Reinforcement Learning
and Policy Reuse

Manuela M. Veloso

PEL — Fall 2016
Readings:
* Reinforcement Learning: An Introduction, R. Sutton and A. Barto

» Probabilistic policy reuse in a reinforcement learning agent,
Fernando Fernandez and Manuela Veloso. In Proceedings of
AAMAS’06. (Thanks to Fernando Fernandez)

Learning

» Learning from experience

» Supervised learning
— Labeled examples

 Reward/reinforcement

— Something good/bad (positive/negative reward) happens
— An agent gets reward as part of the “input” percept, but it

is “programmed” to understand it as reward.

— Reinforcement extensively studied by animal
psychologists.

10/19/16

Reinforcement Learning

The problem of getting an agent to act in the world so as
to maximize its rewards.

Teaching a dog a new trick:
— you cannot tell it what to do,
— but you can reward/punish it if it does the right/wrong thing.
— Learning: to figure out what it did that made it get the reward/
punishment: the credit assignment problem.
RL: a similar method to train computers to do many
tasks.

Reinforcement Learning Task

Assume the world is a Markov Decision Process
— States and actions known
— Transitions and rewards unknown
— Full observability

Objective
— Learn action policyn: S — 4
— Maximize expected reward
E[rz+ Y1 + yzrt+2+]
from any starting state in S.

* 0 <y <1, discount factor for future rewards

10/19/16

Reinforcement Learning Problem

Agent

State//Reward \A\ction

| Environment |

a a a,
59 L sy 52 -
"o i 2

Agent sees the state, selects and action, and gets reward
Goal: Learn to choose actions that maximize

rotyrt v+ .. ,where 0y <1

Online Learning Approaches

» Capabilities
— Execute actions in world

— Observe state of world

* Two Learning Approaches
— Model-based
— Model-free

10/19/16

10/19/16

Model-Based Reinforcement Learning

* Approach
— Learn the MDP
— Solve the MDP to determine optimal policy

* Appropriate when model is unknown, but small enough to
solve feasibly

Learning the MDP

» Estimate the rewards and transition distributions
— Try every action some number of times

— Keep counts (frequentist approach)
* R(s,a) = R3/N&
+ T(s'a,8) = N2 o/N?

— Solve using value or policy iteration

* [terative Learning and Action
— Maintain statistics incrementally

— Solve the model periodically

Model-Free Reinforcement Learning

* Learn policy mapping directly

« Appropriate when model is too large to store, solve,
or learn
— Do not need to try every state/action in order to get
good policy
— Converges to optimal policy

Value Function

* For each possible policy n, define an evaluation
function over states

T _ 2
Vo(s) =r 4+, + 7, +
o0

_ i
= V Vi
Zl=

where r,, ,,,,... are generated by following policy ©
starting at state s 7+ = argmax,_17(s), (Vs)

* Learning task: Learn OPTIMAL policy

10/19/16

10/19/16

Learn Value Function

* Learn the evaluation function V™ (i.e. V'*)

 Select the optimal action from any state s, i.e., have
an optimal policy, by using V* with one step
lookahead:

T (s) = argmax [r(s, a)+ }/V*(é(s,a))J

a

e But reward and transition functions are unknown

Q Function

* Define new function very similar to J*
O(s,a) = r(s,a) + yV*(o(s,a))

Learn Q function — Q-learning

« Ifagent learns Q, it can choose optimal action even
without knowing ¢ or

T (s) = argmax [r(s, a)+ ;/V*(é(s, a))]

a

v (s) =argmax Q(s,a)

a

10/19/16

Q-Learning

O and 1™
7*(s)= max Os,@')
We can write Q recursively:
Q(St’at) = r(St’at)+ 7/V*(5<Staat))

_rls,.a,)+ ymax(s,,,,a’)

QO-learning actively generates examples.
It “processes” examples by updating its Q values.
While learning, QO values are approximations.

Training Rule to Learn Q meterministic Example)

Let O denote current approximation to Q.
Then Q-learning uses the following training rule:

Q(s,a) < r+ymax, Q(s',a')

where s’ is the state resulting from applying action « in state s,
and r is the reward that is returned.

