h=1

1

Sstart

1

1

g=0

h=3

A* Search

Carnegie Mellon University

16

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g=

h=02

S4 S3

3

g= 2

h=2

g=

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart,s2}

OPEN = {s1,s4}

next state to expand: s1

A* Search

Carnegie Mellon University

17

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g=

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart,s2,s1}

OPEN = {s4,sgoal}

next state to expand: s4

A* Search

Carnegie Mellon University

18

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart,s2,s1,s4}

OPEN = {s3,sgoal}

next state to expand: sgoal

A* Search

Carnegie Mellon University

19

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

CLOSED = {sstart,s2,s1,s4,sgoal}

OPEN = {s3}

done

A* Search

Carnegie Mellon University

20

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

for every expanded state g(s) is optimal

for every other state g(s) is an upper bound

we can now compute a least-cost path

A* Search

Carnegie Mellon University

21

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

for every expanded state g(s) is optimal

for every other state g(s) is an upper bound

we can now compute a least-cost path

A* Search

Carnegie Mellon University

22

• Computes optimal g-values for relevant states

S2 S1

Sgoal

2

g=1

h=2

g= 3

h=1

g= 5

h=02

S4 S3

3

g= 2

h=2

g= 5

h=1

1

Sstart

1

1

g=0

h=3

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

for every expanded state g(s) is optimal

for every other state g(s) is an upper bound

we can now compute a least-cost path
why?

A* Search

Carnegie Mellon University

23

• Is guaranteed to return an optimal path (in fact, for every

expanded state) – optimal in terms of the solution

• Performs provably minimal number of state expansions

required to guarantee optimality – optimal in terms of the

computations

A* Search

Carnegie Mellon University

24

• Is guaranteed to return an optimal path (in fact, for every

expanded state) – optimal in terms of the solution

Sketch of proof by induction for h = 0:

assume all previously expanded states have optimal g-values

next state to expand is s: f(s) = g(s) – min among states in OPEN

OPEN separates expanded states from never seen states

thus, path to s via a state in OPEN or an unseen state will be

worse than g(s) (assuming positive costs)

A* Search

Carnegie Mellon University

25

• A* Search: expands states in the order of f = g+h values

Effect of the Heuristic Function

Carnegie Mellon University

26

• A* Search: expands states in the order of f = g+h values

Sketch of proof of optimality by induction for consistent h:

1. assume all previously expanded states have optimal g-values

2. next state to expand is s: f(s) = g(s)+h(s) – min among states in

OPEN

3. assume g(s) is suboptimal

4. then there must be at least one state s’ on an optimal path from

start to s such that it is in OPEN but wasn’t expanded

5. g(s’) + h(s’) ≥ g(s)+h(s)

6. but g(s’) + c*(s’,s) < g(s) =>

g(s’) + c*(s’,s) + h(s) < g(s) + h(s) =>

g(s’) + h(s’) < g(s) + h(s)

7. thus it must be the case that g(s) is optimal

Effect of the Heuristic Function

Carnegie Mellon University

27

• A* Search: expands states in the order of f = g+h values

• Dijkstra’s: expands states in the order of f = g values (pretty

much)

• Intuitively: f(s) – estimate of the cost of a least cost path

from start to goal via s

Effect of the Heuristic Function

h(s)
g(s)

Sstart

S

S2

S1

Sgoal…

the cost of a shortest path

from sstart to s found so far

an (under) estimate of the cost

of a shortest path from s to sgoal

Carnegie Mellon University

28

• A* Search: expands states in the order of f = g+h values

• Dijkstra’s: expands states in the order of f = g values (pretty

much)

• Weighted A*: expands states in the order of f = g+εh

values, ε > 1 = bias towards states that are closer to goal

Effect of the Heuristic Function

h(s)
g(s)

Sstart

S

S2

S1

Sgoal…

the cost of a shortest path

from sstart to s found so far

an (under) estimate of the cost

of a shortest path from s to sgoal

Carnegie Mellon University

Carnegie Mellon University 29

Effect of the Heuristic Function

sgoal

sstart

• Dijkstra’s: expands states in the order of f = g values

What are the states expanded?

Carnegie Mellon University 30

Effect of the Heuristic Function

sgoal

sstart

• A* Search: expands states in the order of f = g+h values

What are the states expanded?

