Planning and Learning: Explanation-Based Learning

Manuela Veloso

Carnegie Mellon University

Planning, Execution, and Learning Fall 2016

Thanks to Daniel Borrajo

Learning in Planning

Opportunities and improvements along several dimensions:

- Search Efficiency: Learn control knowledge to guide the planner through its search space.
- Domain Specification: Learn the preconditions and effects of the planning actions.
- Quality: Learn control knowledge for high quality plans.

Choices... The Need for Learning!

- · Inductive methods
 - Data-intensive
 - Extract a general description of a concept from many examples
- · Deductive methods
 - Knowledge-intensive
 - Explain and analyze an example
 - Identify the explanation as the sufficient conditions for describing the concept
 - Generalize instantiated explanation to apply to other instances

Explanation-Based Generalization – EBG, (Mitchell '80s)

Inputs:

- · Target concept definition
- Training example
- Domain theory
- Operationality criterion

Output:

Generalization of the training example that is

- · sufficient to describe the target concept, and
- satisfies the operationality criterion.

The SAFE-TO-STACK Example

Input:

target concept: SAFE-TO-STACK(x,y)

training example:

ON(OBJ1,OBJ2)
ISA(OBJ1, BOX) ISA(OBJ2, ENDTABLE)
COLOR(OBJ1, RED) COLOR(OBJ2, BLUE)
VOLUME(OBJ1,1) DENSITY(OBJ1,0.1) ...

The SAFE-TO-STACK Example

Input:

- domain theory:
 - 1. NOT(FRAGILE(y)) or LIGHTER(x,y) \rightarrow SAFE-TO-STACK(x,y)
 - 2. VOLUME(x,v) and DENSITY(x,d) \rightarrow WEIGHT(x,v*d)
 - 3. WEIGHT(x1,w1) and WEIGHT(x2,w2) and LESS(w1,w2)

 → LIGHTER(x1,x2)
 - 4. $ISA(x,ENDTABLE) \rightarrow WEIGHT(x,5)$
 - 5. LESS(0.1,5) ...
- operationality criterion:

learned description should be built of *terms* used to describe examples directly, or other "easily" evaluated, such as LESS.

The SAFE-TO-STACK Example

- Explain why obj1 is SAFE-TO-STACK on obj2.
 - Construct a proof.
 - Do Goal regression: regress target concept through proof structure.
 - Proof isolates relevant features.

Generating Operational Knowledge

- · Generalize proof:
 - Sometimes simply replace constants by variables.
 - Prove that all identified relevant features are necessary in general (hard! -- may need a lot of "extra" knowledge, domain axioms).

Output:

VOLUME(x,v1) and DENSITY(x,d1) and ISA(y,ENDTABLE) and

and LESS(v1*d1,5) \rightarrow SAFE-TO-STACK(x,y)

EBL: A Deductive Learning Method

Why are examples needed?

- Domain theory contains all the information: simply operationalize target concept.
- Examples <u>focus</u> on the relevant operationalizations: characterize only examples that actually occur.

Actual purpose of EBL:

- not to "learn" more about target concept,
- <u>but</u> to "re-express" target concept in a more operational manner (=efficiency).
- · control learning.

EBL in PRODIGY (Minton 87)

Goal: -- improve the efficiency of the planner

-- learn control rules.

Control rules:

- Apply at individual decisions.
- Antecedent matches the state of the planner at decision making time.
- Antecedent is operational -- planner can match its state using control rule language.
- Consequent selects, rejects or prefers particular alternatives.

Target Concepts

Identify the choices of the particular planner:

- · Select goal goal
- Select operator op for achieving goal
- · Select bindings for operator op and goal goal
- Decide subgoal if op is applicable
- · Decide apply op

Examples of Control Rules in PRODIGY

```
(CONTROL-RULE SELECT-OP-UNSTACK-FOR-HOLDING
  (if (and (current-goal (holding <x>))
        (true-in-state (on <x> <y>))))
  (then select operator UNSTACK))
(CONTROL-RULE SELECT-BINDINGS-UNSTACK-HOLDING
  (if (and (current-goal (holding <x>))
        (current-ops (UNSTACK))
        (true-in-state (on <x> <y>))))
  (then select bindings ((<ob> . <x>) (<underob> . <y>))))
(CONTROL-RULE SELECT-OP-PUTDOWN-FOR-ARMEMPTY
  (if (and (current-goal (arm-empty))
        (true-in-state (holding <ob>))))
  (then select operator PUT-DOWN))
(CONTROL-RULE SELECT-BINDINGS-PUTDOWN
  (if (and (current-ops (PUT-DOWN))
        (true-in-state (holding <x>))))
  (then select bindings ((<ob> . <x>))))
```

Discussion

- · Very successful in a variety of domains.
- Learned rules are applied as other rules, i.e. if their antecedent *totally* matches planning situation.
- Utility problem: The more rules learned, the slower the deliberation.
 - Matching cost (cost of utilization)
 - Frequency of application
 - Savings every time it is applied
 - Organization of learned rules!
- If EBL system is eager to learn provably correct, the explanation effort is really large, requiring a complete domain theory for generalization.
 - Incremental refinement of learned rules

HAMLET: Deduction and Induction (Borrajo & Veloso 94)

- Extend the basic EBL approach developed for linear problem solving
 - Define new learning opportunities
 - Consider solution quality
- Reduce the explanation effort
 - No need to acquire extra domain knowledge
- · Incrementally refine control knowledge
 - Converges towards an experience-supported correct set of rules

A Typical Search Tree

What are the learning opportunities?

