
1/53

15-887 Planning, Execution, and Learning
Deep Reinforcement Learning

Devin Schwab

November 3, 2016

2/53

Outline

Deep Learning Tutorial

Q-Learning with Approximation

Deep Q-Network (DQN)

Summary

3/53

Deep Learning Tutorial

Q-Learning with Approximation

Deep Q-Network (DQN)

Summary

4/53

Binary Perceptron

I The simplest unit in a neural network is a perceptron
I perceptrons are made up of:

I a set of inputs, X
I a weight for each input, wi

I a threshold, b

I an activation function,

{
1 if

∑
xiwi + b ≥ 0

−1 otherwise

Activation
function

y
∑

w2x2

...
...

wnxn

w1x1

b

inputs weights

Figure: Binary Threshold Perceptron

5/53

Perceptron Decision Surface

Despite having a non-linear activation,
the decision surface is still a hyper plane.

x1

x2

Figure: Example perceptron decision boundary

6/53

Limits of Perceptrons

I The decision boundary of a single perceptron is still linear, so
the data must be linearly separable

I Even simple functions like XOR cannot be learned

x1

x2

Figure: XOR data

6/53

Limits of Perceptrons

I The decision boundary of a single perceptron is still linear, so
the data must be linearly separable

I Even simple functions like XOR cannot be learned

x1

x2

Figure: XOR data

How do we solve this?

6/53

Limits of Perceptrons

I The decision boundary of a single perceptron is still linear, so
the data must be linearly separable

I Even simple functions like XOR cannot be learned

x1

x2

Figure: XOR data

How do we solve this?
Use multiple perceptrons

7/53

Multilayer Perceptrons (MLPs)

I A single perceptron has a linear decision boundary

I The composition of non-linear functions leads to non-linear
decision boundaries

I So stack layers of perceptrons to get a non-linear decision
boundary.

8/53

Neural Network Architecture

I Networks are constructed from multiple layers of perceptrons

I Networks have an input layer, an output layer and one or more
hidden layers

I This architecture is very general
I Connectivity between layers can vary
I Activation functions in each layer can vary
I Number of units in each layer can vary

x1

x2

y

Hidden
layer

Input
layer

Output
layer

Figure: Multilayer Perceptron with a single hidden layer. This particular
network is fully connected.

9/53

XOR Network

x1 x21

1

XOR

10/53

What makes it a deep network?

I Deep Learning really just means a neural network with more
than one hidden layer

I Nowadays, many, many more hidden layers
I More layers, and more neurons means more representation

power

I Why have deep neural networks only recently become
popular?

I Better optimization techniques
I Better regularization
I Better computing power (i.e. GPUs)

11/53

Example Network - MNIST Dataset

I Input: 28x28 black and white images of digits

I Output: The digit shown in the image

· · ·· · ·

p0,1

p0,2

0

· · ·

8

9

Hidden
layer

Input
layer

Output
layer

12/53

What is needed for training?

I Training data (X (i), t(i))
I X (i) are the data dimensions
I t(i) is a target value

I A loss function. This a positive, real-valued function where
the bigger the number of the bigger the error in the
classification label

I Mean Squared Error (MSE) works: L = 1
N2

∑
i

(
t(i) − y(x (i))

)2
I y(x (i)) is the output of your neural network for input x (i)

I A method for optimizing a continuous, non-convex function
(usually a gradient descent variant)

13/53

Gradient Descent

I To update the weights and the bias terms use the gradients
I wi ← wi − α ∂L

∂wi

I bi ← bi − α ∂L
∂bi

I α is a learning rate, and L is the loss function.

I How do you actually compute these gradients? Chain Rule!
I ∂L

∂wi
= ∂L

∂ŷ
∂ŷ
∂zk

∂zk
∂zk−1

· · · ∂zi∂wi

I where zk is the output of the k-th layer

14/53

Backpropagation

I To compute the partials with respect to each layer’s
parameters, the partial derivatives of the layers all the way to
the output are needed

I i.e. all of the ∂zk
∂zk−1

terms for k greater than the current layer)

I It would be very expensive to compute these partial gradients
every single time for every single parameter

I So keep the partial derivatives as you go back through the
layers.

