
11/17/16	

1	

Finding	Objects	through	Stochas4c	
Shortest	Path	Problems	

Manuela	Veloso	
Thanks	to	Felipe	Trevizan	
School	of	Computer	Science	
Carnegie	Mellon	University	

	
	

PEL,	Fall	2016	
	

CoBot:	Autonomous	Service	Robot	
Veloso,	Biswas,	Col-n,	Rosenthal	IJCAI’15	



11/17/16	

2	

Mo4va4on	

•  An	autonomous	agent	moving	in	a	known	
environment	in	order	to	find	an	object	while	
minimizing	the	search	cost,	e.g.,	
– Taxi	driver	looking	for	passengers	while	
minimizing	the	usage	of	gas	

– SoFware	agent	finding	informaHon	about	a	
product	in	the	web	while	minimizing	bandwidth	

– Service	robot	retrieving	objects	to	users	while	
minimizing	the	traveled	distance	

2	

Querying	and	Learning	from	the	Web	



11/17/16	

3	

Search	for	Object	
Probabilis4c	Planning	

•  The	probability	of	objects	being	in	a	given	
locaHon	type	is	obtained	using	OpenEval	
[Samadi	et	al,	2012].	

•  We	compare	3	different	probabilisHc	planners	
to	find	(also	see	paper):	
– Coffee,	Cup,	Pen,	Papers	and	Toner	

15	

Map	

16	



11/17/16	

4	

Probabilis4c	Planners	

•  We	compared	the	following	planners:	

– FF-Replan	[Yoon	et	al,	2007]	
– UCT	[Kocsis	and	Szepesvári,	2006]	
– SSiPP	[Trevizan	and	Veloso,	2012]	

	

18	

FF-Replan	
[Yoon	et	al,	2007]	

19	

•  Main	idea:	simplify	the	problem	by	removing	
the	probabili4es	from	acHons	

Original	Problem	 Relaxed	Problem	 Solu4on	Relax	Prob.	

Numbers	represent	the	
prob.	of	finding	the		
object	in	that	locaHon	



11/17/16	

5	

UCT	
[Kocsis	and	Szepesvári,	2006]	

20	

•  Main	ideas:		
‒  Limit	the	maximum	number	of	ac4ons	that	can	be	applied	

to	reach	the	goal	
‒  Use	sparse	sampling	to	search	for	a	soluHon	

	Original	Problem	 Sampled	Traj.	(1	ac4on)	 Sampled	Traj.	(2	ac4ons)	

SSiPP	
[Trevizan	and	Veloso,	2012]	

21	

•  Main	idea:	prune	states	reachable	only	in	the	
far	future	

Original	Problem	 Relaxed	Problem	 Solu4on	Relax	Prob.	

Everything	beyond	this	point	is	
pruned	and	heuris4cally	es4mated	



11/17/16	

6	

Probability	of	finding	the	a	pen	at:	

Results:	Finding	a	Pen	

22	

Restroom	 Kitchen	 Office	 Printer	R.	

0.15	 0.23	 0.35	 0.27	

Avg	and	95%	conf.	int.	of	the	cost	to	find	a	pen:	

Results:	Finding	a	Pen	
(All	parameters)	

23	



11/17/16	

7	

Probability	of	finding	papers	at:	

Results:	Finding	Papers	

24	

Restroom	 Kitchen	 Office	 Printer	R.	

0.00	 0.13	 0.70	 0.17	

Avg	and	95%	conf.	int.	of	the	cost	to	find	papers:	

Results:	Finding	Papers	
(All	parameters)	

25	



11/17/16	

8	

Probability	of	finding	a	toner	at:	

Results:	Finding	a	Toner	

26	

Restroom	 Kitchen	 Office	 Printer	R.	

