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Abstract

How do blogs cite and influence each other? How do
such links evolve? Does the popularity of old blog posts
drop exponentially with time? These are some of the
questions that we address in this work.

Blogs (weblogs) have become an important medium
of information because of their timely publication, ease
of use, and wide availability. In fact, they often make
headlines, by discussing and discovering evidence about
political events and facts. Often blogs link to one an-
other, creating a publicly available record of how infor-
mation and influence spreads through an underlying so-
cial network. Aggregating links from several blog posts
creates a directed graph which we analyze to discover
the patterns of information propagation in blogspace,
and thereby understand the underlying social network.

Here we report some surprising findings of the blog
linking and information propagation structure, after we
analyzed one of the largest available datasets, with
45,000 blogs and ~ 2.2 million blog-postings. Our
analysis also sheds light on how rumors, viruses, and
ideas propagate over social and computer networks.

1 Introduction

Blogs have become an important medium of communi-
cation and information on the World Wide Web. Due to
their accessible and timely nature, they are also an intu-
itive source for data involving the spread of information
and ideas. By examining linking propagation patterns
from one blog post to another, we can infer answers to
some important questions about the way information
spreads through a social network over the Web. For in-
stance, does traffic in the network exhibit bursty and/or
periodic behavior? After a topic becomes popular, how
does interest die off — linearly, or exponentially?

In addition to temporal aspects, we would also like
to discover topological patterns in information propa-
gation graphs (cascades). We explore questions like: do
graphs of information cascades have common shapes?
What are their properties? What are characteristic in-
link patterns for different nodes in a cascade? What can

*School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA.
TNeilsen Buzzmetrics, Pittsburgh, PA.

Natalie Glance, Matthew Hurst '

we say about the size distribution of cascades?

1.1 Summary of findings and contributions
Temporal patterns: For the two months of observation,
we found that blog posts do not have a bursty behavior;
they only have a weekly periodicity. Most surprisingly,
the popularity of posts drops with a power law, instead
of exponentially, that one may have expected. Surpris-
ingly, the exponent of the power law is ~-1.5, agreeing
very well with Barabasi’s theory of heavy tails in human
behavior [3].

Patterns in the shapes and sizes of cascades and
blogs: Almost every metric we measured, followed a
power law. The most striking result is that the size
distribution of cascades (= number of involved posts),
follows a perfect Zipfian distribution, that is, a power
law with slope =-2. The other striking discovery was on
the shape of cascades. The most popular shapes were
the “stars”, that is, a single post with several in-links,
but none of the citing posts are themselves cited.

2 Related work

To our knowledge this work presents the first analy-
sis of temporal aspects of blog link patterns, and gives
detailed analysis about cascades and information prop-
agation on the blogosphere. As we explore the methods
for modeling such patterns, we will refer to concepts in-
volving power laws and burstiness, social networks in
the blog domain, and information cascades.

2.1 Burstiness and power laws Extensive work
has been published on patterns relating to human
behavior, which often generates bursty traffic. Disk
accesses, network traffic, web-server traffic all exhibit
burstiness. Wang et al in [19] provide fast algorithms for
modeling such burstiness. Burstiness is often related to
self-similarity, which was studied in the context of World
Wide Web traffic [5]. Vazquez et al [18] demonstrate the
bursty behavior in web page visits and corresponding
response times.

Self-similarity is often a result of heavy-tailed dy-
namics. Human interactions may be modeled with
networks, and attributes of these networks often fol-
low power law distributions [6]. Such distributions



have a PDF (probability density function) of the form
p(x) o x7, where p(x) is the probability to encounter
value x and -y is the exponent of the power law. In log-
log scales, such a PDF gives a straight line with slope ~.
For v < —1, we can show that the Complementary Cu-
mulative Distribution Function (CCDF) is also a power
law with slope v+1, and so is the rank-frequency plot pi-
oneered by Zipf [21], with slope 1/(1 + ). For v = —2
we have the standard Zipf distribution, and for other
values of v we have the generalized Zipf distribution.

