Planning and Learning:
Explanation-Based Learning

Manuela Veloso

Carnegie Mellon University

Planning, Execution, and Learning
Fall 2016

Thanks to Daniel Borrajo

Learning in Planning

Opportunities and improvements along several dimensions:

+ Search Efficiency: Learn control knowledge to guide
the planner through its search space.

+ Domain Specification: Learn the preconditions and
effects of the planning actions.

* Quality: Learn control knowledge for high quality plans.

10/31/16

Choices... The Need for Learning!

* |nductive methods

— Data-intensive

— Extract a general description of a concept from many
examples

* Deductive methods

— Knowledge-intensive

— Explain and analyze an example

— Identify the explanation as the sufficient conditions for
describing the concept

— Generalize instantiated explanation to apply to other
instances

Explanation-Based Generalization —
EBG, (Mitchell ' 80s)

Inputs:

» Target concept definition

* Training example

* Domain theory

* Operationality criterion

Output:

Generalization of the training example that is

+ sufficient to describe the target concept, and

+ satisfies the operationality criterion.

10/31/16

10/31/16

The SAFE-TO-STACK Example

Input:
» target concept: SAFE-TO-STACK(x,y)

+ training example:
ON(OBJ1,0BJ2)
ISA(OBJ1, BOX) ISA(OBJ2, ENDTABLE)
COLOR(OBJ1, RED) COLOR(OBJ2, BLUE)
VOLUME(OBJ1,1) DENSITY(OBJ1,0.1) ...

The SAFE-TO-STACK Example

Input:
+ domain theory:

1. NOT(FRAGILE(y)) or LIGHTER(x,y) — SAFE-TO-STACK(x,y)
2. VOLUME(x,v) and DENSITY(x,d) — WEIGHT(x,v*d)
3. WEIGHT(x1,w1) and WEIGHT(x2,w2) and LESS(w1,w2)
— LIGHTER(x1,x2)
4. ISA(X,ENDTABLE) — WEIGHT(x,5)
5. LESS(0.1,5) ...

» operationality criterion:
learned description should be built of terms used to
describe examples directly, or other “easily” evaluated,
such as LESS.

The SAFE-TO-STACK Example

» Explain why objl is SAFE-TO-STACK on obj2.

— Construct a proof.

— Do Goal regression: regress target concept through
proof structure.

— Proof isolates relevant features.

SAFE-TO-STACK(obj1,0bj2)

LIGHTER(obj1,0bj2)

WEIGHT (obj1,.1) LESS-THAN(.L,5) WEIGHT (obj2,5)
VOLUME(obj1,1) DENSITY(obj1,.1) ISA(obj2, ENDTABLE)

Generating Operational Knowledge

* Generalize proof:

— Sometimes simply replace constants by variables.

— Prove that all identified relevant features are
necessary in general (hard! -- may need a lot of
“‘extra” knowledge, domain axioms).

Output:
VOLUME(x,v1) and DENSITY(x,d1) and ISA(y,ENDTABLE)

and
and LESS(v1*d1,5) — SAFE-TO-STACK(x,y)

10/31/16

EBL: A Deductive Learning Method

Why are examples needed?

» Domain theory contains all the information: simply
operationalize target concept.

» Examples focus on the relevant operationalizations:
characterize only examples that actually occur.

Actual purpose of EBL:

+ not to “learn” more about target concept,

+ but to “re-express” target concept in a more operational
manner (=efficiency).

» control learning.

EBL in PRODIGY (Minton 87)

Goal: -- improve the efficiency of the planner
-- learn control rules.

Control rules:

* Apply at individual decisions.

» Antecedent matches the state of the planner at decision
making time.

* Antecedent is operational -- planner can match its state
using control rule language.

» Consequent selects, rejects or prefers particular
alternatives.

10/31/16

10/31/16

Target Concepts

Identify the choices of the particular planner:

» Select goal goal

» Select operator op for achieving goal

» Select bindings for operator op and goal goal
» Decide subgoal if op is applicable

» Decide apply op

Examples of Control Rules in PRODIGY

(CONTROL-RULE SELECT-OP-UNSTACK-FOR-HOLDING
(if (and (current-goal (holding <x>))
(true-in-state (on <x> <y>))))
(then select operator UNSTACK))

(CONTROL-RULE SELECT-BINDINGS-UNSTACK-HOLDING
(if (and (current-goal (holding <x>))
(current-ops (UNSTACK))
(true-in-state (on <x> <y>))))
(then select bindings ((<ob> . <x>) (<underob> . <y>))))

(CONTROL-RULE SELECT-OP-PUTDOWN-FOR-ARMEMPTY
(if (and (current-goal (arm-empty))
(true-in-state (holding <ob>))))
(then select operator PUT-DOWN))

(CONTROL-RULE SELECT-BINDINGS-PUTDOWN
(if (and (current-ops (PUT-DOWN))
(true-in-state (holding <x>))))
(then select bindings ((<ob> . <x>))))

10/31/16

Discussion

» Very successful in a variety of domains.

» Learned rules are applied as other rules, i.e. if their
antecedent totally matches planning situation.

+ Utility problem: The more rules learned, the slower the
deliberation.

Matching cost (cost of utilization)

Frequency of application

Savings every time it is applied

Organization of learned rules!

+ If EBL system is eager to learn provably correct, the
explanation effort is really large, requiring a complete
domain theory for generalization.

