Reinforcement Learning and Policy Reuse

Manuela M. Veloso

PEL - Fall 2016

Readings:

- · Reinforcement Learning: An Introduction, R. Sutton and A. Barto
- Probabilistic policy reuse in a reinforcement learning agent,
 Fernando Fernandez and Manuela Veloso. In Proceedings of
 AAMAS'06. (Thanks to Fernando Fernandez)

Learning

- · Learning from experience
- Supervised learning
 - Labeled examples
- Reward/reinforcement
 - Something good/bad (positive/negative reward) happens
 - An agent gets reward as part of the "input" percept, but it is "programmed" to understand it as reward.
 - Reinforcement extensively studied by animal psychologists.

Reinforcement Learning

- The problem of getting an agent to act in the world so as to maximize its rewards.
- · Teaching a dog a new trick:
 - you cannot tell it what to do,
 - but you can reward/punish it if it does the right/wrong thing.
 - Learning: to figure out what it did that made it get the reward/ punishment: the credit assignment problem.
- RL: a similar method to train computers to do many tasks.

Reinforcement Learning Task

- Assume the world is a Markov Decision Process
 - States and actions known
 - Transitions and rewards unknown
 - Full observability
- Objective
 - Learn action policy $\pi: S \to A$
 - Maximize expected reward

$$E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + ...]$$

from any starting state in S.

• $0 \le \gamma < 1$, discount factor for future rewards

Reinforcement Learning Problem

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \dots$$

Agent sees the state, selects and action, and gets reward Goal: Learn to choose actions that maximize $r_0 + \gamma r_1 + \gamma^2 r_2 + \dots \text{, where } 0 \leq \gamma < 1$

Online Learning Approaches

- Capabilities
 - Execute actions in world
 - Observe state of world
- Two Learning Approaches
 - Model-based
 - Model-free

Model-Based Reinforcement Learning

- Approach
 - Learn the MDP
 - Solve the MDP to determine optimal policy
- Appropriate when model is unknown, but small enough to solve feasibly

Learning the MDP

- Estimate the rewards and transition distributions
 - Try every action some number of times
 - Keep counts (frequentist approach)
 - $R(s,a) = R_s^a/N_s^a$
 - $T(s',a,s) = N_{s,s'}^a/N_s^a$
 - Solve using value or policy iteration
- Iterative Learning and Action
 - Maintain statistics incrementally
 - Solve the model periodically

Model-Free Reinforcement Learning

- Learn policy mapping directly
- Appropriate when model is too large to store, solve, or learn
 - Do not need to try every state/action in order to get good policy
 - Converges to optimal policy

Value Function

• For each possible policy π , define an *evaluation* function over states

$$V^{\pi}(s) = r_t + \gamma r_{t+1} + \gamma^2 r_{t+1} + \dots$$
$$= \sum_{i=0}^{\infty} \gamma^i r_{t+i}$$

where r_t , r_{t+1} ,... are generated by following policy π starting at state s $\pi^* \equiv \operatorname{argmax}_{\pi} V^{\pi}(s)$, $(\forall s)$

• Learning task: Learn OPTIMAL policy

Learn Value Function

- Learn the evaluation function $V^{\pi*}$ (i.e. V^*)
- Select the optimal action from any state s, i.e., have an optimal policy, by using V* with one step lookahead:

$$\pi^*(s) = \underset{a}{\operatorname{arg\,max}} \left[r(s, a) + \gamma V^*(\delta(s, a)) \right]$$

• But reward and transition functions are unknown

Q Function

• Define new function very similar to V^*

$$Q(s,a) \equiv r(s,a) + \gamma V^*(\delta(s,a))$$

Learn *Q* function – *Q*-learning

• If agent learns Q, it can choose optimal action even without knowing δ or r

$$\pi^*(s) = \underset{a}{\arg\max} \left[r(s, a) + \gamma V^*(\delta(s, a)) \right]$$
$$\pi^*(s) = \underset{a}{\arg\max} Q(s, a)$$

Q-Learning

Q and V^* :

$$V^*(s) = \max_{a'} Q(s, a')$$

We can write *Q* recursively:

$$Q(s_t, a_t) = r(s_t, a_t) + \gamma V^*(\delta(s_t, a_t))$$

$$= r(s_t, a_t) + \gamma \max_{a'} Q(s_{t+1}, a')$$

Q-learning actively generates examples. It "processes" examples by updating its Q values. While learning, Q values are approximations.