Deterministic Case — Example

R By 10
5
|81

\

Initial state: S]

right

Next state: s,

Deterministic Case — Example

= Hﬁ»

=
AL

63
|81

\

Initial state: S,

A

Q(Slaaright) <

— 0+0.9max{63381,100}
< 90

a, ght

L R 100
-

63
|81

\

Next state: S,

r+ Y max Q(Szaa')

a

10/19/16

10/19/16

Q Learning Iterations

Start at top left corner with fixed policy — clockwise
Initially O(s,a) =0; y= 0.8

sl —_— 52 s3

A
~——

6y Ofs.a)<r+ymax, Ols'.a)
st [0

G
s6 10 l ’ 10 54

~——

Q(s1,E) Q(s2,E) Q(s3,S) Q(s4, W)

Q Learning Iterations

Starts at top left corner with fixed policy — clockwise
Initially O(s,a) =0; y=0.8

sl —_ 52 s3
- - A A ! !
LT T Ols,a) < r+ymax, Ofs',a')
|
! i
G
s 10| (LY |10 o
Q(s1.B) Q(s2.B) Q(s3.9) Q(s4,W)
3 0 0 I+~ max{Q(s5,loop)}=
10+08.0=10
0 0 I+~ max{Q(s4,W),Q(s4.N)}=
0 +0.8max{10.0}=8 10
0 I+~ max{Q(s3,W),Q(s3.5)}=
0+0.8 max{0.8}= 6.4 8 10

10/19/16

Nondeterministic Case

* (learning in nondeterministic worlds
— Redefine V, O by taking expected values:

E[rz TVt)’2’?+2 +]
E[i }’irm‘]
=

O(s,a) =Elr(s,a)+ 7" (6(s.a))]

V™ (s)

Nondeterministic Case

* QO learning training rule:

QAn(Saa)e (1 - 6xn)Qn—l(s’a)+
a, [r +y quQn_l (S',a')],

where a, = ands' = 6(s,a).

L+visitsy, (s,a) >

Q still convergesto Q" (Watkinsand Dayan,1992)

10

Exploration vs Exploitation

* Tension between learning optimal strategy and using
what you know, so far, to maximize expected reward

— Convergence theorem depends on visiting each state
sufficient number of times

— Typically use reinforcement learning while performing
tasks

Exploration policy

» Wacky approach: act randomly in hopes of
eventually exploring entire environment

» Greedy approach: act to maximize utility using
current estimate

» Balanced approach: act “more” wacky when
agent has not much knowledge of environment
and “more” greedy when the agent has acted in
the environment longer

* One-armed bandit problems

10/19/16

11

Exploration Strategies

* g-greedy
— Exploit with probability 1-¢
— Choose remaining actions uniformly
— Adjust € as learning continues

* Boltzman Qlsa)t

— Choose action with probability P = 2 eQis,a'i/z
<
— where ¢ “cools” over time (simulated annealing)

All methods sensitive to parameter choices and changes

Policy Reuse

» Impact of change of reward function
— Does not want to learn from scratch
» Transfer learning
— Learn macros of the MPD — options
— Value function transfer
— Exploration bias

* Reuse complete policies

10/19/16

12

Episodes

« MDP with absorbing goal states

— Transition probability from a goal state to the same
goal state is 1 (therefore to any other state is 0)

» Episode:
— Start in random state, end in absorbing state
» Reward per episode (K episodes, H steps each):

1 K H .
WZEZZ'yrk,h (1)

k=0 h=0

where 7 (0 < 4 < 1) reduces the importance of future
rewards, and 7y ;, defines the immediate reward obtained in
the step h of the episode k, in a total of K episodes.

Domains and Tasks

A domain D is defined as a tuple < S, A,7 >, where S is the set o
all possible states; A is the set of all possible actions; and 7 is a state
transition function, 7 : S x A xS — R

A task () is defined as a tuple < D, R >, where D is a domain; anc
Rq is the reward function, R: S x A — R

An action policy I to solve a task 2 is a function IIg : S — A.