2.2 Blogs Most work on modeling link behavior in
large-scale on-line data has been done in the blog do-
main [1, 2, 12]. The authors note that, while infor-
mation propagates between blogs, examples of genuine
cascading behavior appeared relatively rare. This may,
however, be due in part to the Web-crawling and text
analysis techniques used to infer relationships among
posts [2, 10]. Our work here differs in a way that we
concentrate solely on the propagation of links, and do
not infer additional links from text of the post, which
gives us more accurate information.

There are several potential models to capture the
structure of the blogosphere. Work on information dif-
fusion based on topics [10] showed that for some topics,
their popularity remains constant in time (“chatter”)
while for other topics the popularity is more volatile
(“spikes”). Authors in [12] analyze community-level be-
havior as inferred from blog-rolls — permanent links be-
tween “friend” blogs. Authors extended this work in
[13] to analysis of several topological properties of link
graphs in communities, finding that much behavior was
characterized by “stars”. Analysis based on threshold-
ing as well as alternative probabilistic models of node
activation is considered in the context of finding the
most influential nodes in a network [11], and for viral
marketing [17]. Such analytical work posits a known
network, and uses the model to find the most influen-
tial nodes.

2.3 Information cascades Information cascades
are phenomena in which an action or idea becomes
widely adopted due to the influence of others, typically,
neighbors in some network [4, 8, 9]. Cascades on ran-
dom graphs using a threshold model have been theoreti-
cally analyzed [20]. Empirical analysis of the topological
patterns of cascades in the context of a large product
recommendation network is in [16] and [14].

3 Preliminaries

In this section we introduce terminology and concepts
regarding the blogosphere and information cascades.
Blogs (weblogs) are web sites that are updated on a

regular basis. Blogs have the advantage of being easy to
access and update, and have come to serve a variety of
purposes. Often times individuals use them for online
diaries and social networking; other times news sites
have blogs for timely stories. Blogs are composed of
posts that typically have room for comments by readers
— this gives rise to discussion and opinion forums that
are not possible in the mass media. Also, blogs and
posts typically link each other, as well as other resources
on the Web. Thus, blogs have become an important
means of transmitting information. The influence of
blogs was particularly relevant in the 2004 U.S. election,
as they became sources for campaign fundraising as well
as an important supplement to the mainstream media
[1]. Understanding the ways in which information is
transmitted among blogs is important to developing
concepts of present-day communication.

We model two graph structures emergent from links
in the blogosphere, which we call the Blog network and
the Post network. Figure 1 illustrates these structures.
Blogosphere is composed of blogs, which are further
composed of posts. Posts then contain links to other
posts and resources on the web.

From Blogosphere (a), we obtain the Blog network
(b) by collapsing all links between blog posts into
directed edges between blogs. A blog-to-blog edge is
weighted with the total number of links where a post in
source blog point to a post in destination blog. From
the Blog network we can infer a social network structure,
under the assumption that blogs that are “friends” link
each other often.

In contrast, to obtain the Post network (c), we
ignore the posts’ parent blogs and focus on the link
structure. Associated with each post is the date of the
post, so we label the edges in Post network with the date
difference A > 0 between the source and the destination
posts. Let t, and t, denote post times of posts u and
v, where u links to v, then the link time A = ¢, — t,.

From the Post network, we extract information cas-
cades, which are induced subgraphs by edges represent-
ing the flow of information. A cascade (also known
as conversation tree) has a single starting post called
the cascade initiator with no out-links to other posts
(e.g. nodes a,b,c,d in Figure 1(c)). Posts then join the
cascade by linking to the initiator, and subsequently
new posts join by linking to members within the cas-
cade. Figure 2 gives a list of cascades extracted from
Post network in Figure 1(c). Since a link points from
the follow-up post to the existing (older) post, influence
propagates following the reverse direction of the edges.