Training Rule to Learn Q (Deterministic Example)

Let Q denote current approximation to Q.

Then Q-learning uses the following training rule:

$$\hat{Q}(s,a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s',a')$$

where s' is the state resulting from applying action a in state s, and r is the reward that is returned.

Deterministic Case – Example

Deterministic Case – Example

$$\hat{Q}(s_1, a_{right}) \leftarrow r + \gamma \max_{a'} \hat{Q}(s_2, a')$$

$$\leftarrow 0 + 0.9 \max \{63, 81, 100\}$$

$$\leftarrow 90$$

Q Learning Iterations

Start at top left corner with fixed policy – clockwise Initially Q(s,a) = 0; $\gamma = 0.8$

$$\hat{Q}(s,a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s',a')$$

Q (s1, E)

Q (s2, E)

Q (s3, S)

Q(s4, W)

Q Learning Iterations

Starts at top left corner with fixed policy – clockwise Initially Q(s,a) = 0; $\gamma = 0.8$

$$\hat{Q}(s,a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s',a')$$

Q(s1,E)	Q(s2,E)	Q(s3,S)	Q(s4,W)
0	0	0	$r + \gamma \max{Q(s5,loop)} =$
			10 + 0.8 . 0 = 10
0	0	$r + \gamma \max{Q(s4,W),Q(s4,N)} =$	
		0 + 0.8 max{ 10,0}= 8	10
0	$r + \gamma \max{Q(s3,W),Q(s3,S)} =$		
	$0 + 0.8 \max\{0.8\} = 6.4$	8	10

Nondeterministic Case

- Q learning in nondeterministic worlds
 - Redefine V, Q by taking expected values:

$$V^{\pi}(s) = E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots]$$
$$= E\left[\sum_{i=0}^{\infty} \gamma^i r_{t+i}\right]$$

$$Q(s,a) = E[r(s,a) + \gamma V^*(\delta(s,a))]$$

Nondeterministic Case

• Q learning training rule:

$$\hat{Q}_{n}(s,a) \leftarrow (1-\alpha_{n})\hat{Q}_{n-1}(s,a) + \alpha_{n} \left[r + \gamma \max_{a'} \hat{Q}_{n-1}(s',a')\right],$$

where
$$\alpha_n = \frac{1}{1 + visits_n(s,a)}$$
, and $s' = \delta(s,a)$.

 \hat{Q} still converges to Q^* (Watkins and Dayan, 1992)

Exploration vs Exploitation

- Tension between learning optimal strategy and using what you know, so far, to maximize expected reward
 - Convergence theorem depends on visiting each state sufficient number of times
 - Typically use reinforcement learning while performing tasks

Exploration policy

- Wacky approach: act randomly in hopes of eventually exploring entire environment
- Greedy approach: act to maximize utility using current estimate
- Balanced approach: act "more" wacky when agent has not much knowledge of environment and "more" greedy when the agent has acted in the environment longer
- · One-armed bandit problems

Exploration Strategies

- ε-greedy
 - Exploit with probability 1-ε
 - Choose remaining actions uniformly
 - Adjust ε as learning continues
- Boltzman
 - Choose action with probability $p = \frac{e^{Q(s,a')/t}}{\sum_{a'} e^{Q(s,a')/t}}$
 - where t "cools" over time (simulated annealing)

All methods sensitive to parameter choices and changes

Policy Reuse

- · Impact of change of reward function
 - Does not want to learn from scratch
- Transfer learning
 - Learn macros of the MPD options
 - Value function transfer
 - Exploration bias
- Reuse complete policies

Episodes

- MDP with absorbing goal states
 - Transition probability from a goal state to the same goal state is 1 (therefore to any other state is 0)
- Episode:
 - Start in random state, end in absorbing state
- Reward per episode (K episodes, H steps each):

$$W = \frac{1}{K} \sum_{k=0}^{K} \sum_{h=0}^{H} \gamma^{h} r_{k,h}$$
 (1)

where γ (0 $\leq \gamma \leq$ 1) reduces the importance of future rewards, and $r_{k,h}$ defines the immediate reward obtained in the step h of the episode k, in a total of K episodes.

