Finding Objects through Stochastic Shortest Path Problems ### Manuela Veloso Thanks to Felipe Trevizan School of Computer Science Carnegie Mellon University **PEL, Fall 2016** ### **CoBot: Autonomous Service Robot** Veloso, Biswas, Coltin, Rosenthal IJCAI'15 ### **Motivation** - An autonomous agent moving in a known environment in order to find an object while minimizing the search cost, e.g., - Taxi driver looking for passengers while minimizing the usage of gas - Software agent finding information about a product in the web while minimizing bandwidth - Service robot retrieving objects to users while minimizing the traveled distance 2 ### **Querying and Learning from the Web** ### Search for Object Probabilistic Planning - The probability of objects being in a given location type is obtained using OpenEval [Samadi et al, 2012]. - We compare 3 different probabilistic planners to find (also see paper): - Coffee, Cup, Pen, Papers and Toner ### **Probabilistic Planners** - We compared the following planners: - FF-Replan [Yoon et al, 2007] - **UCT** [Kocsis and Szepesvári, 2006] - **SSiPP** [Trevizan and Veloso, 2012] 18 ### FF-Replan [Yoon et al, 2007] Main idea: simplify the problem by removing the probabilities from actions #### **UCT** [Kocsis and Szepesvári, 2006] - Main ideas: - Limit the maximum number of actions that can be applied to reach the goal - Use sparse **sampling** to search for a solution ### **SSiPP** [Trevizan and Veloso, 2012] Main idea: prune states reachable only in the far future # Results: Finding a Pen (All parameters) | | TION | | | | | | | | | | | | |-----|-------|--------------|------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--| | | | | $UCT \ w = 1000$ | | | SSiPP | | | | | | | | | l_0 | FF-Replan | c = 2 | c = 4 | c = 8 | t = 10 | t = 12 | t = 14 | t = 16 | t = 18 | t = 20 | | | | 1 | 9.4 ±2 | 9.1 ± 3 | 8.7 ± 3 | 9.3 ±4 | 9.0 ±2 | 10.2 ±2 | 8.7 ± 2 | 8.5 ± 2 | 9.1 ± 2 | 8.4 ±1 | | | | 2 | 8.8 ±2 | 8.9 ± 4 | 9.0 ± 2 | 8.7 ±3 | 9.8 ±2 | 9.2 ± 2 | 9.8 ± 2 | 8.5 ± 1 | 8.9 ± 2 | 8.9 ±2 | | | ben | 3 | 8.5 ± 1 | 10.8 ± 3 | 10.8 ± 3 | 12.0 ± 3 | 9.5 ± 2 | 8.2 ± 2 | 9.5 ± 2 | 8.9 ± 2 | 8.7 ± 2 | 7.8 ± 1 | | | | 4 | 8.2 ± 2 | 9.6 ± 3 | 10.4 ± 3 | 9.1 ±3 | 9.2 ±2 | 8.3 ±2 | 9.0 ± 2 | 8.7 ± 3 | 9.0 ± 2 | 8.5 ± 2 | | | | 5 | 8.7 ± 2 | 9.6 ± 3 | 8.6 ± 2 | 9.7 ±5 | 9.6 ± 1 | 9.9 ± 2 | 8.8 ± 2 | 9.0 ± 2 | 9.4 ± 2 | 9.1 ±2 | | | Ď | 6 | 11.1 ±3 | 11.0 ± 3 | 11.7 ± 2 | 10.8 ± 3 | 11.0 ± 2 | 10.7 ± 1 | 10.6 ± 2 | 10.0 ± 2 | 10.1 ± 2 | 10.0 ± 2 | | | | 7 | 10.9 ± 2 | 11.7 ± 3 | 11.9 ± 3 | 11.4 ±4 | 11.4 ± 2 | 11.1 ± 2 | 11.2 ± 2 | 11.3 ± 2 | 11.2 ± 2 | 11.5 ± 2 | | | l | 8 | 10.7 ±2 | 10.4 ± 3 | 10.9 ± 2 | 10.5 ± 3 | 10.1 ± 2 | 11.8 ± 2 | 8.6 ± 2 | 10.8 ± 2 | 10.4 ± 2 | 10.2 ± 2 | | | | 9 | 11.3 ± 2 | 10.4 ± 3 | 10.6 ± 3 | 10.9 ± 4 | 10.2 ± 2 | 10.9 ± 2 | 10.8 ± 2 | 10.9 ± 2 | 10.0 ± 2 | 10.9 ± 2 | | | | 10 | 9.7 ± 2 | 9.3 ± 2 | 9.9 ± 2 | 9.7 ± 2 | 9.4 ±2 | 9.8 ± 2 | 9.5 ± 2 | 9.6 ± 2 | 9.9 ± 2 | 9.5 ± 2 | | # Results: Finding Papers (All parameters) | | | | UCT $w = 1000$ | | | | SSiPP | | | | | | | |--------|-------|-------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--|--| | | l_0 | FF-Replan | c = 2 | c = 4 | c = 8 | t = 10 | t = 12 | t = 14 | t = 16 | t = 18 | t = 20 | | | | | 1 | 3.3 ±1 | 3.2 ± 1 | 3.9 ± 1 | 3.9 ± 2 | 3.2 ± 0 | 3.6 ± 1 | 3.2 ± 0 | 3.8 ± 1 | 3.3 ± 0 | 3.6 ± 1 | | | | | 2 | 3.7 ± 1 | 3.7 ± 1 | 3.1 ± 1 | 4.4 ± 1 | 4.0 ± 1 | 3.7 ± 1 | 4.2 ± 1 | 3.5 ± 1 | 3.8 ± 1 | 3.4 ± 1 | | | | papers | 3 | 4.4 ± 1 | 4.9 ± 1 | 4.4 ± 1 | 4.8 ± 1 | 3.7 ± 1 | 3.5 ± 1 | 3.8 ± 1 | 3.8 ± 1 | 3.5 ± 1 | 3.6 ± 1 | | | | | 4 | 4.4 ± 1 | 4.3 ± 1 | 4.7 ± 1 | 4.9 ± 3 | 3.6 ± 1 | 3.7 ± 1 | 3.5 ± 1 | 3.5 ± 1 | 3.6 ± 1 | 3.7 ± 1 | | | | | 5 | 3.5 ± 1 | 3.4 ± 1 | 3.9 ± 1 | 3.3 ± 1 | 3.7 ± 1 | 3.9 ± 1 | 3.4 ± 1 | 3.9 ± 1 | 3.5 ± 1 | 3.4 ± 1 | | | | | 6 | 3.6 ± 1 | 3.7 ± 1 | 3.9 ± 1 | 3.8 ± 1 | 3.5 ± 1 | 3.5 ± 1 | 3.9 ± 1 | 3.6 ± 1 | 3.4 ± 1 | 3.6 ± 1 | | | | | 7 | 5.9 ± 1 | 6.4 ± 1 | 6.2 ± 1 | 6.0 ± 1 | 6.0 ± 1 | 6.1 ± 1 | 6.0 ± 1 | 5.8 ± 1 | 6.2 ± 1 | 5.8 ± 1 | | | | | 8 | 4.7 ± 1 | 3.9 ± 1 | 3.5 ± 1 | 3.8 ± 1 | 4.4 ± 1 | 3.5 ± 1 | 3.9 ± 1 | 3.6 ± 1 | 3.6 ± 1 | 3.7 ± 1 | | | | | 9 | 4.8 ± 1 | 3.5 ± 1 | 3.7 ± 1 | 4.0 ± 1 | 4.0 ± 1 | 3.5 ± 1 | 3.9 ± 1 | 3.8 ± 1 | 3.8 ± 1 | 3.8 ± 1 | | | | | 10 | 3.4 ±0 | 3.3 ±1 | 4.1 ± 2 | 3.5 ± 1 | 3.2 ± 1 | 3.3 ±0 | 3.5 ± 1 | 3.4 ± 1 | 3.7 ± 1 | 3.5 ± 1 | | | ## Results: Finding a Toner (All parameters) | | | | UCT $w = 1000$ | | | | SSiPP | | | | | | | |-------|-------|--------------|----------------|---------------|---------------|---------------|--------------|--------------|--------------|--------------|--------------|--|--| | | l_0 | FF-Replan | c = 2 | c = 4 | c = 8 | t = 10 | t = 12 | t = 14 | t = 16 | t = 18 | t = 20 | | | | toner | 1 | 54.1 ±9 | 43.2 ± 10 | 41.9 ± 11 | 41.3 ± 11 | 42.8 ± 7 | 29.5 ± 7 | 27.2 ±5 | 37.9 ±7 | 27.1 ± 6 | 27.9 ±6 | | | | | 2 | 56.8 ±9 | 41.9 ± 10 | 45.7 ± 12 | 40.3 ± 11 | 41.5 ± 5 | 19.0 ± 5 | 18.3 ± 5 | 18.7 ±5 | 18.5 ± 6 | 18.3 ± 6 | | | | | 3 | 50.1 ±9 | 56.6 ± 12 | 55.3 ± 11 | 53.1 ± 13 | 38.5 ± 5 | 33.1 ± 6 | 25.3 ± 6 | 22.4 ± 4 | 23.4 ± 9 | 21.2 ± 5 | | | | | 4 | 61.3 ± 9 | 59.3 ± 10 | 58.0 ± 12 | 42.2 ± 11 | 30.2 ± 9 | 20.7 ± 6 | 20.5 ± 6 | 19.1 ± 7 | 21.3 ± 7 | 19.3 ± 7 | | | | | 5 | 39.3 ± 6 | 38.9 ± 10 | 31.5 ± 10 | 36.5 ± 12 | 30.2 ± 7 | 31.8 ± 8 | 23.9 ± 5 | 23.2 ± 6 | 25.0 ± 7 | 23.6 ±7 | | | | | 6 | 53.3 ± 6 | 37.5 ± 11 | 29.8 ± 7 | 23.1 ± 6 | 18.6 ± 6 | 19.6 ± 4 | 19.0 ± 5 | 18.9 ±6 | 18.4 ± 4 | 18.6 ±6 | | | | _ | 7 | 45.5 ±7 | 26.4 ± 10 | 20.7 ± 8 | 21.2 ± 7 | 18.3 ± 5 | 17.9 ± 5 | 18.0 ± 6 | 18.4 ±7 | 17.6 ± 7 | 17.9 ±5 | | | | | 8 | 33.9 ± 8 | 21.5 ± 10 | 19.8 ± 12 | 18.7 ± 9 | 23.4 ± 10 | 19.7 ± 9 | 18.8 ± 6 | 16.7 ± 8 | 16.2 ± 8 | 17.1 ±7 | | | | | 9 | 36.8 ± 8 | 29.9 ± 10 | 25.9 ± 10 | 23.6 ± 9 | 18.5 ± 8 | 17.6 ± 6 | 18.8 ± 7 | 18.3 ±9 | 16.6 ± 6 | 16.2 ± 5 | | | | | 10 | 54.5 ± 8 | 31.5 ± 9 | 29.5 ± 7 | 27.6 ± 10 | 27.8 ± 6 | 25.1 ± 6 | 23.0 ± 6 | 24.1 ± 7 | 22.6 ± 7 | 22.1 ± 6 | | | ### **Search for Object** - We showed - -how to model object finding as **probabilistic** planning problems - -that domain-independent probabilistic planners offer framework which: - is **extremely flexible** (e.g., *makeCoffee*, *buyCoffee*) - represents a well defined optimization problem - We empirically compared FF-Replan, UCT and **SSiPP** for the obtained class of problems ### **Stochastic Shortest Path Problems** An SSP is the tuple $\langle S, S_0, G, A, P, C \rangle$: - Set of states S - Initial state s_n - Set of goal states $G \subseteq S$ - Set of actions A - Transition probability P(s'|s,a) - Cost C(s,a,s') > 0 - defined when P(s'|s,a) > 0 #### **Solutions for SSPs** - The **solution** for an SSP is a policy, i.e., a mapping from states to actions. - An **optimal** policy π^* minimizes $V^*(s_0)$, i.e., the expected cost to reach a goal state from s₀. $$V^*(s) = \begin{cases} 0 & \text{if } s \in \mathsf{G} \\ \min_{a \in \mathsf{A}} \sum_{s' \in \mathsf{S}} P(s'|s,a)[C(s,a,s') + V^*(s')] & \text{otherwise} \end{cases}$$ In the example: ### **Factored Representation** - Use **state variables** to represent the state space S: - $-F: \{f_1,...,f_k\}, f_i \text{ in } \{0,1\}$ - $-S = \{0,1\}^k$ - Benefit: compact representation - In the example, two state variables: x and y _y=1_ #### **Planner: SSiPP** [Trevizan and Veloso, 2012] - Generate a short-sighted SSP: - Prune the state space - Heuristically estimate the cost of pruned states - Solve the subproblems and execute this solution - Repeat until goal is reached ### **Short-Sighted SSPs: Definition** Given: • an SSP <S,s₀,G,A,P,C>, • $s \in S$ • t > 0 and • a heuristic function H the (s,t)-short-sighted SSP is <S',s,G',A,P,C'>: States reachable using up to t actions $$\bullet \ \mathsf{S}' = \{s' \in \mathsf{S} | \delta(s,s') \leq t\}$$ Artificial goal: states reachable using exactly tractions exactly t actions $\delta(s,s')$: minimum number of actions to reach s' from s • $$G' = \{s' \in S | \delta(s, s') = t\} \cup (G \cap S')$$ • $$C'(s, a, s') = \begin{cases} C(s, a, s') + H(s') & \text{if } s' \in G' \\ C(s, a, s') & \text{otherwise} \end{cases}$$ If s' is an artificial goal, then its cost is incremented by its heuristic value ### **Short-Sighted SSPs and Look-ahead** **Theorem**: the optimal value-function for an (s,t)-short-sighted SSP is at least as good as the t-look-ahead value of s. • Short-sighted SSPs preserve the action structure, e.g., self-loop actions and loops of actions ### Short-Sighted Probabilistic Planner (SSiPP) ``` \begin \\ s \leftarrow s_0 \\ \begin \\ \begin S' \leftarrow s_0 \\ \begin S', s, \mathbf{G}', \mathbf{A}, P, C' \rangle \leftarrow \begin SENERATE-SHORT-SIGHTED-SSP(\mathbb{S}, s, H) \\ \hat{\pi}^* \leftarrow \begin Optimal-SSP-Solver(\langle \mathbf{S}', s, \mathbf{G}', \mathbf{A}, P, C' \rangle, H) \\ \begin while <math>s \not\in \mathbf{G}' do \begin S' \leftarrow S ``` Since short-sighted SSPs are much smaller than the original problem. we can compute a complete policy for them. 37 ### **Planner: FF-Replan** [Yoon et al, 2007] - Relax probabilistic actions into deterministic actions (determinization) - Pro: scales up - Cons: oblivious to probabilities - Relaxes a given SSP by a sequence of finitehorizon problems - Uses sparse sampling to efficiently explore the search tree - Pro: scales up - Con: can't represent loops 39 ### **Conclusion – Related Work** - [Aydemir et al, 2011] - MDP in the belief space of relational descriptions - Solved using greedy search over finite horizon - [Velez et al, 2011] - Maps objects while moving - Minimizes traveled distance and false positives - Solved using sampling over finite horizon - [Kollar and Roy, 2009] - Finds objects using co-location data (label comparison on Flickr) - Minimizes expected plan size over a posteriori prob. of finding the object. - Solved using breath-first search with additional constraints - [Samadi et al, 2012] - Finds object by querying Google to obtain prior probability - Maximizes utility function based on probability of finding object, cost of obtaining object and feedback about the object - Solved using beam search