Carnegie Mellon University 31

Effect of the Heuristic Function

sgoal

sstart

• A* Search: expands states in the order of f = g+h values

for large problems this results in A* quickly

running out of memory (memory: O(n))

32

Effect of the Heuristic Function

• Weighted A* Search: expands states in the order of f =

g+εh values, ε > 1 = bias towards states that are closer to

goal

sstart sgoal

key to finding solution fast:

shallow minima for h(s)-h*(s) function

what states are expanded?

Carnegie Mellon University

33

Effect of the Heuristic Function

• Weighted A* Search: expands states in the order of f =

g+εh values, ε > 1 = bias towards states that are closer to

goal

sstart sgoal

key to finding solution fast:

shallow minima for h(s)-h*(s) function

what states are expanded?

Carnegie Mellon University

No one knows. Topic for research.

34

Effect of the Heuristic Function

• Weighted A* Search:

– trades off optimality for speed

– ε-suboptimal:

cost(solution) ≤ ε·cost(optimal solution)

– in many domains, it has been shown to be orders of magnitude

faster than A*

– research becomes to develop a heuristic function that has

shallow local minima

Carnegie Mellon University

35

Effect of the Heuristic Function

• Weighted A* Search:

– trades off optimality for speed

– ε-suboptimal:

cost(solution) ≤ ε·cost(optimal solution)

– in many domains, it has been shown to be orders of magnitude

faster than A*

– research becomes to develop a heuristic function that has

shallow local minima

• Weighted A* Search

– with re-expansions (no Closed List) [Pohl, ‘70]

– without re-expansions (with Closed List) [Likhachev et al., ‘04]

• same sub-optimality guarantees but no more than 1 expansion per state
Carnegie Mellon University

36

Effect of the Heuristic Function

• Weighted A* Search:

– trades off optimality for speed

– ε-suboptimal:

cost(solution) ≤ ε·cost(optimal solution)

– in many domains, it has been shown to be orders of magnitude

faster than A*

– research becomes to develop a heuristic function that has

shallow local minima

• Weighted A* Search

– with re-expansions (no Closed List) [Pohl, ‘70]

– without re-expansions (with Closed List) [Likhachev et al., ‘04]

• same sub-optimality guarantees but no more than 1 expansion per state

Is it guaranteed to expand

no more states than A*?

Carnegie Mellon University

37

• Searches from goal towards states

• g-values are cost-to-goals

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

expand s;

Main function

g(sstart) = 0; all other g-values are infinite; OPEN = {sstart};

ComputePath();

publish solution;

S2 S1

Sgoal

2

g=

h=2

g=

h=1

g=

h=02

S4 S3

3

g=

h=2

g=

h=1

1

Sstart

1

1

g=0

h=3

Backward A* Search

Carnegie Mellon University

What needs to be changed?

38

• Searches from goal towards states

• g-values are cost-to-goals

ComputePath function

while(sstart is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

expand s;

Main function

g(sgoal) = 0; all other g-values are infinite; OPEN = {sgoal};

ComputePath();

publish solution;

S2 S1

Sgoal

2

g=

h=1

g=

h=2

g=

h=32

S4 S3

3

g=

h=2

g=

h=3

1

Sstart

1

1

g=0

h=0

Backward A* Search

Carnegie Mellon University

What needs to be changed?

39

ComputePath function

while(sgoal is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every successor s’ of s such that s’ not in CLOSED

if g(s’) > g(s) + c(s,s’)

g(s’) = g(s) + c(s,s’);

insert s’ into OPEN;

Backward A* Search

Carnegie Mellon University

• Searches from goal towards states

• g-values are cost-to-goals

S2 S1

Sgoal

2

g=

h=1

g=

h=2

g=

h=32

S4 S3

3

g=

h=2

g=

h=3

1

Sstart

1

1

g=0

h=0

What needs to be changed in here?

40

ComputePath function

while(sstart is not expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every predecessor s’ of s such that s’ not in CLOSED

if g(s’) > c(s’,s) + g(s)

g(s’) = c(s’,s) + g(s);

insert s’ into OPEN;

Backward A* Search

Carnegie Mellon University

• Searches from goal towards states

• g-values are cost-to-goals

S2 S1

Sgoal

2

g=

h=1

g=

h=2

g=

h=32

S4 S3

3

g=

h=2

g=

h=3

1

Sstart

1

1

g=0

h=0

What needs to be changed in here?

41

Using A* to Compute a Policy

• Imagine planning for the agent that can easily deviate off the path

• Can A* compute least-cost paths from all the states of interest?

Carnegie Mellon University

42

Using A* to Compute a Policy

• Imagine planning for the agent that can easily deviate off the path

• Can A* compute least-cost paths from all the states of interest?

