
10/19/16

1

Reinforcement Learning
and Policy Reuse

Manuela M. Veloso

PEL – Fall 2016
Readings:

•  Reinforcement Learning: An Introduction, R. Sutton and A. Barto

•  Probabilistic policy reuse in a reinforcement learning agent,
Fernando Fernandez and Manuela Veloso. In Proceedings of
AAMAS’06. (Thanks to Fernando Fernandez)

Learning

•  Learning from experience
•  Supervised learning

–  Labeled examples

•  Reward/reinforcement
–  Something good/bad (positive/negative reward) happens
–  An agent gets reward as part of the “input” percept, but it

is “programmed” to understand it as reward.
–  Reinforcement extensively studied by animal

psychologists.

10/19/16

2

Reinforcement Learning

•  The problem of getting an agent to act in the world so as
to maximize its rewards.

•  Teaching a dog a new trick:
–  you cannot tell it what to do,
–  but you can reward/punish it if it does the right/wrong thing.
–  Learning: to figure out what it did that made it get the reward/

punishment: the credit assignment problem.

•  RL: a similar method to train computers to do many
tasks.

Reinforcement Learning Task

•  Assume the world is a Markov Decision Process
–  States and actions known
–  Transitions and rewards unknown
–  Full observability

•  Objective
–  Learn action policy π : S → A
–  Maximize expected reward

E[rt + γrt+1 + γ2rt+2 + ...]

 from any starting state in S.
•  0 ≤ γ < 1, discount factor for future rewards

10/19/16

3

Reinforcement Learning Problem

Agent sees the state, selects and action, and gets reward
Goal: Learn to choose actions that maximize

r0 + γr1 + γ2r2 + ... , where 0 ≤ γ < 1

Online Learning Approaches

•  Capabilities
–  Execute actions in world

–  Observe state of world

•  Two Learning Approaches
–  Model-based

–  Model-free

10/19/16

4

Model-Based Reinforcement Learning

•  Approach
–  Learn the MDP
–  Solve the MDP to determine optimal policy

•  Appropriate when model is unknown, but small enough to
solve feasibly

Learning the MDP

•  Estimate the rewards and transition distributions
–  Try every action some number of times
–  Keep counts (frequentist approach)

•  R(s,a) = Ra
s/Na

s

•  T(s’,a,s) = Na
s,s’/Na

s

–  Solve using value or policy iteration

•  Iterative Learning and Action
–  Maintain statistics incrementally
–  Solve the model periodically

10/19/16

5

Model-Free Reinforcement Learning

•  Learn policy mapping directly

•  Appropriate when model is too large to store, solve,
or learn
–  Do not need to try every state/action in order to get

good policy
–  Converges to optimal policy

Value Function

•  For each possible policy π, define an evaluation
function over states

 where rt, rt+1,... are generated by following policy π
starting at state s

•  Learning task: Learn OPTIMAL policy

()

∑
∞

=

+

++

≡

+++≡

0

1
2

1 ...

i

it
i

ttt

r

rrrsV

γ

γγπ

π* ≡ argmaxπVπ(s), (∀s)

10/19/16

6

Learn Value Function

•  Learn the evaluation function Vπ* (i.e. V*)

•  Select the optimal action from any state s, i.e., have
an optimal policy, by using V* with one step
lookahead:

•  But reward and transition functions are unknown

() () ()()[]asVasrs
a

,,maxarg ** δγπ +=

Q Function

•  Define new function very similar to V*

Q(s,a) ≡ r(s,a) + γV*(δ(s,a))

•  If agent learns Q, it can choose optimal action even
without knowing δ or r

Learn Q function – Q-learning

() () ()()[]

()),(maxarg

,,maxarg

*

**

asQs

asVasrs

a

a

=

+=

π

δγπ

10/19/16

7

Q-Learning

Q-learning actively generates examples.
It “processes” examples by updating its Q values.

While learning, Q values are approximations.

Q and V*:

We can write Q recursively:

() ()asQsV
a

ʹ=
ʹ

∗ ,max

() () ()()
() ()asQasr

asVasrasQ

ta
tt

tttttt

ʹ+=

+=

+ʹ

∗

,max,
,, ,

1
γ

δγ

Training Rule to Learn Q (Deterministic Example)

Let Q denote current approximation to Q.
Then Q-learning uses the following training rule:

where sʹ is the state resulting from applying action a in state s,
and r is the reward that is returned.