We define a non-trivial cascade to be a cascade
containing at least two posts. Therefore, a trivial
cascade is an isolated post. Figure 2 shows all non-
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Figure 1: The model of the blogosphere (a). Squares represent blogs and circles blog-posts. Each post belongs to
a blog, and can contain hyper-links to other posts and resources on the web. We create two networks: a weighted
blog network (b) and a post network (c). Nodes a,b, ¢, d are cascade initiators, and node e is a connector.
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Figure 2: Cascades extracted from Figure 1. Cascades
represent the flow of information through nodes in the
network. To extract a cascade we begin with an initiator
with no out-links to other posts, then add nodes with

edges linking to the initiator, and subsequently nodes
that link to any other nodes in the cascade.

trivial cascades in Figure 1(c), but not the two trivial
cascades. Cascades form two main shapes, which we
refer to as stars and chains. A star occurs when a single
center post is linked by several other posts, but the links
do not propagate further. This produces a wide, shallow
tree. Conversely, a chain occurs when a root is linked by
a single post, which in turn is linked by another post.
This creates a deep tree that has little breadth. As
we will later see most cascades are somewhere between
these two extreme points.

4 Experimental setup

4.1 Dataset description We extracted our dataset
from a larger set of blogs and posts from August and
September 2005 [7]. We are interested in blogs and posts
that actively participate in discussions, so we biased our
dataset towards the more active part of the blogosphere.
We focused on the most-cited blogs and traced forward
and backward conversation trees containing these blogs.
Details may be found in [15]. This process produced a
dataset of 2,422,704 posts from 44,362 blogs gathered
over the two-month period (with some conversations
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Figure 3: Number of posts by day over the three-month
period.

tracing back into July to avoid a “missing past”). There
are 245,404 links among the posts of our dataset.

4.2 Data preparation and cleaning Before anal-
ysis, we cleaned the data to most clearly represent the
structures of interest. In essence: We first reduced time
resolution to one day. We also removed edges pointing
to webpages outside the dataset and to posts supposedly
written in the future. Finally, we removed links where
a post pointed to itself (although a link to a previous
post in the same blog was allowed). A full explanation
of data cleaning may be found in [15].

5 Observations, patterns and laws

5.1 Temporal dynamics of posts and links Traf-
fic in the blogosphere is not uniform. As Figure 3 il-
lustrates, there is a seven-day periodicity. Posting and
blog-to-blog linking patterns tend to have a weekend ef-
fect, with frequency sharply dropping off at weekends.
In Figure 3 we plot the number of posts per day over
the span of our dataset.

Next, we examine how a post’s popularity grows
and declines over time. We collect all in-links to a post
and plot the number of links occurring after each day
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Figure 4: Number of in-links vs. the days after the post
in log-linear scale, after removing the day-of-the week
effects. Power law fits to the data produce exponents
—1.6 and —1.46.

following the post. This creates a curve that indicates
the rise and fall of popularity. By aggregating over a
large set of posts we obtain a more general pattern.

However, the weekend effect creates abnormalities
in the plots we must account for. We smooth the in-link
plots by applying a weighting parameter to the plots
separated by day of week. For each delay A on the
horizontal axis, we estimate the corresponding day of
week d, and we prorate the count for A by dividing it
by I(d), where [(d) is the percent of blog links occurring
on day of week d. This simulates a popularity drop-off
that might occur if posting and linking behavior were
uniform throughout the week.

We fit the power-law distribution with a cut-off in
the tail (bottom row). We fit on 30 days of data, as most
posts in the graph have complete in-link patterns for the
30 days following publication. We performed the fitting
over all posts and for all days of the week separately,
and found a stable power-law exponent of around —1.5,
which is exactly the value predicted by the model where
the bursty nature of human behavior is a consequence of
a decision based queuing process [3] — when individuals
execute tasks based on some perceived priority, the
timing of the tasks is heavy tailed, with most tasks
being rapidly executed, whereas a few experience very
long waiting times. In summary:

OBSERVATION 1. The probability that a post written at
time t, acquires a link at time t, + A is:

p(ty, +A) oc A™H5

5.2 Blog network and Post network topology
The first graph we consider topologically is the Blog
network. As illustrated in Figure 1(c), every node
represents a blog and there is a weighted directed edge
between blogs u and v, where the weight of the edge
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Figure 5: In- and out-degree distributions of the Blog
network.
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Figure 6: Distribution of the number of posts per blog
(a); Distribution of the number of blog-to-blog links, i.e.
the distribution over the Blog network edge weights (b).

corresponds to the number of posts from blog u linking
to posts at blog v. Connectivity-wise, half of the blogs
belong to the largest connected component and the
other half are isolated blogs.