– Run Backward A* search until all states of interest have been expanded

Carnegie Mellon University

43

Using A* to Compute a Policy

• Backward A* search to compute least-cost paths for all states s ϵ Φ

Carnegie Mellon University

ComputePath function

while(at least one state in Φ hasn’t been expanded and OPEN ≠ 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

insert s into CLOSED;

for every predecessor s’ of s such that s’ not in CLOSED

if g(s’) > c(s’,s) + g(s)

g(s’) = c(s’,s) + g(s);

insert s’ into OPEN;

• Guaranteed to compute least-cost paths for all s ϵ Φ that can reach goal

Why?

44

Support for Multiple Goal Candidates

• How to compute a least-cost path to any one of the possible goals?

– Example 1: Computing a least-cost path to a parking spot given multiple parking

spaces

– Example 2: Greedy mapping (explore the map by always moving to the closest

cell that hasn’t been visited yet)

Carnegie Mellon University

Cells that haven’t been visited yet

shown in grey

45

Support for Multiple Goal Candidates

• How to compute a least-cost path to any one of the possible goals?

– Example 1: Computing a least-cost path to a parking spot given multiple parking

spaces

– Example 2: Greedy mapping (explore the map by always moving to the closest

cell that hasn’t been visited yet)

Carnegie Mellon University

Cells that haven’t been visited yet

shown in grey A goal state (imaginary state)

46

Support for Time-consuming Edge Evaluations

• Lazy weighted A* [Cohen et al., ‘14]

– use lower bounds on edgecosts in computing g-values

– when selected for expansion, evaluate the cost of the transition from the

predecessor

• if the same as the lower bound, then expand

• Otherwise, re-insert back into the queue with the new g-value

Carnegie Mellon University

47

Memory Issues

• A* does provably minimum number of expansions (O(n)) for finding

a provably optimal solution

• Memory requirements of A* (O(n)) can be improved though

• Memory requirements of weighted A* are often but not always better

Carnegie Mellon University

48

Memory Issues

• Alternatives:

– Depth-First Search (w/o coloring all expanded states):

• explore each every possible path at a time avoiding looping and keeping in the

memory only the best path discovered so far

• Complete and optimal (assuming finite state-spaces)

• Memory: O(bm), where b – max. branching factor, m – max. pathlength

• Complexity: O(bm), since it will repeatedly re-expand states

Carnegie Mellon University

49

Memory Issues

• Alternatives:

– Depth-First Search (w/o coloring all expanded states):

• explore each every possible path at a time avoiding looping and keeping in the

memory only the best path discovered so far

• Complete and optimal (assuming finite state-spaces)

• Memory: O(bm), where b – max. branching factor, m – max. pathlength

• Complexity: O(bm), since it will repeatedly re-expand states

• Example:

– graph: a 4-connected grid of 40 by 40 cells, start: center of the grid

– A* expands up to 800 states, DFS may expand way over 420 > 1012 states

Carnegie Mellon University

50

Memory Issues

• Alternatives:

– Depth-First Search (w/o coloring all expanded states):

• explore each every possible path at a time avoiding looping and keeping in the

memory only the best path discovered so far

• Complete and optimal (assuming finite state-spaces)

• Memory: O(bm), where b – max. branching factor, m – max. pathlength

• Complexity: O(bm), since it will repeatedly re-expand states

• Example:

– graph: a 4-connected grid of 40 by 40 cells, start: center of the grid

– A* expands up to 800 states, DFS may expand way over 420 > 1012 states

What if goal is few steps away in

a huge state-space?

Carnegie Mellon University

51

Memory Issues

• Alternatives:

– IDA* (Iterative Deepening A*) [Korf, ‘85]

1. set fmax = 1 (or some other small value)

2. execute (previously explained) DFS that does not expand states with f>fmax

3. If DFS returns a path to the goal, return it

4. Otherwise fmax= fmax+1 (or larger increment) and go to step 2

Carnegie Mellon University

52

Memory Issues

• Alternatives:

– IDA* (Iterative Deepening A*) [Korf, ‘85]

1. set fmax = 1 (or some other small value)

2. execute (previously explained) DFS that does not expand states with f>fmax

3. If DFS returns a path to the goal, return it

4. Otherwise fmax= fmax+1 (or larger increment) and go to step 2

• Complete and optimal in any state-space (with positive costs)

• Memory: O(bl), where b – max. branching factor, l – length of optimal

path

• Complexity: O(kbl), where k is the number of times DFS is called

Carnegie Mellon University