15/53

XOR Network

x1 x21

1

XOR

16/53

Activation Functions

I The binary perceptron is not usually used in neural nets

I The only constraint on activation functions is that they must
be non-linear

I However, there are some desirable properties:
I Large gradients
I Differentiable (at least over most of the domain)
I Easy to compute gradients
I Some activation functions have a probabilistic interpretation
I Sometimes, having a fixed output range is desirable

17/53

Common Activation Functions

I Sigmoid: (1 + e−z)
−1

I Hyperbolic Tangent: tanh(z) = ez−e−z

ez+e−z

I Rectified Linear Units (ReLu): relu(z) = max {z , 0}

I Leaky ReLu:

{
z z > 0

εz otherwise
, where ε� 1

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

−4 −2 0 2 4
−1

−0.5

0

0.5

1

−2 0 2 4
0

1

2

3

4

5

−4 −2 0 2

0

1

2

3

Sigmoid tanh ReLu Leaky ReLu

18/53

Summary

I Stack lots of perceptrons in layers to make a neural network

I Use backpropagation to train the weights in the network

I Network learns a non-linear function approximation

19/53

Deep Learning Tutorial

Q-Learning with Approximation

Deep Q-Network (DQN)

Summary

20/53

Basic Definitions

I The world is modeled as a Markov Decision Processes
(MDPs).
Defined as a tuple: (S ,A,P,R)

I S : Set of all states
I A: Set of all actions
I P: Transition Function. P : S × A× S → [0, 1]
I R: Reward Function. R : S × A→ R

I Policy: π : S → A. Maps states to actions.

21/53

Q-Learning

I We don’t know the model so learn it!
I After each action, use the observed (s, a, r , s ′) to update the

estimate of the Q-function

I Q̂∗(s, a)← (1− α)Q̂∗(s, a) + α

(
r + γmax

a′∈A
Q̂∗(s ′, a′)

)
I What if:

I There are an infinite number of states, or the states are
continuous?

I Many states are all similar and should have similar actions?

21/53

Q-Learning

I We don’t know the model so learn it!
I After each action, use the observed (s, a, r , s ′) to update the

estimate of the Q-function

I Q̂∗(s, a)← (1− α)Q̂∗(s, a) + α

(
r + γmax

a′∈A
Q̂∗(s ′, a′)

)
I What if:

I There are an infinite number of states, or the states are
continuous?

I Many states are all similar and should have similar actions?

Create a function that maps (s, a)→ Q(s, a)

22/53

Neural Networks as Function Approximators

Idea
Approximate the Q-function with a neural network

23/53

Deep Learning Tutorial

Q-Learning with Approximation

Deep Q-Network (DQN)

Summary

24/53

Deep Q-Network DQN

I Basic idea: Approximate with a deep neural network1

I Neural Nets had been tried before, with some success
I Major contributions

I Network architecture that requires one pass for each state
I The loss function used with the network
I The use of replay memory
I The use of a target network

1
Mnih et al. Human-level control through deep reinforcement learning. Nature, 518(7540):529533, 2015.

URL: http://dx.doi.org/10.1038/nature14236, arXiv:1312.5602, doi:10.1038/nature14236

25/53

Näıve Network Architecture

Q(s, a)

a x1 x2 x3 x4 x5

26/53

Network Architecture

Q(s, a1) Q(s, a2) Q(s, a3)

x1 x2 x3 x4 x5

27/53

DeepQ Loss Function

I In order to perform back-propagation on the DeepQ network,
a loss function L(θ) is needed.

I Use the mean-squared error of the Bellman Equation for
Q-functions

I Li (θi) = E
[(

y − Q̂(s, a; θ)
)2]

I Where the target value y is y = r + γmax
a′

Q∗(s ′, a′)

27/53

DeepQ Loss Function

I In order to perform back-propagation on the DeepQ network,
a loss function L(θ) is needed.

I Use the mean-squared error of the Bellman Equation for
Q-functions

I Li (θi) = E
[(

y − Q̂(s, a; θ)
)2]

I Where the target value y is y = r + γmax
a′

Q∗(s ′, a′)

I Unfortunately, Q∗(s ′, a′) is not known apriori, so y cannot be
computed

27/53

DeepQ Loss Function

I In order to perform back-propagation on the DeepQ network,
a loss function L(θ) is needed.