(a) Task 4 (b) Task €2 c) Task Q3

10/19/16

13

Policy Library and Reuse

e Policy Reuse:

* We need to solve the task €2, i.e. learn Il

* We have previously solved the set of tasks {€2;,...,2,} so we have a
Policy Library composed of the n policies that solve them respectively,
say L = {IIy,... 1L}

* How can we use the policy library, L, to learn the new policy, IIg?

m-Reuse Exploration

Need to solve a task €, i.e. learn I, cq.

Have a Policy Library, say L = {II,...,II,}

Let's assume that there is a supervisor who, given (2, tells us which is
the most similar policy, say II,4st, t0 Iljew. Thus, we know that the
policy to reuse is IT,;5;.

Integrate the past policy as a probabilistic bias in the exploration strategy
of the new learning process

Define probabilities for exploiting the past policy, perform random
exploration, or exploit the ongoing policy

past(s) w/prob. ¢
* Select a = { Ilnew(s)) w/prob. (1 —1)e

Random w/prob. (1 —1)(1 —€)

10/19/16

14

m-Reuse Policy Learning

T-reuse (Hpasts Kv H7 d& U7, (1).

Initialize Q" (s,a) = 0,Vs € S,a € A
Fork=1to K
Set the initial state, s, randomly.
Set Py — 9
forh =1to H
With a probability of ¥n, @ = Ipast(s)
With a probability of 1 — 9y, a = e-greedy (e (s))
Receive current state s’, and reward, 7.

Update Qn"e‘”(s, a), and therefore, I1ycw, using the Q-Learning update function:

Q(s,a) — (1 — @)Q(s,a) + afr +vméx, Q(s', a’)]
Set Ypy1 — Ypv
Set s — s’

W =% Zk HZh 0" Tk
Return W, Q"™* (s, a) and Il

Experimental Results

E

c) Task €23
) Task Qs) Task €2

10/19/16

15

Results

0 L L L L L L L L L
o 200 400 600 800 1000 1200 1400 1600 1800 2000
Trials
Random —— 1-gready ——
b T T T T

035
03
025
= 02f
015 [
01

005 -

0 1 1 1 1 1 1 1 1 1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Trals

M, I I, I

Policy Reuse in Q-Learning

Interestingly, the pi-reuse strategy also
contributes a similarity metric between policies
— The gain Wi obtained while executing the pi-reuse

exploration strategy, reusing the past policy i.
Wi is an estimation of how similar the policy i is
to the new one!

The set of Wi values for each of the policies in
the library is unknown a priori, but it can be
estimated on-line while the new policy is
computed in the different episodes.

10/19/16

16

PRQ-Learning.

PRQ-Learning (£2, L, K, H)

o Given:
(1) A new task £2 we want to solve.
(2) A Policy Library L = {IT,, ..., IT,}.
(3) A maximum number of episodes to execute, K.
(4) A maximum number of steps per episode, H.
o Initialize:
(1)Qp(s,a) =0,Vs € 8,a € A.
2Q)Wgo =W; =0,fori=1,...,n.
e Fork =1toK do
- Choose an action policy, Ik, assigning to each policy the probability of
being selected computed by the following equation:
eV
D= e
where W, is set to Wo,.
- Execute the learning episode k.
If [T, = Ilg, execute a Q-Learning episode following a fully greedy
strategy.
Otherwise, call 7-reuse ([T, 1, H, ¥, v).
In any case, receive the reward obtained in that episode, say R, and
the updated Q function, Qg (s, a).
- Recompute Wy using R.
o Return the policy derived from Qg (s, a).

Learning to Use a Policy Library

Similarity between
policies can be learned

Gain of using each
policy
Explore different policies

Learn domain structure:
“eigen” policies

10/19/16

17

Summary

* Reinforcement learning
— Q-learning
* Policy Reuse

* Next class:

— Other reinforcement learning algorithms
— (There are many...)

10/19/16

18

