15-887
Planning, Execution and Learning

A* and Weighted A* Search

Maxim Likhachev

Robotics Institute

Carnegie Mellon University

Searching Graphs for a Least-cost Path

 Once a graph 1S constructed (from skeletonization or uniform cell
decomposition or adaptive cell decomposition or lattice or whatever else), W€

need to search 1t for a least-cost path

Carnegie Mellon University

Searching Graphs for a Least-cost Path

* Many searches work by computing optimal g-values for
relevant states

— g(s) — an estimate of the cost of a least-cost path from s, . to s

— optimal values satisty: g(s) =ming.._ .. &(s") + c(s”,s)

the cost ¢(S 1,8 goq) Of
an edge from s, 10 s,

1 S
oal
_ g
3
(s)——(s)
g=2 g=5

Carnegie Mellon University

Searching Graphs for a Least-cost Path

* Many searches work by computing optimal g-values for
relevant states

— g(s) — an estimate of the cost of a least-cost path from s, . to s

— optimal values satisfy: g(s) = ming.._ 4 &(5") +c(s",s)

the coSt C(S 1,5 g
an edge from s, 105,

1 S
oal
_ g
3
(s)——(s)
g=2 g=5

Carnegie Mellon University 4

Searching Graphs for a Least-cost Path
» Least-cost path 1s a greedy path computed by backtracking:

— start with s, and from any state s move to the predecessor state
s’ such that
§ =arg mlns"epred(s) (g(S) T C(S DS))

g=2 g=5

Carnegie Mellon University 5

A* Search [Hart, Nillson, Raphael, ‘68]

« Computes optimal g-values for relevant states

at any point of time:

the cost of a shortest path

from s, to s found so far

start

/g(s)

.

Carnegie Mellon University

an (under) estimate of the cost

of a shortest path from s 10 s,

o)

A* Search

« Computes optimal g-values for relevant states

at any point of time:

heuristic function

| h(s) -

6w

one popular heuristic function — Euclidean distance

Carnegie Mellon University

A* Search

minimal cost from s 10 s,

« Heuristic function must be:
— admussible: for every state s, /1(s) < c*(s,5,,,)
— consistent (satisfy triangle inequality):
RS gourSgoa) = 0 and for every s#s,,,, h(s) < c(s,succ(s)) + h(succ(s))

— admussibility provably follows from consistency and often (not
always) consistency follows from admissibility

Carnegie Mellon University 8

A* Search

« Computes optimal g-values for relevant states

Main function

g(S.,) = 0, all other g-values are infinite;, OPEN = {s_, .},

ComputePath();
publish solution;

ComputePath function

while(s,,,

set of candidates for expansion

1s not expanded and OPEN # 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
expand s;

\

for every expanded state
2(s) is optimal

if heuristics are consistent)

Carnegie Mellon University h 2 h]

A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,, 1s not expanded and OPEN # 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
expand s;

Carnegie Mellon University h 2 h] 10

A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;

isert s into CLOSED;

for every successor s’ of s such that s 'not in CLOSED

if g(s) > g(s) + ¢(s.s) \
g(s) = g(s) tc(s,s);
/ insert s into OPEN;

set of states that have already been expanded

g=o0 g= o
. . h=2 h=1
tries to decrease g(s’) using the =0 @ 2
< g= o
found path from s, to s ?/ % h=0
Sl | Se

g§= X g~ X
Carnegie Mellon University h=2 h=1 11

A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

OPEN = {Sguyf

next state to expand: s, .. @ @/

8=
h=

—0 2 o

- @ , &

CLOSED = {} .2/ , =0
By !

Carnegie Mellon University h 2 h] 12

A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s, . 1s not expanded and OPEN # 0)

goal
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;

for every successor s’ of s such that s 'not in CLOSED

. y _|_ ’
lfg(S’) > g(s) C(S’S’) g(53) > &(Ssar) T (S5
g(s’) =g(s) +c(s,s), /
insert s ' into OPEN;
= 00
=1

OPEN = {Sguyf

next state to expand: s, .. @

Carnegie Mellon University h 2 h] 13

g=0 2 = o0
CLOSED = {] "3 C]D @\ h=0

A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

ji
w D

Q:

w2

C,@é@K e
o

Carnegie Mellon University h 2 /’l] 14

A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

g= oo
h=1I
g=0 @—. g=
— h:3 2 h=0
CLOSED ={s,,.}
OPEN = {s,} &

next state to expand: s, @ @/

Carnegie Mellon University h 2 /’l] 15

A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

ji
w D

Q:

CL OSE D {S start’ }

@ % ‘220
OPEN = {s,s,} ,

next state to expand: s, @ @/

w2

Carnegie Mellon University h 2 /’l] 16

A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

@—
CLOSED = {5,555} , % h=0

NOQ
Il
on

OPEN = {54800/

next state to expand: s, @ @/

Carnegie Mellon University h 2 /’l] 17

A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

@—
CLOSED = {s, . .,5,5,5, , % h=0

NOQ
Il
on

OPEN = {s 3,Sg0al}

next state to expand: S g0al @ @/

Carnegie Mellon University h 2 h] 18

A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

g=3
h=I
g=0 @—> g=)
B h=3 2 p=0
CLOSED = {sm,sz,sl,s4,sgoaz}
OPEN = {s,} =

done _» @/

Carnegie Mellon University h 2 h] 19

A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s " into OPEN;,

g=1 g=3
h=2) h=1
0 G, e
h=3 % h—0
S|
for every expanded state g(s) is optimal

|
for every other state g(s) is an upper bound —>3 @/

we can now compute a least-cost path g=2 g=5
Carnegie Mellon University /h=2 h=1 20

A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,,, 18 not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s " into OPEN;,

g=1 g=3
h=2) h=1
0 Gl e
h=3 % h=0
|
for every expanded state g(s) is optimal

|
for every other state g(s) is an upper bound —>3 @/

we can now compute a least-cost path g=2 g=5
Carnegie Mellon University /h=2 h=1 21

A* Search

« Computes optimal g-values for relevant states

ComputePath function
while(s,,, 1s not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s " into OPEN;,
g=1
h=2

g=0 _ 2 _
PO
1
for every expanded state g(s) is optimal ,

|
for every other state g(s) is an upper bound.—>@/

we can now compute a least-cost path g=2 =5
h=2 h 1 22

Carnegie Mellon University

A* Search

* Is guaranteed to return an optimal path (in fact, for every
expanded state) — optimal in terms of the solution

e Performs provably minimal number of state expansions
required to guarantee optimality — optimal in terms of the
computations

Carnegie Mellon University 23

A* Search

 Is guaranteed to return an optimal path (in fact, for every
expanded state) — optimal in terms of the solution
Sketch of proof by induction for h = 0:
assume all previously expanded states have optimal g-values
next state to expand is s: f(s) = g(s) — min among states in OPEN
OPEN separates expanded states from never seen states

thus, path to s via a state in OPEN or an unseen state will be
worse than g(s) (assuming positive costs)

Carnegie Mellon University 24

Eftect of the Heuristic Function

« A* Search: expands states in the order of f = g+/h values

Carnegie Mellon University 25

Eftect of the Heuristic Function

« A* Search: expands states in the order of f = g+/h values
Sketch of proof of optimality by induction for consistent h.:
1. assume all previously expanded states have optimal g-values

2. next state to expand is s: f(s) = g(s)+h(s) — min among states in
OPEN

3. assume g(s) is suboptimal

4. then there must be at least one state s’ on an optimal path from
start to s such that it is in OPEN but wasn’t expanded

5.8(s) + h(s’) =2g(s)+h(s)

6. but g(s’) + c*(s’,s) < g(s) =>
g(s) +c*(s’s) + h(s) <g(s) + h(s) =>
g(s) + h(s’) <g(s) + h(s)

7. thus it must be the case that g(s) is optimal

Carnegie Mellon University 26

Eftect of the Heuristic Function

« A* Search: expands states in the order of f = g+/h values

* Dijkstra’s: expands states in the order of f = g values (pretty

much)

« Intuitively: f(s) — estimate of the cost of a least cost path

from start to goal via s

an (under) estimate of the cost
of a shortest path from s to s

goal

the cost of a shortest path
from s, to s found so far

/g(S) —

e AR

h(s)
—®—.

