15-887 Planning, Execution, and Learning
Deep Reinforcement Learning

Devin Schwab

November 3, 2016

Outline

Deep Learning Tutorial
Q-Learning with Approximation
Deep Q-Network (DQN)

Summary

Deep Learning Tutorial

Binary Perceptron

» The simplest unit in a neural network is a perceptron
» perceptrons are made up of:

> a set of inputs, X
» a weight for each input, w;
a threshold, b

v

1 if ZX,'W; +b2>0
—1 otherwise

@ wr | > £

Activation
function

» an activation function,

inputs weights

Figure: Binary Threshold Perceptron

Perceptron Decision Surface

Despite having a non-linear activation,
the decision surface is still a hyper plane.

—

Figure: Example perceptron decision boundary

Limits of Perceptrons

» The decision boundary of a single perceptron is still linear, so
the data must be linearly separable

» Even simple functions like XOR cannot be learned

x1
.

Figure: XOR data

Limits of Perceptrons

» The decision boundary of a single perceptron is still linear, so
the data must be linearly separable

» Even simple functions like XOR cannot be learned

x1
_ .
Figure: XOR data

How do we solve this?

Limits of Perceptrons

» The decision boundary of a single perceptron is still linear, so
the data must be linearly separable

» Even simple functions like XOR cannot be learned

x1
] .
Figure: XOR data

How do we solve this?
Use multiple perceptrons

Multilayer Perceptrons (MLPs)

» A single perceptron has a linear decision boundary

» The composition of non-linear functions leads to non-linear
decision boundaries

» So stack layers of perceptrons to get a non-linear decision
boundary.

Neural Network Architecture

» Networks are constructed from multiple layers of perceptrons

» Networks have an input layer, an output layer and one or more
hidden layers
» This architecture is very general
» Connectivity between layers can vary

» Activation functions in each layer can vary
» Number of units in each layer can vary

Input Hidden Output
layer layer layer

X1 —

X2 —

Figure: Multilayer Perceptron with a single hidden layer. This particular
network is fully connected.

XOR Network

x1

XOR

x2

What makes it a deep network?

» Deep Learning really just means a neural network with more
than one hidden layer
» Nowadays, many, many more hidden layers
» More layers, and more neurons means more representation
power
» Why have deep neural networks only recently become
popular?
> Better optimization techniques
> Better regularization
» Better computing power (i.e. GPUs)

Example Network - MNIST Dataset

> Input: 28x28 black and white images of digits

\J;c‘\v’
-
w @ + LN
RANEUR N
o O W £
W -9

eS8
6/ 0
Al q
305

0 o <

» Output: The digit shown in the image

Input Hidden Output
layer layer layer

What is needed for training?

» Training data (X(), (7))
» X{) are the data dimensions
» t0) is a target value

» A loss function. This a positive, real-valued function where
the bigger the number of the bigger the error in the
classification label

> Mean Squared Error (MSE) works: L= 55 >, (t) —)/(x(")))2
» y(x() is the output of your neural network for input x()
» A method for optimizing a continuous, non-convex function
(usually a gradient descent variant)

Gradient Descent

» To update the weights and the bias terms use the gradients

> b,' < b,' — a{)b-

» « is a learning rate, and L is the loss function.

» How do you actually compute these gradients? Chain Rule!
aZ,'

, OL _ dL 8y 0z
aW,' - 8}7 821(82k71 BW,'
» where z; is the output of the k-th layer

Backpropagation

» To compute the partials with respect to each layer's
parameters, the partial derivatives of the layers all the way to
the output are needed

> i.e. all of the 8‘3:; terms for k greater than the current layer)

> It would be very expensive to compute these partial gradients
every single time for every single parameter

» So keep the partial derivatives as you go back through the
layers.