I Use the mean-squared error of the Bellman Equation for
Q-functions

I Li (θi) = E
[(

y − Q̂(s, a; θ)
)2]

I Where the target value y is y = r + γmax
a′

Q∗(s ′, a′)

I Unfortunately, Q∗(s ′, a′) is not known apriori, so y cannot be
computed

How do we solve this?

27/53

DeepQ Loss Function

I In order to perform back-propagation on the DeepQ network,
a loss function L(θ) is needed.

I Use the mean-squared error of the Bellman Equation for
Q-functions

I Li (θi) = E
[(

y − Q̂(s, a; θ)
)2]

I Where the target value y is y = r + γmax
a′

Q∗(s ′, a′)

I Unfortunately, Q∗(s ′, a′) is not known apriori, so y cannot be
computed

How do we solve this?
Use a target network

28/53

Target Network

I Approximate Q∗(s ′, a′) with your previous estimate of
Q∗(s ′, a′)

I i.e. Q̂∗(s ′, a′; θ−)

I Now you have two models
I Your original model with weights θ
I A copy of this model with a previous iterations weights θ−

I The copy is known as the target network.

29/53

Target Network

Starting in state s, took action a, received reward r and ended in state s ′

target network

Q̂∗(s, a; θ−)

current model

Q̂∗(s, a; θ)

s

s’

r

γ

Loss = 1
2

(
y − Q̂∗(s, a)

)2
+

*

max

Q̂∗(s ′, a′; θ−)

y

29/53

Target Network
After an update, copy the weights from the model to the target network

target network

Q̂∗(s, a; θ−)

current model

Q̂∗(s, a; θ)

s

s’

r

γ

Loss = 1
2

(
y − Q̂∗(s, a)

)2
+

*

max

Q̂∗(s ′, a′; θ−)

y

target network

Q̂∗(s, a; θ−)

current model

Q̂∗(s, a; θ)

Set θ− = θ

30/53

Hard Target Updates

I Updating the target network weights every time you update
your model weights can have some stability issues

I Instead, only perform the copying of the weights every k steps

31/53

Soft Target Updates

I More recent work has shown that soft target updates work
better

I Take a small step from your current target weights towards
the current Q-network weights.

θ− ← (1− τ)θ− + τθ, where τ � 1

32/53

DeepQ Loss Function

I Now we can calculate our loss at each step

I To backpropagate, just take the gradient of the loss with
respect to the network parameters:

∇θiL(θi) = E
[(

r + γmax
a′

Q̂(s ′, a′; θ−i)− Q(s, a; θi)

)
∇θiQ(s, a; θi)

]

33/53

Replay Memory

I Instead of directly using the experience samples
et = (s, a, s ′, r) put each sample in a ring buffer of size N

I Now to update the θ parameters, select k samples uniformly
from this buffer and treat this as a training mini-batch

I Three major benefits

1. Data efficiency: Each sample is used multiple times
2. Reduced correlation between updates: Most sequential

samples have a lot of redundant information, which can lead
the agent to over fitting

3. Reduces feedback loops: on-policy samples are chosen
according to current parameters, which can lead lots of similar
samples, which can get the agent stuck in local minima or
divergence of Q̂.

34/53

Sequences of States

I Many domains are not fully Markovian or fully observable
I For example, in an Atari game, taking a picture of a single

screen means the agent cannot tell which directions the sprites
are moving

I So instead of giving a single images, store the previous frames
in a sequence and give all frames at once to the agent

I Now the agent can learn the concept of velocity by looking at
how the pictures have changed between frames

35/53

Preprocessor

I Many times the raw state is not in a convenient form for
learning

I The DQN algorithm uses φ to represent a preprocessor
I The preprocessor is run on every state, and is fixed

I i.e. the output of the preprocessor will always be the same for
the same input

I Useful for operations like:
I Converting images to gray scale
I Down-scaling images
I etc.

36/53

DQN Algorithm

37/53

DQN Atari

I Input is raw pixel values from Atari

I Reward is just the score received for an action

I Outputs represent the estimated Q-function value for the
given input state and the action associated with that neuron.