Carnegie Mellon University 27

Eftect of the Heuristic Function

« A* Search: expands states in the order of f = g+/h values

* Dijkstra’s: expands states in the order of f = g values (pretty
much)

 Weighted A*: expands states in the order of f = g+eh
values, ¢ > [= bias towards states that are closer to goal

an (under) estimate of the cost
of a shortest path from s to s

goal

the cost of a shortest path | —" 8(s) h(s) -

from s, to s found so far
.
>

Carnegie Mellon University 28

1Istic Function

of f = g values

Eftect of the Heuristic Function

« A* Search: expands states in the order of f = g+/h values

Carnegie Mellon University 30

Effect of the Heuristic Function

« A* Search: expands states in the order of f = g+/h values

for large problems this results in A™* quickly
running out of memory (memory: O(n))

Carnegie Mellon University 31

Eftect of the Heuristic Function

 Weighted A* Search: expands states 1n the order of f =

g+eh values, ¢ > [= bias towards states that are closer to
goal

LV
=Slart

goal

key to finding solution fast:

shallow minima for h(s)-h*(s) function

Carnegie Mellon University 32

Eftect of the Heuristic Function

 Weighted A* Search: expands states 1n the order of f =

g+eh values, ¢ > [= bias towards states that are closer to
goal

Lq 2 -
SLart

key to finding solution fast:

shallow minima for h(s)-h*(s) function

Carnegie Mellon University 33

Eftect of the Heuristic Function

 Weighted A* Search:
— trades off optimality for speed

— g-suboptimal:
cost(solution) < ecost(optimal solution)

— 1n many domains, 1t has been shown to be orders of magnitude
faster than A*

— research becomes to develop a heuristic function that has
shallow local minima

Carnegie Mellon University 34

Eftect of the Heuristic Function

 Weighted A* Search:
— trades off optimality for speed

— g-suboptimal:
cost(solution) < ecost(optimal solution)

— 1n many domains, 1t has been shown to be orders of magnitude
faster than A*

— research becomes to develop a heuristic function that has
shallow local minima

 Weighted A* Search

— with re-expansions (no Closed List) [Pohl, *70]
— without re-expansions (with Closed List) [Likhachev et al., ‘04]

¢ same sub-optimality guarantees but no more than 1 expansion per state
Carnegie Mellon University 35

Eftect of the Heuristic Function

 Weighted A* Search:
— trades off optimality for speed

— g-suboptimal:

cost(solution) < ecost(optimalzs

— 1n many domains, it has beg
faster than A*

— research becomes to develop a heuriStic roneaen tidt has
shallow local minima

 Weighted A* Search

— with re-expansions (no Closed List) [Pohl, *70]
— without re-expansions (with Closed List) [Likhachev et al., ‘04]

« same sub-optimality guarantees but no more than 1 expansion per state
Carnegie Mellon University 36

Backward A* Search

« Searches from goal towards states

e g-values are cost-to-goals
Main function

g(S..,) = 0, all other g-values are infinite;, OPEN = {s_, .},
ComputePath();
publish solution;

ComputePath function
while(s,,, 1s not expanded and OPEN # 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
expand s;

Carnegie Mellon University h 2 h] 37

Backward A* Search

« Searches from goal towards states

e g-values are cost-to-goals

Main function
2(S40q) = 0; all other g-values are infinite; OPEN = {s,,,,},
ComputePath();

publish solution;

ComputePath function
while(s,,,,, 1s not expanded and OPEN # 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
expand s;

Carnegie Mellon University h—Z h—3 38

Backward A* Search

« Searches from goal towards states

e g-values are cost-to-goals

ComputePath function
while(s,,, 1s not expanded and OPEN # 0)
remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every successor s’ of s such that s 'not in CLOSED
i g(s’) > g(s) +c(s.s)
g(s) = g(s) tc(s,s);
insert s ' into OPEN;

8~ g:OO

h=1I
o BB
@ ,1 Sgoa

—@/

Carnegie Mellon University h—Z h—3 39

Backward A* Search

« Searches from goal towards states

e g-values are cost-to-goals
ComputePath function
while(s,,,,, 1s not expanded and OPEN # 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every predecessor s’ of s such that s 'not in CLOSED
if g(s’) > c(s’,s) + g(s)
g(s’) = c(s’s) + g(s);
insert s ' into OPEN;

8~ g:OO

h=1I
o BB
@ ,1 Sgoa

—@/

Carnegie Mellon University h—Z h—3 40

Using A* to Compute a Policy

« Imagine planning for the agent that can easily deviate off the path

STARI H

« Can A* compute least-cost paths from all the states of interest?

Carnegie Mellon University

41

Using A* to Compute a Policy

« Imagine planning for the agent that can easily deviate off the path

« Can A* compute least-cost paths from all the states of interest?