XOR Network

x1

XOR

x2

Activation Functions

» The binary perceptron is not usually used in neural nets

» The only constraint on activation functions is that they must
be non-linear

» However, there are some desirable properties:

Large gradients

Differentiable (at least over most of the domain)

Easy to compute gradients

Some activation functions have a probabilistic interpretation

Sometimes, having a fixed output range is desirable

vV vy vy VvVvYyy

Common Activation Functions

1

v

Sigmoid: (14 e %)
e?_e—Z
e‘+e—~*

v

Hyperbolic Tangent: tanh(z) =

» Rectified Linear Units (ReLu): relu(z) = max {z,0}
0
» Leaky Relu: {Z e . ,whereek'1
€z otherwise

1 1

0.8
0.6
0.4
0.2 -0.5

05

0

o = N w & o

0 -1

=10 -5 0 5 10 -4 -2 0 2 4 -2 0 2 4 -4 -2 0 2

Sigmoid tanh RelLu Leaky Relu

Summary

» Stack lots of perceptrons in layers to make a neural network
» Use backpropagation to train the weights in the network

» Network learns a non-linear function approximation

Q-Learning with Approximation

Basic Definitions

» The world is modeled as a Markov Decision Processes
(MDPs).
Defined as a tuple: (S, A, P, R)
» S: Set of all states
A: Set of all actions
P: Transition Function. P: S x Ax S — [0,1]
R: Reward Function. R: S x A— R

v VvYyy

» Policy: m: S — A. Maps states to actions.

Q-Learning

» We don't know the model so learn it!
» After each action, use the observed (s, a, r,s’) to update the
estimate of the Q-function
> Q*(s,a) « (1 —)Q*(s,a) + (r + 7y max Q* (s, a’))
a'e
» What if:

» There are an infinite number of states, or the states are
continuous?

» Many states are all similar and should have similar actions?

Q-Learning

» We don't know the model so learn it!
» After each action, use the observed (s, a, r,s’) to update the
estimate of the Q-function

> Q*(s,a) « (1 — a)Q*(s,a) + (r +7y max Q* (s, a')>
» What if:

» There are an infinite number of states, or the states are
continuous?
» Many states are all similar and should have similar actions?

Create a function that maps (s, a) — Q(s, a)

Neural Networks as Function Approximators

ldea
Approximate the Q-function with a neural network

Deep Q-Network (DQN)

Deep Q-Network DQN

» Basic idea: Approximate with a deep neural network®
» Neural Nets had been tried before, with some success

» Major contributions
» Network architecture that requires one pass for each state
» The loss function used with the network
» The use of replay memory
» The use of a target network

1Mnih et al. Human-level control through deep reinforcement learning. Nature, 518(7540):529533, 2015.
URL: http://dx.doi.org/10.1038/nature14236, arXiv:1312.5602, doi:10.1038/nature14236

Naive Network Architecture

DA 25/53

Network Architecture

SN

o & - = = DAC 253

DeepQ Loss Function

» In order to perform back-propagation on the DeepQ network,
a loss function L(#) is needed.

» Use the mean-squared error of the Bellman Equation for
Q-functions

> Li(0) =E [(y —Q(s, a; 9))2]

» Where the target value y is y = r + ymax Q*(s', a)
a/

DeepQ Loss Function

> In order to perform back-propagation on the DeepQ network,
a loss function L(6) is needed.

> Use the mean-squared error of the Bellman Equation for
Q-functions

. 2
> L) =E [(y - Q(s,2:0))]
» Where the target value y is y = r + ymax Q*(s', a)
a/

» Unfortunately, Q*(s’, &’) is not known apriori, so y cannot be
computed

DeepQ Loss Function

» In order to perform back-propagation on the DeepQ network,
a loss function L(6) is needed.

» Use the mean-squared error of the Bellman Equation for
Q-functions

. 2
» Li(0;))=E {(y — Q(s, a; 9))]
> Where the target value y is y = r +ymax Q*(s’, ')
» Unfortunately, Q*(s’,a’) is not known apriori, so y cannot be

computed

How do we solve this?

DeepQ Loss Function

» In order to perform back-propagation on the DeepQ network,
a loss function L(6) is needed.