HAMLET's Architecture

HAMLET's Algorithm

Let L refer to the set of learned control rules.

Let ST, ST' refer to search trees.

Let P be a problem to be solved.

Let Q be a quality measure.

Initially L is empty.

For all P in training problems

ST = Result of solving P without any rules.

ST' = Result of solving P with current set of rules L.

If positive-examples-p(ST, ST',Q)

Then L' = Bounded-Explanation(ST, ST',Q)

L'' = Induce(L,L')

If negative-examples-p(ST, ST',Q)

Then L=Refine(ST, ST',L")

Induction Module

- · Why induction?
 - Bounded explanation generates possibly over-specific rules
- Inductive operators
 - Deletion of rules that subsume others
 - Intersection of preconditions. state
 - Refinement of subgoaling dependencies. prior goal
 - Relaxing the subgoaling dependencies. prior goal
 - Refinement of the set of interacting goals. other goals
 - Find common superclass. type of object

Rule Learned by HAMLET

```
City1
                                   Post Office2
           Post Officel
            package1
package3
truck1
truck3
                       Airport1
                                               Airport2 1 truck2
                       package2
                                 Post Office
                      Airport
                                             Airport2
                           Goal Statement
(control-rule select-bind-fly-airplane-1
 (if (current-operator fly-airplane)
     (current-goal (at-airplane <plane1> <airport3>))
     (true-in-state (at-airplane <plane1> <airport2>))
     (true-in-state (at-object <package4> <airport1>))
     (other-goals ((at-object <package4> <airport3>))))
 (then select bindings ((<plane> . <plane1>)
                                (<loc-from> . <airport1>)
                                (<loc-to> . <airport3>))))
```

Inducing Over Two Rules

```
(control-rule select-unload-airplane-1
(if (current-goal (at-object <object1> <airport2>))
(true-in-state (at-airplane <plane4> <airport3>))
```

(true-in-state (at-object <object1> <airport3>)))

(then select operators unload-airplane))

New rule:

Old rule:

```
(control-rule select-unload-airplane-2

(if (current-goal (at-object <object1> <airport2>))

(true-in-state (at-airplane <plane4> <airport5>))

(true-in-state (at-object <object1> <airport3>)))

(then select operators unload-airplane))
```

Induced rule:

```
(control-rule induced-select-unload-airplane-3
(if (current-goal (at-object <object1> <airport2>))
(true-in-state (at-object <object1> <airport3>)))
(then select operators unload-airplane))
```

Refining

- · Why refinement?
 - HAMLET may produce over-general rules
- Negative examples: occasions in which control rules have been applied and should have not

Overgeneralization

· Induced rule

(control-rule induced-select-unload-airplane-3 (if (current-goal (at-object <object1> <airport2>)) (true-in-state (at-object <object1> <airport3>))) (then select operators unload-airplane))

New rule

(control-rule induced-select-unload-airplane-4
 (if (current-goal (at-object <object1> <airport2>))
 (true-in-state (inside-airplane <object1> <plane4>)))
 (then select operators unload-airplane))

Overgeneral rule

(control-rule induced-select-unload-airplane-5 (if (current-goal (at-object <object1> <airport2>))) (then select operators unload-airplane))

Empirical Results

Test sets		Unsolved		Solved by both (279 problems, 53.14%)					
1		problems		Better solutions		Solution length		Nodes explored	
Goals	Problems	without	with	without	with	without	with	without	with
		rules	rules	rules	rules	rules	rules	rules	rules
1	100	5	0	0	11	327	307	2097	1569
2	100	15	6	0	25	528	479	3401	2308
5	100	44	18	1	33	865	777	5170	3463
10	100	68	32	1	24	770	668	3482	2941
20	75	62	36	0	10	505	455	2216	1924
50	50	49	40	0	0	34	34	143	141
Totals	525	243	132	2	103	3029	2720	16509	12346
%		46.3%	25.1%	0.7%	36.9%			Ratio	1.3

	Unsolved problems		Solved by both						
Training			Better s	olutions	Ratio	Ratio	Ratio		
problems					Solution Length	Time	Nodes		
	without	with	without	with	without/	without/	without/		
	rules	rules	rules	rules	with rules	with rules	with rules		
75	46.29 %	36.38 %	0.35 %	25.89 %	1.11	0.49	1		
150	46.29 %	34.29 %	0.72 %	31.9 %	1.06	0.33	1.25		
400	46.29 %	25.14 %	0.72 %	36.92 %	1.08	0.32	1.34		

Summary – EBL in Planning

- · Long-term goal of automating planning efficiency.
- Knowledge in domain theory is not usually effective.
- Explain examples to produce operational control knowledge for decisions.
- Provably correct explanations that generalize to new situations are hard to learn.
- Difficult goal and operator choice interactions can be learned through a combined deductive and inductive approach.
- User's quality metrics can be cast in the learned knowledge.