38/53

Atari Games

Figure: Atari Breakout

Figure: Atari River Raid

39/53

DQN Results

I On 29 of tested games, the agent achieved better
performance than human-players

I The games varied wildly in genre (e.g. side scrolling shooter vs
boxing)

I The same architecture, and hyperparameters were used across
all networks in these experiments

I In some games (like Breakout), the agent was able to learn
long-term expert level strategy

40/53

DQN Results

41/53

Breakout Demo

https://www.youtube.com/watch?v=V1eYniJ0Rnk

42/53

DQN

43/53

Deep Learning Tutorial
Perceptrons
Deep Networks
Training

Q-Learning with Approximation

Deep Q-Network (DQN)

Summary

44/53

Summary

I Deep Learning can learn from data to represent complex
functions

I DQN is the basis for most current DeepRL algorithms
I DQN is incredibly versatile

I It learns a wide variety of Atari games with no domain
knowledge

I Tons of open research questions

45/53

Backup

46/53

Universal Approximation Theorem

I What types of functions can this framework learn?

I Informally: a neural network can learn any multidimensional,
continuous function with a single hidden layer, given the
hidden layer contains enough units

I Formally proved by the Universal Approximation Theorem

I This theorem tells what types of functions neural networks
can learn, but not how compact the network is, how easy the
training is, or what activation functions are used.

47/53

Backpropagation Pseudocode

Algorithm 1 Backpropagation Pseudocode

1: procedure Backprop(X , y , W , b)
2: Compute ŷ for the given input X . Forward Pass
3: Compute the loss function
4: Compute the partial derivative of each layer’s output with

respect to its input (i.e. ∂zk
∂zk−1

) . Start backwards pass

5: Compute the partial derivative of each layer’s output with
respect to its parameters (i.e. ∂zk

∂wi
and ∂zk

∂bi
)

6: For each parameter compute the gradient ∂L
∂ŷ

∂ŷ
∂zk

∂zk
∂zk−1

· · · ∂zi∂bi
using the previously computed partials

7: return Parameter gradients

48/53

Feed-forward Computational Costs
I Mathematically each neuron computes the function

activation(W TX + b)
I Computing W TX + b takes |X | multiplications and additions
I The cost of the activation depends on the function used

I Say it adds j multiplications and k additions

I For a layer with n neurons, that is densely connected there
will be n(|X |+ j) multiplications and n(|X |+ k) additions

I This is the cost of a single layer, in deep networks there can
be hundreds of layers

Activation
function

y
∑

w2x2

...
...

wnxn

w1x1

b

inputs weights

Figure: A single neuron

49/53

Cost Depends on Activation Function

I The computational costs can vary a lot based on the
activation functions used

I Sigmoid and tanh activations contain exponentials in both the
forward direction and in their gradients

I On the other hand rectified linear units add very little over
head

I Just a max operation in the forward direction
I The gradient is either zero or one depending on the sign of the

input

50/53

A Simple Example

I Consider a network with the following layers
I A layer going from 8 inputs to 400 outputs with ReLu

activation
I A layer going from 400 units to 300 units with ReLu activation
I A layer going from 300 units to 2 units with a tanh activation

I This small network has approximately 125,000 parameters
I 125, 000 ≈ 8 · 400 + 400 · 300 + 300 · 2

I That means approximately 125,000 multiplications and
additions plus the cost for computing the activation functions,
every time this network is used

51/53

GPUs for Feed-Forward Networks

I With GPUs we can greatly parallelize this computation

I Each layer is run sequentially, but within a layer all of the
neuron’s can be computed in parallel

I If multiple items are being fed through the network in
succession then the network can be treated as a pipeline with
layers being run in parallel on different inputs

52/53

Loss Function

I Feed-forward neural networks map an input vector X to an
output vector ŷ

I The job of the loss function is to quantify how close the
output value ŷ is to the true value y

I The job of the training algorithm is to adjust the weights in
order to minimize the sum of the loss from all of the training
examples. minW ,b loss(ŷ , y)

x1

x2

ŷ

Hidden
layer

Input
layer

Output
layer

Figure: Example network

53/53

Common Loss Functions

I Mean Squared Error (MSE):
∑n

i
1
2n ||ŷ

(i) − y (i)||2
I Works well for regression problems

I Cross Entropy: − 1
n

∑n
i [ylnŷ + (1− y)ln(1− ŷ)]

I This is used with a sigmoid or soft-max activation
I Works well for classification problems

	Deep Learning Tutorial
	Perceptrons
	Deep Networks
	Training

	Q-Learning with Approximation
	Deep Q-Network (DQN)
	Summary

