Finding Objects through Stochastic Shortest Path Problems

Manuela Veloso Thanks to Felipe Trevizan

School of Computer Science Carnegie Mellon University

PEL, Fall 2016

CoBot: Autonomous Service Robot

Veloso, Biswas, Coltin, Rosenthal IJCAI'15

Motivation

- An autonomous agent moving in a known environment in order to find an object while minimizing the search cost, e.g.,
 - Taxi driver looking for passengers while minimizing the usage of gas
 - Software agent finding information about a product in the web while minimizing bandwidth
 - Service robot retrieving objects to users while minimizing the traveled distance

2

Querying and Learning from the Web

Search for Object Probabilistic Planning

- The probability of objects being in a given location type is obtained using OpenEval [Samadi et al, 2012].
- We compare 3 different probabilistic planners to find (also see paper):
 - Coffee, Cup, Pen, Papers and Toner

Probabilistic Planners

- We compared the following planners:
 - FF-Replan [Yoon et al, 2007]
 - **UCT** [Kocsis and Szepesvári, 2006]
 - **SSiPP** [Trevizan and Veloso, 2012]

18

FF-Replan

[Yoon et al, 2007]

 Main idea: simplify the problem by removing the probabilities from actions

UCT

[Kocsis and Szepesvári, 2006]

- Main ideas:
 - Limit the maximum number of actions that can be applied to reach the goal
 - Use sparse **sampling** to search for a solution

SSiPP

[Trevizan and Veloso, 2012]

 Main idea: prune states reachable only in the far future

Results: Finding a Pen (All parameters)

	TION											
			$UCT \ w = 1000$			SSiPP						
	l_0	FF-Replan	c = 2	c = 4	c = 8	t = 10	t = 12	t = 14	t = 16	t = 18	t = 20	
	1	9.4 ±2	9.1 ± 3	8.7 ± 3	9.3 ±4	9.0 ±2	10.2 ±2	8.7 ± 2	8.5 ± 2	9.1 ± 2	8.4 ±1	
	2	8.8 ±2	8.9 ± 4	9.0 ± 2	8.7 ±3	9.8 ±2	9.2 ± 2	9.8 ± 2	8.5 ± 1	8.9 ± 2	8.9 ±2	
ben	3	8.5 ± 1	10.8 ± 3	10.8 ± 3	12.0 ± 3	9.5 ± 2	8.2 ± 2	9.5 ± 2	8.9 ± 2	8.7 ± 2	7.8 ± 1	
	4	8.2 ± 2	9.6 ± 3	10.4 ± 3	9.1 ±3	9.2 ±2	8.3 ±2	9.0 ± 2	8.7 ± 3	9.0 ± 2	8.5 ± 2	
	5	8.7 ± 2	9.6 ± 3	8.6 ± 2	9.7 ±5	9.6 ± 1	9.9 ± 2	8.8 ± 2	9.0 ± 2	9.4 ± 2	9.1 ±2	
Ď	6	11.1 ±3	11.0 ± 3	11.7 ± 2	10.8 ± 3	11.0 ± 2	10.7 ± 1	10.6 ± 2	10.0 ± 2	10.1 ± 2	10.0 ± 2	
	7	10.9 ± 2	11.7 ± 3	11.9 ± 3	11.4 ±4	11.4 ± 2	11.1 ± 2	11.2 ± 2	11.3 ± 2	11.2 ± 2	11.5 ± 2	
l	8	10.7 ±2	10.4 ± 3	10.9 ± 2	10.5 ± 3	10.1 ± 2	11.8 ± 2	8.6 ± 2	10.8 ± 2	10.4 ± 2	10.2 ± 2	
	9	11.3 ± 2	10.4 ± 3	10.6 ± 3	10.9 ± 4	10.2 ± 2	10.9 ± 2	10.8 ± 2	10.9 ± 2	10.0 ± 2	10.9 ± 2	
	10	9.7 ± 2	9.3 ± 2	9.9 ± 2	9.7 ± 2	9.4 ±2	9.8 ± 2	9.5 ± 2	9.6 ± 2	9.9 ± 2	9.5 ± 2	

Results: Finding Papers (All parameters)

