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Reinforcement Learning  
and Policy Reuse 

Manuela M. Veloso 

PEL – Fall 2016 
Readings: 

•  Reinforcement Learning: An Introduction, R. Sutton and A. Barto 

•  Probabilistic policy reuse in a reinforcement learning agent,  
Fernando Fernandez and Manuela Veloso. In Proceedings of 
AAMAS’06. (Thanks to Fernando Fernandez)  

      

Learning 

•  Learning from experience 
•  Supervised learning 

–  Labeled examples 

•  Reward/reinforcement 
–  Something good/bad (positive/negative reward) happens 
–  An agent gets reward as part of the “input” percept, but it 

is “programmed” to understand it as reward. 
–  Reinforcement extensively studied by animal 

psychologists. 
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Reinforcement Learning 

•  The problem of getting an agent to act in the world so as 
to maximize its rewards.  

•  Teaching a dog a new trick:  
–  you cannot tell it what to do,  
–  but you can reward/punish it if it does the right/wrong thing. 
–  Learning: to figure out what it did that made it get the reward/

punishment:  the credit assignment problem.  

•  RL: a similar method to train computers to do many 
tasks.  

Reinforcement Learning Task 

•  Assume the world is a Markov Decision Process 
–  States and actions known 
–  Transitions and rewards unknown 
–  Full observability 

•  Objective 
–  Learn action policy π : S → A  
–  Maximize expected reward 

E[rt + γrt+1 + γ2rt+2 + ...] 

  from any starting state in S. 
•  0 ≤ γ < 1, discount factor for future rewards 
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Reinforcement Learning Problem 

Agent sees the state, selects and action, and gets reward  
Goal:  Learn to choose actions that maximize 

r0 + γr1 + γ2r2 + ... , where 0 ≤ γ < 1 

Online Learning Approaches 

•  Capabilities 
–  Execute actions in world 

–  Observe state of world 

•  Two Learning Approaches 
–  Model-based 

–  Model-free 
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Model-Based Reinforcement Learning 

•  Approach 
–  Learn the MDP 
–  Solve the MDP to determine optimal policy 

•  Appropriate when model is unknown, but small enough to 
solve feasibly 

Learning the MDP 

•  Estimate the rewards and transition distributions 
–  Try every action some number of times 
–  Keep counts (frequentist approach) 

•  R(s,a) = Ra
s/Na

s 

•  T(s’,a,s) = Na
s,s’/Na

s 

–  Solve using value or policy iteration 

•  Iterative Learning and Action 
–  Maintain statistics incrementally 
–  Solve the model periodically 
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Model-Free Reinforcement Learning 

•  Learn policy mapping directly 

•  Appropriate when model is too large to store, solve, 
or learn 
–  Do not need to try every state/action in order to get 

good policy 
–  Converges to optimal policy 

Value Function 

•  For each possible policy π, define an evaluation 
function over states 

 where rt, rt+1,... are generated by following policy π 
starting at state s 

•  Learning task: Learn OPTIMAL policy 
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π* ≡ argmaxπVπ(s), (∀s) 
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Learn Value Function 

•  Learn the evaluation function Vπ* (i.e. V*) 

•  Select the optimal action from any state s, i.e., have 
an optimal policy, by using V* with one step 
lookahead: 

 

•  But reward and transition functions are unknown 
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Q Function 

•  Define new function very similar to V* 

Q(s,a) ≡ r(s,a) + γV*(δ(s,a)) 

 

•  If agent learns Q, it can choose optimal action even 
without knowing δ or r 

Learn Q function – Q-learning 
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Q-Learning 

Q-learning actively generates examples. 
It “processes” examples by updating its Q values. 

While learning, Q values are approximations. 

Q and V*: 

 

We can write Q recursively: 
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Training Rule to Learn Q (Deterministic Example) 

Let Q denote current approximation to Q. 
Then Q-learning uses the following training rule: 

 

 

 

where sʹ is the state resulting from applying action a in state s, 
and r is the reward that is returned. 

( ) ( )asQrasQ a ʹʹ+← ʹ ,ˆmax,ˆ γ

ˆ 
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Deterministic Case – Example 

Deterministic Case – Example 
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Q Learning Iterations 

Start at top left corner with fixed policy – clockwise  
Initially Q(s,a) = 0; γ = 0.8 

( ) ( )asQrasQ a ʹʹ+← ʹ ,ˆmax,ˆ γ

Q (s1, E)               Q (s2, E)            Q (s3, S)               Q(s4, W)          

Q Learning Iterations 
Starts at top left corner with fixed policy – clockwise  
Initially Q(s,a) = 0; γ = 0.8 

( ) ( )asQrasQ a ʹʹ+← ʹ ,ˆmax,ˆ γ
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Nondeterministic Case 

•  Q learning in nondeterministic worlds 
–  Redefine V, Q by taking expected values: 
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Nondeterministic Case 

•  Q learning training rule: 
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Exploration vs Exploitation 

•  Tension between learning optimal strategy and using 
what you know, so far, to maximize expected reward 
–  Convergence theorem depends on visiting each state 

sufficient number of times 
–  Typically use reinforcement learning while performing 

tasks 

Exploration policy 

•  Wacky approach: act randomly in hopes of 
eventually exploring entire environment 

•  Greedy approach: act to maximize utility using 
current estimate 

•  Balanced approach: act “more” wacky when 
agent has not much knowledge of environment 
and “more” greedy when the agent has acted in 
the environment longer  

•  One-armed bandit problems 
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Exploration Strategies 

•   ε-greedy 
–  Exploit with probability 1-ε 
–  Choose remaining actions uniformly 
–  Adjust ε as learning continues 

•  Boltzman 
–  Choose action with probability  
 

–  where t “cools” over time (simulated annealing) 

All methods sensitive to parameter choices and changes 
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Policy Reuse 

•  Impact of change of reward function 
–  Does not want to learn from scratch 

•  Transfer learning 
–  Learn macros of the MPD – options 
–  Value function transfer 
–  Exploration bias 

•  Reuse complete policies 
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Episodes  

•  MDP with absorbing goal states 
–  Transition probability from a goal state to the same 

goal state is 1 (therefore to any other state is 0) 
•  Episode: 

–  Start in random state, end in absorbing state 
•  Reward per episode (K episodes, H steps each): 

Domains and Tasks 
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Policy Library and Reuse 

π-Reuse Exploration 
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π-Reuse Policy Learning 

Experimental Results 
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Results 

Policy Reuse in Q-Learning 

•  Interestingly, the pi-reuse strategy also 
contributes a similarity metric between policies 
–  The gain Wi obtained while executing the pi-reuse 

exploration strategy, reusing the past policy i. 
•  Wi is an estimation of how similar the policy i is 

to the new one! 
•  The set of Wi values for each of the policies in 

the library is unknown a priori, but it can be 
estimated on-line while the new policy is 
computed in the different episodes.  
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Learning to Use a Policy Library 

•  Similarity between 
policies can be learned 

•  Gain of using each 
policy 

•  Explore different policies 
•  Learn domain structure: 

“eigen” policies 
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Summary 

•  Reinforcement learning 
–  Q-learning 

•  Policy Reuse 

•  Next class:  
–  Other reinforcement learning algorithms 
–  (There are many…)  