— Incremental refinement of learned rules

HAMLET: Deduction and Induction
(Borrajo & Veloso 94)

» Extend the basic EBL approach developed for linear
problem solving

— Define new learning opportunities
— Consider solution quality

* Reduce the explanation effort
— No need to acquire extra domain knowledge
» Incrementally refine control knowledge

— Converges towards an experience-supported correct
set of rules

A Typical Search Tree

7

e
o
v

xO
xO—0
L0

What are the learning opportunities?

HAMLET’ s Architecture

. Learned
Quality Control
Neasure Knowledge
HAMLET
Bounded Ll .
Explanation Inductive
Module) ~ | Module
Training , ? @ L’
problems ST ST L
»|PRODIGY Refinement
: module
Domain ST ST’

10/31/16

10/31/16

HAMLET’ s Algorithm

Let L refer to the set of learned control rules.
Let ST, ST’ refer to search trees.
Let P be a problem to be solved.
Let Q be a quality measure.
Initially L is empty.
For all P in training problems
ST = Result of solving P without any rules.
ST’ = Result of solving P with current set of rules L.
If positive-examples-p(ST, ST',Q)
Then L' = Bounded-Explanation(ST, ST',Q)
L" = Induce(L,L")
If negative-examples-p(ST, ST',Q)
Then L=Refine(ST, ST',L")

Induction Module

* Why induction?

— Bounded explanation generates possibly over-specific
rules

* Inductive operators

— Deletion of rules that subsume others

Intersection of preconditions. state

Refinement of subgoaling dependencies. prior goal
Relaxing the subgoaling dependencies. prior goal
Refinement of the set of interacting goals. other goals
Find common superclass. type of object

Rule Learned by HAMLET

Cityl

Post Officel Post Office2 City2
Spackases| | Fn aer
truckl planel

t: k3
g true Initial State

Post Officel Cro¥l City2

- Post Office2
[] -gel
~#/ planel

Goal Statement

(control-rule select-bind-fly-airplane-1
(if (current-operator fly-airplane)
(current-goal (at-airplane <plane1> <airport3>))
(true-in-state (at-airplane <plane1> <airport2>))
(true-in-state (at-object <package4> <airport1>))
(other-goals ((at-object <package4> <airport3>))))
(then select bindings ((<plane> . <plane1>)
(<loc-from> . <airport1>)
(<loc-to> . <airport3>))))

Inducing Over Two Rules

Old rule:
(control-rule select-unload-airplane-1
(if (current-goal (at-object <object1> <airport2>))
(true-in-state (at-airplane <plane4> <airport3>))
(true-in-state (at-object <object1> <airport3>)))
(then select operators unload-airplane))
New rule:
(control-rule select-unload-airplane-2
(if (current-goal (at-object <object1> <airport2>))
(true-in-state (at-airplane <plane4> <airport5>))
(true-in-state (at-object <object1> <airport3>)))
(then select operators unload-airplane))
Induced rule:
(control-rule induced-select-unload-airplane-3
(if (current-goal (at-object <object1> <airport2>))
(true-in-state (at-object <object1> <airport3>)))
(then select operators unload-airplane))

10/31/16

10

Refining

* Why refinement?

— HAMLET may produce over-general rules

* Negative examples: occasions in which control rules
have been applied and should have not

without rules

Q e, —— S
o " s
X J X J
O rule, ——» O
o Ty
Overgeneralization

Induced rule
(control-rule induced-select-unload-airplane-3
(if (current-goal (at-object <object1> <airport2>))
(true-in-state (at-object <object1> <airport3>)))
(then select operators unload-airplane))

New rule

(control-rule induced-select-unload-airplane-4
(if (current-goal (at-object <object1> <airport2>))
(true-in-state (inside-airplane <object1> <plane4>)))
(then select operators unload-airplane))

Overgeneral rule

(control-rule induced-select-unload-airplane-5
(if (current-goal (at-object <object1> <airport2>)))
(then select operators unload-airplane))

10/31/16

11

10/31/16

Empirical Results

Test sets Unsolved Solved by both (279 problems, 53.14%)
problems Better solufions Solution length Nodes explored
Goals Problems without with without with without with without with
rules rules rules | rules rules rules rules rules
1 100 5 0 0 1 327 307 2097 1569
2 100 15 6 0 25 528 479 3401 2308
5 100 44 18 1 33 865 777 5170 3463
10 100 68 32 1 24 770 668 3482 2941
20 75 62 36 0 10 505 455 2216 1924
50 50 49 40 0 0 34 34 143 141
[Totals] 525 243 T 132 1] 2 103 J[3029 [2720 [16509 [12346 |
[% [463% [251% [07% [36.9% | | [Ratio | 13 1]
Unsolved Solved by both
Training problems Befter solutions Ratio Rafio Ratio
problems Solution Length Time Nodes
without with without with without/ without/ without/
rules rules rules rules with rules with rules with rules
75 4629 % 36.38 % 0.35% 25.89 % 1.1 0.49 1
150 46.29 % 3429 % 0.72% 31.9% 1.06 0.33
400 46.29 % 2514 % 0.72 % 36.92 % 1.08 0.32

Summary — EBL in Planning

Long-term goal of automating planning efficiency.

Knowledge in domain theory is not usually effective.

Explain examples to produce operational control
knowledge for decisions.

Provably correct explanations that generalize to new
situations are hard to learn.

Difficult goal and operator choice interactions can be
learned through a combined deductive and inductive
approach.

User's quality metrics can be cast in the learned
knowledge.

12