			UCT $w = 1000$				SSiPP						
	l_0	FF-Replan	c = 2	c = 4	c = 8	t = 10	t = 12	t = 14	t = 16	t = 18	t = 20		
	1	3.3 ±1	3.2 ± 1	3.9 ± 1	3.9 ± 2	3.2 ± 0	3.6 ± 1	3.2 ± 0	3.8 ± 1	3.3 ± 0	3.6 ± 1		
	2	3.7 ± 1	3.7 ± 1	3.1 ± 1	4.4 ± 1	4.0 ± 1	3.7 ± 1	4.2 ± 1	3.5 ± 1	3.8 ± 1	3.4 ± 1		
papers	3	4.4 ± 1	4.9 ± 1	4.4 ± 1	4.8 ± 1	3.7 ± 1	3.5 ± 1	3.8 ± 1	3.8 ± 1	3.5 ± 1	3.6 ± 1		
	4	4.4 ± 1	4.3 ± 1	4.7 ± 1	4.9 ± 3	3.6 ± 1	3.7 ± 1	3.5 ± 1	3.5 ± 1	3.6 ± 1	3.7 ± 1		
	5	3.5 ± 1	3.4 ± 1	3.9 ± 1	3.3 ± 1	3.7 ± 1	3.9 ± 1	3.4 ± 1	3.9 ± 1	3.5 ± 1	3.4 ± 1		
	6	3.6 ± 1	3.7 ± 1	3.9 ± 1	3.8 ± 1	3.5 ± 1	3.5 ± 1	3.9 ± 1	3.6 ± 1	3.4 ± 1	3.6 ± 1		
	7	5.9 ± 1	6.4 ± 1	6.2 ± 1	6.0 ± 1	6.0 ± 1	6.1 ± 1	6.0 ± 1	5.8 ± 1	6.2 ± 1	5.8 ± 1		
	8	4.7 ± 1	3.9 ± 1	3.5 ± 1	3.8 ± 1	4.4 ± 1	3.5 ± 1	3.9 ± 1	3.6 ± 1	3.6 ± 1	3.7 ± 1		
	9	4.8 ± 1	3.5 ± 1	3.7 ± 1	4.0 ± 1	4.0 ± 1	3.5 ± 1	3.9 ± 1	3.8 ± 1	3.8 ± 1	3.8 ± 1		
	10	3.4 ±0	3.3 ±1	4.1 ± 2	3.5 ± 1	3.2 ± 1	3.3 ±0	3.5 ± 1	3.4 ± 1	3.7 ± 1	3.5 ± 1		

Results: Finding a Toner (All parameters)

			UCT $w = 1000$				SSiPP						
	l_0	FF-Replan	c = 2	c = 4	c = 8	t = 10	t = 12	t = 14	t = 16	t = 18	t = 20		
toner	1	54.1 ±9	43.2 ± 10	41.9 ± 11	41.3 ± 11	42.8 ± 7	29.5 ± 7	27.2 ±5	37.9 ±7	27.1 ± 6	27.9 ±6		
	2	56.8 ±9	41.9 ± 10	45.7 ± 12	40.3 ± 11	41.5 ± 5	19.0 ± 5	18.3 ± 5	18.7 ±5	18.5 ± 6	18.3 ± 6		
	3	50.1 ±9	56.6 ± 12	55.3 ± 11	53.1 ± 13	38.5 ± 5	33.1 ± 6	25.3 ± 6	22.4 ± 4	23.4 ± 9	21.2 ± 5		
	4	61.3 ± 9	59.3 ± 10	58.0 ± 12	42.2 ± 11	30.2 ± 9	20.7 ± 6	20.5 ± 6	19.1 ± 7	21.3 ± 7	19.3 ± 7		
	5	39.3 ± 6	38.9 ± 10	31.5 ± 10	36.5 ± 12	30.2 ± 7	31.8 ± 8	23.9 ± 5	23.2 ± 6	25.0 ± 7	23.6 ±7		
	6	53.3 ± 6	37.5 ± 11	29.8 ± 7	23.1 ± 6	18.6 ± 6	19.6 ± 4	19.0 ± 5	18.9 ±6	18.4 ± 4	18.6 ±6		
_	7	45.5 ±7	26.4 ± 10	20.7 ± 8	21.2 ± 7	18.3 ± 5	17.9 ± 5	18.0 ± 6	18.4 ±7	17.6 ± 7	17.9 ±5		
	8	33.9 ± 8	21.5 ± 10	19.8 ± 12	18.7 ± 9	23.4 ± 10	19.7 ± 9	18.8 ± 6	16.7 ± 8	16.2 ± 8	17.1 ±7		
	9	36.8 ± 8	29.9 ± 10	25.9 ± 10	23.6 ± 9	18.5 ± 8	17.6 ± 6	18.8 ± 7	18.3 ±9	16.6 ± 6	16.2 ± 5		
	10	54.5 ± 8	31.5 ± 9	29.5 ± 7	27.6 ± 10	27.8 ± 6	25.1 ± 6	23.0 ± 6	24.1 ± 7	22.6 ± 7	22.1 ± 6		