() ()asQrasQ a ʹʹ+← ʹ ,ˆmax,ˆ γ

ˆ

10/19/16

8

Deterministic Case – Example

Deterministic Case – Example

() ()

{ }
90

 100 ,81 ,63 max 9.0 0

,ˆmax ,ˆ
21

←

+←

ʹ+←
ʹ

asQrasQ
a

right γ

10/19/16

9

Q Learning Iterations

Start at top left corner with fixed policy – clockwise
Initially Q(s,a) = 0; γ = 0.8

() ()asQrasQ a ʹʹ+← ʹ ,ˆmax,ˆ γ

Q (s1, E) Q (s2, E) Q (s3, S) Q(s4, W)

Q Learning Iterations
Starts at top left corner with fixed policy – clockwise
Initially Q(s,a) = 0; γ = 0.8

() ()asQrasQ a ʹʹ+← ʹ ,ˆmax,ˆ γ

10/19/16

10

Nondeterministic Case

•  Q learning in nondeterministic worlds
–  Redefine V, Q by taking expected values:

() []

() () ()()[]asVasrEasQ

rE

rrrEsV

i
it

i

ttt

,, ,

...

*

0

2
2

1

δγ

γ

γγπ

+≡

⎥
⎦

⎤
⎢
⎣

⎡
≡

+++≡

∑
∞

=
+

++

Nondeterministic Case

•  Q learning training rule:

() () ()

()

()
()

1992) Dayan, and (Watkins toconverges still ˆ

., and , where

,,ˆmax

 ,ˆ1 ,ˆ

*

,1
1

1n

1

QQ

ass

asQr

asQasQ

asnvisitsn

na

nnn

δα

γα

α

=ʹ=

⎥⎦
⎤

⎢⎣
⎡ ʹʹ+

+−←

+

−
ʹ

−

10/19/16

11

Exploration vs Exploitation

•  Tension between learning optimal strategy and using
what you know, so far, to maximize expected reward
–  Convergence theorem depends on visiting each state

sufficient number of times
–  Typically use reinforcement learning while performing

tasks

Exploration policy

•  Wacky approach: act randomly in hopes of
eventually exploring entire environment

•  Greedy approach: act to maximize utility using
current estimate

•  Balanced approach: act “more” wacky when
agent has not much knowledge of environment
and “more” greedy when the agent has acted in
the environment longer

•  One-armed bandit problems

10/19/16

12

Exploration Strategies

•  ε-greedy
–  Exploit with probability 1-ε
–  Choose remaining actions uniformly
–  Adjust ε as learning continues

•  Boltzman
–  Choose action with probability

–  where t “cools” over time (simulated annealing)

All methods sensitive to parameter choices and changes

()

()∑
=

'

/',

/,

e
e

a

tasQ

tasQ

p

Policy Reuse

•  Impact of change of reward function
–  Does not want to learn from scratch

•  Transfer learning
–  Learn macros of the MPD – options
–  Value function transfer
–  Exploration bias

•  Reuse complete policies

10/19/16

13

Episodes

•  MDP with absorbing goal states
–  Transition probability from a goal state to the same

goal state is 1 (therefore to any other state is 0)
•  Episode:

–  Start in random state, end in absorbing state
•  Reward per episode (K episodes, H steps each):

Domains and Tasks

10/19/16

14

Policy Library and Reuse

π-Reuse Exploration

10/19/16

15

π-Reuse Policy Learning

Experimental Results

10/19/16

16

Results

Policy Reuse in Q-Learning

•  Interestingly, the pi-reuse strategy also
contributes a similarity metric between policies
–  The gain Wi obtained while executing the pi-reuse

exploration strategy, reusing the past policy i.
•  Wi is an estimation of how similar the policy i is

to the new one!
•  The set of Wi values for each of the policies in

the library is unknown a priori, but it can be
estimated on-line while the new policy is
computed in the different episodes.

10/19/16

17

Learning to Use a Policy Library

•  Similarity between
policies can be learned

•  Gain of using each
policy

•  Explore different policies
•  Learn domain structure:

“eigen” policies

10/19/16

18

Summary

•  Reinforcement learning
–  Q-learning

•  Policy Reuse

•  Next class:
–  Other reinforcement learning algorithms
–  (There are many…)