0.05	 0.02	 0.06	 0.87	

Avg	and	95%	conf.	int.	of	the	cost	to	find	a	pen:	

Results:	Finding	a	Toner	
(All	parameters)	

27	



11/17/16	

9	

Search	for	Object	
• We	showed	
– how	to	model	object	finding	as	probabilis4c	
planning	problems	
– that	domain-independent	probabilis4c	planners	
offer	framework	which:	
•  is	extremely	flexible	(e.g.,	makeCoffee,	buyCoffee)	
•  represents	a	well	defined	opHmizaHon	problem	

• We	empirically	compared	FF-Replan,	UCT	and	
SSiPP	for	the	obtained	class	of	problems	

28	

Stochas4c	Shortest	Path	Problems	

29	

An	SSP	is	the	tuple	<S,s0,G,A,P,C>:	
•  Set	of	states	S	
•  IniHal	state	s0	
•  Set	of	goal	states		
•  Set	of	acHons	A	
•  TransiHon	probability	P(s’|s,a)	
•  Cost	C(s,a,s’)	>	0	

–  defined	when	P(s’|s,a)	>	0	

	

Example	

a0	

s0	

s1	

s2	

s3	

0.75	

1	

0.25	

0.75	

0.25	1	

1	

a1	

	
	
	
	
	
	

G	=	{s3}	
C(	,a0,	):	

	
C(	,a1,	):	
	

s'/s	 s0	 s2	
s1	 2	 --	

s3	 --	 7	

s'/s	 s0	 s1	 s2	
s2	 1	 --	 1	

s3	 2	 2	 2	



11/17/16	

10	

Solu4ons	for	SSPs	

30	

•  The	solu4on	for	an	SSP	is	a	policy,	
i.e.,	a	mapping	from	states	to	
ac4ons.	

•  An	op4mal	policy					minimizes	
V*(s0),	i.e.,	the	expected	cost	to	
reach	a	goal	state	from	s0.	

•  In	the	example:	

	
	
	

Example	

a0	

s0	

s1	

s2	

s3	

0.75	
1	

0.25	

0.75	
0.25	1	

1	

a1	

	
	
	
	
	
	

G	=	{s3}	
C(	,a0,	):	

	
C(	,a1,	):	
	

s'/s	 s0	 s2	
s1	 2	 --	

s3	 --	 7	

s'/s	 s0	 s1	 s2	
s2	 1	 --	 1	

s3	 2	 2	 2	
s0	 s1	 s2	
a1	 a0	 a0	

Factored	Representa4on	
•  Use	state	variables	to	represent	the	state	space	S:	
– F:	{f1,…,fk},	fi	in	{0,1}	
– S	=	{0,1}k	

•  Benefit:	compact	representaHon	
•  In	the	example,	two	state	variables:	x	and	y	

31	

s0	

s1	

s2	

s3	

0.75	

1	

0.25	

0.75	

0.25	

1	

1	

y=0	 y=1	

x=
0	

x=
1	

x/x’	 0	 1	
0	 .75	 .25	

1	 0	 1	

s/s’	 s0	 s1	 s2	 s3	
s0	 0	 0	 .75	 .25	

s1	 0	 0	 0	 1	

s2	 0	 0	 .75	 .25	

s3	 0	 0	 0	 1	

RepresentaHon	of	P(s’|s,a0)	
Explicit:	 Factored:	

y/y’	 0	 1	
0	 0	 1	

1	 0	 1	



11/17/16	

11	

•  Generate	a	short-sighted	SSP:	
– Prune	the	state	space	
– HeurisHcally	es4mate	the	cost	of	pruned	states	

•  Solve	the	subproblems	and	execute	this	soluHon	
•  Repeat	unHl	goal	is	reached	

Planner:	SSiPP	
[Trevizan	and	Veloso,	2012]	

33	

IniHal	state	
Goal	states	

Search	space	

Short-sighted	SSP	

Given:	
	

		
the	(s,t)-short-sighted	SSP	is	<S’,s,G’,A,P,C’>:			