> Use the mean-squared error of the Bellman Equation for
Q-functions

R 2
» Li(0)=E {(y - Q(s, 3 9))]
» Where the target value y is y = r + ymax Q*(s', a)
a/
» Unfortunately, Q*(s’, a’) is not known apriori, so y cannot be

computed

How do we solve this?
Use a target network

Target Network

» Approximate Q*(s’,a’) with your previous estimate of
Q*(S/, a/)
> ie. @*(s’,a’;&‘)
» Now you have two models
» Your original model with weights 6
» A copy of this model with a previous iterations weights 6~

» The copy is known as the target network.

Target Network

Starting in state s, took action a, received reward r and ended in state s’

2
Loss = y Q* (s, a))

current model

a0 :
QR*(s, a; 0)
@ 7 |
s

*(s',d; 0~

target network

Q*(s,2,67)

T

S

Target Network
After an update, copy the weights from the model to the target network

current model

A

QR*(s,a;0)

Set0— =40

target network

Q*(s,2,67)

Hard Target Updates

» Updating the target network weights every time you update
your model weights can have some stability issues

» Instead, only perform the copying of the weights every k steps

Soft Target Updates

» More recent work has shown that soft target updates work
better

» Take a small step from your current target weights towards
the current Q-network weights.

0~ < (1 —7)0~ + 76, where T < 1

DeepQ Loss Function

» Now we can calculate our loss at each step

» To backpropagate, just take the gradient of the loss with
respect to the network parameters:

Vo, L(0;)) =E Kr + 7y max Q(s',4:67) — Q(s, a; 9,-)> Vo, Q(s, a; 9;)}

Replay Memory

> Instead of directly using the experience samples
e: = (s,a,s’,r) put each sample in a ring buffer of size N

» Now to update the € parameters, select k samples uniformly
from this buffer and treat this as a training mini-batch

» Three major benefits

1. Data efficiency: Each sample is used multiple times

2. Reduced correlation between updates: Most sequential
samples have a lot of redundant information, which can lead
the agent to over fitting

3. Reduces feedback loops: on-policy samples are chosen
according to current parameters, which can lead lots of similar
samples, which can get the agent stuck in local minima or
divergence of Q.

Sequences of States

» Many domains are not fully Markovian or fully observable
» For example, in an Atari game, taking a picture of a single
screen means the agent cannot tell which directions the sprites
are moving
> So instead of giving a single images, store the previous frames
in a sequence and give all frames at once to the agent
» Now the agent can learn the concept of velocity by looking at
how the pictures have changed between frames

Preprocessor

» Many times the raw state is not in a convenient form for
learning

v

The DQN algorithm uses ¢ to represent a preprocessor
The preprocessor is run on every state, and is fixed
> i.e. the output of the preprocessor will always be the same for
the same input
Useful for operations like:

» Converting images to gray scale
» Down-scaling images
> etc.

v

v

DQN Algorithm

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢ = ¢(s1)
fort =1,T do
With probability e select a random action a
otherwise select a; = max, Q*(¢(s¢),a; 0)
Execute action a; in emulator and observe reward r; and image 21
Set s;411 = 8, ag, w411 and preprocess ¢y 1 = A(Sp11)
Store transition (¢, as, r¢, ¢d¢q1)in D
Sample random minibatch of transitions (¢;, a;, v, ¢;41) from D
Sety; — Ty _ for terminal bj+1
77 rj +ymaxy Q(¢ji1,a’;0) for non-terminal ¢y

Perform a gradient descent step on (y; — Q(¢;, a;; 6))” according to equation
end for
end for

DQN Atari

» Input is raw pixel values from Atari
» Reward is just the score received for an action

» Outputs represent the estimated Q-function value for the
given input state and the action associated with that neuron.