Search for Object

- We showed
 - -how to model object finding as **probabilistic** planning problems
 - -that domain-independent probabilistic planners offer framework which:
 - is **extremely flexible** (e.g., *makeCoffee*, *buyCoffee*)
 - represents a well defined optimization problem
- We empirically compared FF-Replan, UCT and **SSiPP** for the obtained class of problems

Stochastic Shortest Path Problems

An SSP is the tuple $\langle S, S_0, G, A, P, C \rangle$:

- Set of states S
- Initial state s_n
- Set of goal states $G \subseteq S$
- Set of actions A
- Transition probability P(s'|s,a)
- Cost C(s,a,s') > 0
 - defined when P(s'|s,a) > 0

Solutions for SSPs

- The **solution** for an SSP is a policy, i.e., a mapping from states to actions.
- An **optimal** policy π^* minimizes $V^*(s_0)$, i.e., the expected cost to reach a goal state from s₀.

$$V^*(s) = \begin{cases} 0 & \text{if } s \in \mathsf{G} \\ \min_{a \in \mathsf{A}} \sum_{s' \in \mathsf{S}} P(s'|s,a)[C(s,a,s') + V^*(s')] & \text{otherwise} \end{cases}$$

In the example:

Factored Representation

- Use **state variables** to represent the state space S:
 - $-F: \{f_1,...,f_k\}, f_i \text{ in } \{0,1\}$
 - $-S = \{0,1\}^k$
- Benefit: compact representation
- In the example, two state variables: x and y

y=1

Planner: SSiPP

[Trevizan and Veloso, 2012]

- Generate a short-sighted SSP:
 - Prune the state space
 - Heuristically estimate the cost of pruned states
- Solve the subproblems and execute this solution
- Repeat until goal is reached

Short-Sighted SSPs: Definition

Given: • an SSP <S,s₀,G,A,P,C>,

• $s \in S$

• t > 0 and

• a heuristic function H

the (s,t)-short-sighted SSP is <S',s,G',A,P,C'>:

States reachable using up to t actions

$$\bullet \ \mathsf{S}' = \{s' \in \mathsf{S} | \delta(s,s') \leq t\}$$
 Artificial goal: states reachable using exactly tractions

exactly t actions

 $\delta(s,s')$: minimum number of

actions to reach s' from s

•
$$G' = \{s' \in S | \delta(s, s') = t\} \cup (G \cap S')$$

•
$$C'(s, a, s') = \begin{cases} C(s, a, s') + H(s') & \text{if } s' \in G' \\ C(s, a, s') & \text{otherwise} \end{cases}$$

If s' is an artificial goal, then its cost is incremented by its heuristic value

Short-Sighted SSPs and Look-ahead

Theorem: the optimal value-function for an (s,t)-short-sighted SSP is at least as good as the t-look-ahead value of s.

• Short-sighted SSPs preserve the action structure, e.g., self-loop actions and loops of actions

Short-Sighted Probabilistic Planner (SSiPP)

```
\begin \\ s \leftarrow s_0 \\ \begin \\ \begin S' \leftarrow s_0 \\ \begin S', s, \mathbf{G}', \mathbf{A}, P, C' \rangle \leftarrow \begin SENERATE-SHORT-SIGHTED-SSP(\mathbb{S}, s, H) \\ \hat{\pi}^* \leftarrow \begin Optimal-SSP-Solver(\langle \mathbf{S}', s, \mathbf{G}', \mathbf{A}, P, C' \rangle, H) \\ \begin while <math>s \not\in \mathbf{G}' do  \begin S' \leftarrow \begin S
```

Since short-sighted SSPs are much smaller than the original problem. we can compute a complete policy for them.

37

Planner: FF-Replan

[Yoon et al, 2007]

- Relax probabilistic actions into deterministic actions (determinization)
- Pro: scales up
- Cons: oblivious to probabilities

- Relaxes a given SSP by a sequence of finitehorizon problems
- Uses sparse sampling to efficiently explore the search tree
- Pro: scales up
- Con: can't represent loops

39

Conclusion – Related Work

- [Aydemir et al, 2011]
 - MDP in the belief space of relational descriptions
 - Solved using greedy search over finite horizon
- [Velez et al, 2011]
 - Maps objects while moving
 - Minimizes traveled distance and false positives
 - Solved using sampling over finite horizon
- [Kollar and Roy, 2009]
 - Finds objects using co-location data (label comparison on Flickr)
 - Minimizes expected plan size over a posteriori prob. of finding the object.
 - Solved using breath-first search with additional constraints
- [Samadi et al, 2012]
 - Finds object by querying Google to obtain prior probability
 - Maximizes utility function based on probability of finding object, cost of obtaining object and feedback about the object
 - Solved using beam search