Short-Sighted	SSPs:	Defini4on	

34	

States	reachable	using	up	to	t	acHons	

ArHficial	goal:	states	reachable	using	
exactly	t	acHons	

If	s’	is	an	arHficial	goal,	then	its	cost	is	
incremented	by	its	heurisHc	value	

• 			
• 			
• 			

• an	SSP	<S,s0,G,A,P,C>,		
•  		
• t	>	0	and		
• a	heurisHc	funcHon	H		

																				:	minimum	number	of	
acHons	to	reach	s’	from	s	



11/17/16	

12	

Short-Sighted	SSPs:	Example	

35	

•  Original	problem:	

	
•  (s0,1)-short-sighted:	

•  (s0,2)-short-sighted	

a0	
a1	

s0	 s1	 s2	 sG	s3	

0.1	
0.9	

1	1	1	

0.2	0.8	

s0	 s1	 sG	s3	 1	

0.2	0.8	

s0	 s1	 s2	 sG	s3	

0.1	
0.9	

1	1	

0.2	0.8	

s0	 0	

s1	 1	

s2	 2	

s3	 1	

sG	 1	

Short-Sighted	SSPs	and	Look-ahead	

Look-ahead/UCT	(t=2)	 Short-sighted	SSP	(t=2)	

36	

Theorem:	the	opHmal	value-funcHon	for	an	(s,t)-short-sighted	SSP	
is	at	least	as	good	as	the	t-look-ahead	value	of	s.	

s0	

s1	sG	s3	

s3	 s0	 s2	

s0	 s1	 s2	 sG	s3	

0.1	
0.9	

1	1	

0.2	0.8	

• 	Short-sighted	SSPs	preserve	the	acHon	structure,		
		e.g.,	self-loop	acHons	and	loops	of	acHons	

a0	
a1	



11/17/16	

13	

Short-Sighted	Probabilis4c	Planner	
(SSiPP)	

37	

Since	short-sighted	SSPs	are	much	
smaller	than	the	original	problem.	
we	can	compute	a	complete	policy	
for	them.	

1	

1	

Planner:	FF-Replan	
[Yoon	et	al,	2007]	

•  Relax	probabilisHc	acHons	into	determinisHc	
acHons	(determiniza4on)	

•  Pro:	scales	up	
•  Cons:	oblivious	to	probabiliHes	

38	

s0	 s1	 s2	 sG	s3	

0.1	
0.9	

1	1	1	

0.2	0.8	
1	

1	

a0	
a1	
â		
â’	
a1	



11/17/16	

14	

Planner:	UCT	
[Kocsis	and	Szepesvári,	2006]	

•  Relaxes	a	given	SSP	by	a	sequence	of	finite-
horizon	problems	

•  Uses	sparse	sampling	to	efficiently	explore	the	
search	tree	

•  Pro:	scales	up	
•  Con:	can’t	represent	loops	

39	

2	acHons	
horizon	

a0	
a1	

s0	 s1	 s2	 sG	s3	

0.1	
0.9	

1	1	1	

0.2	0.8	

s0	

s1	sG	s3	

s3	 s0	 s2	

0.8	 0.2	 1	

1	0.1	0.9	

Conclusion	–	Related	Work	
•  [Aydemir	et	al,	2011]	

–  MDP	in	the	belief	space	of	relaHonal	descripHons	
–  Solved	using	greedy	search	over	finite	horizon	

•  [Velez	et	al,	2011]	
–  Maps	objects	while	moving	
–  Minimizes	traveled	distance	and	false	posiHves	
–  Solved	using	sampling	over	finite	horizon	

•  [Kollar	and	Roy,	2009]	
–  Finds	objects	using	co-locaHon	data	(label	comparison	on	Flickr)	
–  Minimizes	expected	plan	size	over	a	posteriori	prob.	of	finding	the	
object.	

–  Solved	using	breath-first	search	with	addiHonal	constraints	
•  [Samadi	et	al,	2012]	

–  Finds	object	by	querying	Google	to	obtain	prior	probability	
–  Maximizes	uHlity	funcHon	based	on	probability	of	finding	object,	cost	
of	obtaining	object	and	feedback	about	the	object	

–  Solved	using	beam	search	
40	