We show the in- and out-degree distribution in
Figure 5. Notice both follow a heavy-tailed distribution.
The number of posts per blog, as shown in Figure 6(a),
also follows a heavy-tailed distribution. The deficit of
blogs with low number of posts and the knee at around
40 posts per blog can be explained by the fact that
we are using a dataset biased towards active blogs.
However, our sample still maintains the power law in
the number of blog-to-blog links as shown in 6(b).

In contrast to Blog network the Post network is
very sparsely connected. 98% of the posts are iso-
lated, and the largest connected component accounts
for 106,000 nodes, while the second largest has only
153 nodes. Figure 7 shows the in- and out-degree dis-
tributions of the Post network which, not surprisingly,
follow a power law.

5.3 Patterns in the cascades We are especially
interested in how information propagates, and this
phenomenon is illustrated by cascades. Given the Post
network we extracted all information cascades using
the following procedure. We found all cascade initiator
nodes, i.e. nodes that have zero out-degree, and started
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Figure 7: Post network in- and out-degree distribution.

following their in-links. This process gives us a directed
acyclic graph with a single root node. To obtain
the examples of the common shapes and count their
frequency we used algorithms described in [16]. We find
a total of 2,092,418 cascades.

5.3.1 Common cascade shapes First, we give ex-
amples of common Post network cascade shapes in Fig-
ure 8. A node represents a post and the influence flows
from the top to the bottom. Cascades tend to be wide
and not too deep— stars and shallow bursty cascades are
the most common type of cascades.

5.3.2 Cascade topological properties What is
the common topological pattern in the cascades? We
next examine the general cascade behavior by measur-
ing and characterizing the properties of real cascades.

First we observe the degree distributions of the
cascades. This means that from the Post network we
extract all the cascades and measure the overall degree
distribution. Essentially we work with a bag of cascades,
where we treat a cascade as separate disconnected sub-
graph in a large network. Similar to other networks,
in- and out-degree distribution of the bag of cascades
follow power laws with exponents of -2.2 and -1.92,
respectively. Further examination showed that the in-
degree exponent is stable and does not change much
given level L in the cascade (a node is at level L if it
is L hops away from the cascade initiator). This means
that posts still attract attention (get linked) even if they
are somewhat late in the cascade and appear towards
the bottom of it.

We next ask: what distribution do cascade sizes
follow? Does the probability of observing a cascade on
n nodes decreases exponentially with n? We examine
the Cascade Size Distributions over the bag of cascades
extracted from the Post network. We consider three
different distributions: a distribution over all cascade
sizes, and separate size distributions of star and chain
cascades. We chose stars and chains since they are well
defined and given the number of nodes in the cascade,
there is no ambiguity in the topology of a star or a chain.

Figure 9 gives the Cascade Size Distribution plots.
Notice all follow a heavy-tailed distribution, with slopes
~ —2 overall (Figure 9(a)). Stars have ~ —3.1 (Fig-
ure 9(b)), and chains are small and rare and decay with
exponent ~ —8.5 (Fig. 9(c)). In summary:

OBSERVATION 2. The probability of observing a cascade
on n nodes follows a Zipf distribution:

p(n) oxn™?

6 Conclusion

We analyzed one of the largest available collections of
blog information, trying to find how blogs behave and
how information propagates through the blogosphere.
We studied two structures, the “Blog network” and
the “Post network”. Our findings are summarized as
follows:

Temporal Patterns: The decline of a post’s popu-
larity follows a power law, rather than an exponential
dropoff as might be expected. The slope is ~-1.5, the
slope predicted by a very recent theory of heavy tails in
human behavior [3].

Topological Patterns: Almost any metric we exam-
ined follows a power law: size of cascades, size of blogs,
in- and out-degrees. Finally, stars and chains are basic
components of cascades, with stars being more common.
Most cascades are tree-like. We also built a generative
model for cascades, which was removed for space and
may be found in [15].
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