Convglution Convglution Fully cgnnected Fully cgnnected
= S] A\ ¢ 3
o | EH m N\ BS W\ .
¢ [\]
- of | & 0 ®: | &:
of] u 1/ {
o] B i

Atari Games

Figure: Atari River Raid

Figure: Atari Breakout

DQN Results

> On 29 of tested games, the agent achieved better
performance than human-players
» The games varied wildly in genre (e.g. side scrolling shooter vs
boxing)
» The same architecture, and hyperparameters were used across
all networks in these experiments

> In some games (like Breakout), the agent was able to learn
long-term expert level strategy

DQN Results

Freaway

Time Pilot fasem——
Enduro

Fishing Derby _ gt —

At human-level or above.
Below human-level

Gt
ot
Mortezuma's evengs o

)
T T i T I 1
200 300 400 500 600 1,000 4500%

Breakout Demo

https://www.youtube.com /watch?v=V1eYniJORnk

DQN

Deep Learning Tutorial
Perceptrons

Deep Networks
Training

Q-Learning with Approximation

Deep Q-Network (DQN)

Summary

«0O» «(Fr «E>»

«E>

DA 43/53

Summary

v

Deep Learning can learn from data to represent complex
functions

v

DQN is the basis for most current DeepRL algorithms
DQN is incredibly versatile

> It learns a wide variety of Atari games with no domain
knowledge

v

v

Tons of open research questions

Backup

Universal Approximation Theorem

» What types of functions can this framework learn?

» Informally: a neural network can learn any multidimensional,
continuous function with a single hidden layer, given the
hidden layer contains enough units

» Formally proved by the Universal Approximation Theorem

» This theorem tells what types of functions neural networks

can learn, but not how compact the network is, how easy the
training is, or what activation functions are used.

Backpropagation Pseudocode

Algorithm 1 Backpropagation Pseudocode
1. procedure BACKPROP(X, y, W, b)

2 Compute y for the given input X > Forward Pass

3 Compute the loss function

4 Compute the partial derivative of each layer's output with
respect to its input (i.e. 82sz1) > Start backwards pass

5: Compute the partial derivative of each layer's output with
respect to its parameters (i.e. g—kai and %)

6: For each parameter compute the gradient %%£ﬁl e gi’l',

using the previously computed partials
7 return Parameter gradients

Feed-forward Computational Costs

>

Mathematically each neuron computes the function
activation(W T X + b)
Computing W T X + b takes | X| multiplications and additions
The cost of the activation depends on the function used

» Say it adds j multiplications and k additions
For a layer with n neurons, that is densely connected there
will be n(|X| + j) multiplications and n(|X| + k) additions
This is the cost of a single layer, in deep networks there can
be hundreds of layers

I
S

Activation
function

inputs weights

Figure: A single neuron

Cost Depends on Activation Function

» The computational costs can vary a lot based on the
activation functions used

» Sigmoid and tanh activations contain exponentials in both the
forward direction and in their gradients
» On the other hand rectified linear units add very little over
head
» Just a max operation in the forward direction

» The gradient is either zero or one depending on the sign of the
input

A Simple Example

» Consider a network with the following layers
> A layer going from 8 inputs to 400 outputs with Relu
activation
> A layer going from 400 units to 300 units with ReLu activation
> A layer going from 300 units to 2 units with a tanh activation
» This small network has approximately 125,000 parameters
» 125,000 =~ 8 - 400 4 400 - 300 + 300 - 2
» That means approximately 125,000 multiplications and

additions plus the cost for computing the activation functions,
every time this network is used

GPUs for Feed-Forward Networks

» With GPUs we can greatly parallelize this computation

» Each layer is run sequentially, but within a layer all of the
neuron’s can be computed in parallel

> If multiple items are being fed through the network in
succession then the network can be treated as a pipeline with
layers being run in parallel on different inputs

Loss Function

» Feed-forward neural networks map an input vector X to an
output vector y

» The job of the loss function is to quantify how close the
output value y is to the true value y

» The job of the training algorithm is to adjust the weights in
order to minimize the sum of the loss from all of the training
examples. minyy loss(¥, y)

Input Hidden Output
layer layer layer

T @7

Figure: Example network

X1 —

Xy —

Common Loss Functions

» Mean Squared Error (MSE): 327 & ||5() — y(|2
» Works well for regression problems

» Cross Entropy: —% 37 [yIny + (1 — y)In(1 —)]
» This is used with a sigmoid or soft-max activation
» Works well for classification problems

	Deep Learning Tutorial
	Perceptrons
	Deep Networks
	Training

	Q-Learning with Approximation
	Deep Q-Network (DQN)
	Summary