— Run Backward A* search until all states of interest have been expanded

Carnegie Mellon University

42

Using A* to Compute a Policy

« Backward A* search to compute least-cost paths for all states s € @

ComputePath function
while(at least one state in @ hasn’t been expanded and OPEN # 0)

remove s with the smallest [f(s) = g(s)+h(s)] from OPEN;
isert s into CLOSED;
for every predecessor s’ of s such that s 'not in CLOSED
i g(s’) > c(s’,s) + g(s)
g(s) =c(s’.s) + g(s);
insert s ' into OPEN;

* Guaranteed to compute least-cost paths for all s € @ that can reach goal

Carnegie Mellon University

43

Support for Multiple Goal Candidates

 How to compute a least-cost path to any one of the possible goals?

— Example 1: Computing a least-cost path to a parking spot given multiple parking
spaces

— Example 2: Greedy mapping (explore the map by always moving to the closest
cell that hasn’t been visited yet)

Cells that havent been visited yet
shown in grey

Carnegie Mellon University 44

Support for Multiple Goal Candidates

 How to compute a least-cost path to any one of the possible goals?

— Example 1: Computing a least-cost path to a parking spot given multiple parking
spaces

— Example 2: Greedy mapping (explore the map by always moving to the closest
cell that hasn’t been visited yet)

e
>
0%
>
X
<
X
X

KT HRRE
- EREXER - (A

Oz

0
G
RO
FoN

e

@ (= \
Cells that haven t been visited yet \\\
shown in grey A goal State (in.aaginary State) T new vertex (O

Carnegie Mellon University 45

Support for Time-consuming Edge Evaluations

« Lazy weighted A* [Cohen et al., ‘14]

— use lower bounds on edgecosts in computing g-values

— when selected for expansion, evaluate the cost of the transition from the
predecessor
« if the same as the lower bound, then expand
» Otherwise, re-insert back into the queue with the new g-value

Carnegie Mellon University

46

Memory Issues

A* does provably minimum number of expansions (O(n)) for finding
a provably optimal solution

Memory requirements of A* (O(n)) can be improved though

Memory requirements of weighted A* are often but not always better

Carnegie Mellon University 47

Memory Issues

Alternatives:

— Depth-First Search (w/o coloring all expanded states):

 explore each every possible path at a time avoiding looping and keeping in the
memory only the best path discovered so far

« Complete and optimal (assuming finite state-spaces)
* Memory: O(bm), where b — max. branching factor, m — max. pathlength

» Complexity: O(b™), since it will repeatedly re-expand states

Carnegie Mellon University

48

Memory Issues

Alternatives:
— Depth-First Search (w/o coloring all expanded states):

explore each every possible path at a time avoiding looping and keeping in the
memory only the best path discovered so far

Complete and optimal (assuming finite state-spaces)

Memory: O(bm), where b — max. branching factor, m — max. pathlength

Complexity: O(b™), since it will repeatedly re-expand states

Example:
— graph: a 4-connected grid of 40 by 40 cells, start: center of the grid
— A* expands up to 800 states, DFS may expand way over 420> 1012 states

Carnegie Mellon University 49

Memory Issues

Alternatives:

— Depth-First Search (w/o coloring all expanded states):

 explore each every possible path at a time avoiding looping and keeping in the
memory only the best path discovered so far

Complete and optimal (assuming finite state-spaces)

Memory: O(bm), where b — maz

Complexity: O(b™), since it Wi

Example:
— graph: a 4-connected grid of 40 by 40 cells, start: center of the grid
— A* expands up to 800 states, DFS may expand way over 420> 1012 states

Carnegie Mellon University 50

Memory Issues

e Alternatives:
— IDA* (Iterative Deepening A*) [Korf, ‘85]

1. setf, .= I (or some other small value)
. execute (previously explained) DFS that does not expand states with f>f,

max

2
3. If DFS returns a path to the goal, return it
4

. Otherwise f, =1, 11 (or larger increment) and go to step 2

Carnegie Mellon University 51

Memory Issues

Alternatives:
IDA* (Iterative Deepening A*) [Korf, ‘85]

.

2. execute (previously explained) DFS that does not expand states with f>f
3.
4. Otherwise f,

setf,... = 1 (or some other small value)

max

If DFS returns a path to the goal, return 1t
= faxT1 (Or larger increment) and go to step 2

max

Complete and optimal in any state-space (with positive costs)

Memory: O(bl), where b — max. branching factor, / — length of optimal
path

Complexity: O(kb'), where k is the number of times DFS is called

Carnegie Mellon University 52