Domains and Tasks

A **domain** \mathcal{D} is defined as a tuple $<\mathcal{S},\mathcal{A},\mathcal{T}>$, where \mathcal{S} is the set of all possible states; \mathcal{A} is the set of all possible actions; and \mathcal{T} is a state transition function, $\mathcal{T}:\mathcal{S}\times\mathcal{A}\times\mathcal{S}\to\Re$

A **task** Ω is defined as a tuple $<\mathcal{D},\mathcal{R}_{\Omega}>$, where \mathcal{D} is a domain; and \mathcal{R}_{Ω} is the reward function, $\mathcal{R}:\mathcal{S}\times\mathcal{A}\to\Re$

An action policy Π_{Ω} to solve a task Ω is a function $\Pi_{\Omega}: \mathcal{S} \to \mathcal{A}$.

Policy Library and Reuse

Policy Reuse:

- \star We need to solve the task Ω , i.e. learn Π_{Ω}
- \star We have previously solved the set of tasks $\{\Omega_1,\ldots,\Omega_n\}$ so we have a Policy Library composed of the n policies that solve them respectively, say $L=\{\Pi_1,\ldots,\Pi_n\}$
- \star How can we use the policy library, L, to learn the new policy, Π_{Ω} ?

π-Reuse Exploration

Need to solve a task Ω , i.e. learn Π_{new} .

Have a Policy Library, say $L = \{\Pi_1, \dots, \Pi_n\}$

Let's assume that there is a supervisor who, given Ω , tells us which is the most similar policy, say Π_{past} , to Π_{new} . Thus, we know that the policy to reuse is Π_{past} .

Integrate the past policy as a probabilistic bias in the exploration strategy of the new learning process

Define probabilities for exploiting the past policy, perform random exploration, or exploit the ongoing policy

$$\star \text{ Select } a = \left\{ \begin{array}{ll} \Pi_{past}(s) & \text{w/prob. } \psi \\ \Pi_{new}(s)) & \text{w/prob. } (1-\psi)\epsilon \\ Random & \text{w/prob. } (1-\psi)(1-\epsilon) \end{array} \right.$$

π-Reuse Policy Learning

Policy Reuse in Q-Learning

- Interestingly, the pi-reuse strategy also contributes a similarity metric between policies
 - The gain Wi obtained while executing the pi-reuse exploration strategy, reusing the past policy i.
- Wi is an estimation of how similar the policy i is to the new one!
- The set of Wi values for each of the policies in the library is unknown a priori, but it can be estimated on-line while the new policy is computed in the different episodes.

PRQ-Learning.

PRQ-Learning (Ω, L, K, H)

- Given:
- (1) A new task Ω we want to solve.
- (2) A Policy Library $L = \{\Pi_1, \dots, \Pi_n\}$.
- (3) A maximum number of episodes to execute, K.
- (4) A maximum number of steps per episode, H.
- Initialize:
- $(1)\,Q_{\varOmega}(s,a)=0,\,\forall s\in\mathcal{S},\,a\in\mathcal{A}.$
- (2) $W_{\Omega} = W_i = 0$, for i = 1, ..., n.
- For k = 1 to K do
- Choose an action policy, Π_k , assigning to each policy the probability of being selected computed by the following equation:

$$P(\Pi_j) = \frac{e^{\tau W_j}}{\sum_{p=0}^n e^{\tau W_p}}$$

where W_0 is set to W_{Ω} .

- Execute the learning episode k.

If $\Pi_k = \Pi_\Omega$, execute a Q-Learning episode following a fully greedy strategy.

Otherwise, call π -reuse (Π_k , 1, H, ψ , υ).

In any case, receive the reward obtained in that episode, say R, and the updated Q function, $Q_{\Omega}(s,a)$.

- Recompute W_k using R.
- Return the policy derived from $Q_{\Omega}(s, a)$.

Learning to Use a Policy Library

- Similarity between policies can be learned
- Gain of using each policy
- · Explore different policies
- Learn domain structure: "eigen" policies

Summary

- Reinforcement learning
 - Q-learning
- Policy Reuse
- Next class:
 - Other reinforcement learning algorithms
 - (There are many...)