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Abstract

Dialogues with robots frequently exhibit social dialogue acts such as greet-
ing, thanks, and goodbye. This opens the opportunity of using these dialogue
acts for dialogue management, in particular for detecting misunderstandings.
Our corpus analysis shows that the social dialogue acts have different scopes of
their associations with the discourse features within the dialogue: greeting in
the user’s first turn is associated with such distant, or global, features as the
likelihood of having questions answered, persistence, and ending with bye. The
user’s thanks turn, on the other hand, is strongly associated with the helpful-
ness of the preceding robot’s answer. We therefore interpret the greeting as a
component of a user model that can provide information about the user’s traits
and be associated with discourse features at various stages of the dialogue. We
conduct a detailed analysis of the user’s thanking behavior and demonstrate
that user’s thanks can be used in the detection of unhelpful robot’s answers.
Incorporating the greeting information further improves the detection. We dis-
cuss possible applications of this work for human-robot dialogue management.

1 INTRODUCTION

Adapting to the model of a user’s knowledge and/or emotional state (in short, a user
model) has been shown to improve performance of dialogue systems on such metrics
as time to task completion (e.g. [27]), learning gains [6], and learning efficiency and
user’s perception of the quality of the dialogue [5]. Deciding on the best action to
be taken given a particular user and dialogue state can be done offline by analyzing
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a corpus of dialogues, but for online interaction, recognizing the state of the current
user has to be performed on-the-fly from the ongoing interaction. For example the
Roboceptionist [7], shown in Figure 1, is installed at a high-traffic entrance of a
university building, and does not track users from session to session. Therefore, the
user model has to be constructed from the first turns of the dialogue, so that the
dialogue manager can take advantage of the model in adapting to the user while the
interactive session is still in progress.

Our particular setting is additionally complicated by the fact that user input is
typed, not spoken, thus excluding the possibilities of using prosody and other fea-
tures of the user’s speech. In other human-robot interaction scenarios, Fischer and
Bateman [3, 4] found significant dependencies between the presence of greetings in
the user’s first utterance and both prosodic and conversational “peculiarities” of the
dialogues. Examples of such conversational peculiarities include reformulations, clari-
fication questions and user’s initiative. Similarly to their study, we analyze transcripts
of human-robot dialogues with the goal of finding dependencies between the first turn
of the dialogue and dialogue patterns that potentially indicate a user’s interaction
style. The patterns of our interest however differ from those in [3, 4] and are inspired
by such user traits as the willingness to carry on after the robot demonstrates lack
of understanding (Persistence), as well as the user’s adherence to social obligations,
such as thanking the robot after the robot gives an answer to the user’s question
(AnswerThanked) and ending an interaction with a goodbye (EndingWithBye). We
present results of the analysis of an annotated corpus of dialogues that demonstrates
two significant associations. First, EndingWithBye and QuestionAnswered patterns
are significantly associated with whether the dialogue was initiated by the human
or by the robot. Second, the patterns of Persistence, EndingWithBye, QuestionAn-
swered and AnswerThanked are significantly associated with whether the user greeted
the robot in the user’s first turn. In particular, the considerable spans (in number of
turns) observed between the Greeting and the patterns such as AnswerThanked and
EndingWithBye motivate us to consider whether these associations are components
of a user model that persists through the interaction.

As an application of the found associations, we focus on the problem of recog-
nizing a specific type of the dialogue error, namely, the situation when the robot’s
answer is unhelpful to the user. We deem the robot’s answer unhelpful if either the
robot admits the failure to make sense of the question (non-understanding) or to find
the right piece of information, or the answer provided is irrelevant due to a misun-
derstanding at the intention and conversation levels [17], as in the example shown
in Figure 2. Recognizing the unhelpfulness due misunderstanding is harder, because
the degree of relevance of the answer is ultimately up to the user’s interpretation.
As Skantze and Edlund [24] point out, the general problem of error detection in dia-
logue could be divided into three subcases: early error detection, late error detection
and error prediction. Early error detection does not use any input beyond the user’s
utterance that causes misunderstanding or non-understanding. Late error detection
allows taking into account dialogue turns that follow the trouble-causing user’s ut-
terance. Error prediction is concerned with predicting errors that occur at the later
stages of the dialogue. In this paper we are concerned with late error detection and



Figure 1: Roboceptionist interacting with a user.

error prediction.

Existing work on late detection of misunderstandings caused by automated speech
recognition errors (e.g. [12, 14]) has shown considerable accuracy using local dialogue
context and prosodic features. Intuitively, detecting unhelpfulness of an answer due to
a misunderstanding, in situations similar to the one shown in Figure 2, should benefit
from incorporating cues from the user turns that follow the robot’s answer. Indeed,
in the telephone-based train information and room reservation domains, cues such
as user corrections [26] and lexical-level features of the following user turn [10, 11]
demonstrate good performance in detecting misunderstandings.

In the area of intelligent tutoring systems, the problematic segments of educational
dialogues are, for example, those that exhibit disagreement between participants of
collaborative learning environments and those within which the student demonstrates
a non-understanding of a concept. In these applications, dialogue act sequences and
user’s state estimated from the prosody were good predictors of poor collaboration
(e. g. [25,9, 8]).

The human-robot dialogues that we analyze regularly exhibit social dialogue acts,
such as Greetings, Thanks, and Goodbye. We hypothesize that the social dialogue
acts can be used as positive and negative cues and demonstrate that the user’s Thanks
is a significant predictor of the helpfulness of the robot’s preceding answer. Unhelpful
answer detection can be further improved by leveraging the difference in the thank-
ing behavior between users that greeted the robot and users that did not. Similar
differences in conversational features with respect to to the presence of a greeting
in the user’s first turn were reported by Fischer [3]. The improvement achieved by



incorporating the feature of a distant (in this case the initial) dialogue act is not sur-
prising, since using features outside of the immediate vicinity of the spot of interest
within a dialogue has been shown to improve detection of end-of-turn [20], dialogue
act classification [19], early error detection [24] and rewards obtained by state-based
models of dialogue [18]. Interestingly, while global contextual information helps, [21]
and [18] demonstrated that just widening local context window does not lead to
an improved performance on speech act recognition or learned dialogue policies re-
spectively. Our results support the findings of the importance of global context in
dialogues by demonstrating its relevance in our corpus of human-robot dialogues for
the particular task of unhelpful answer detection.

Misunderstood questions can also be thought of in terms of grounding [2], de-
fined as the process of adding material to the common ground between speakers. A
misunderstood question in these terms is a type of error in adding material to the
common ground between the user and the robot. Recognizing and recovering from a
misunderstanding can therefore be viewed as a type of common ground maintenance.
Managing the dialogue to achieve and maintain the desired degree of groundedness
has been demonstrated to improve human perceptions of dialogues [22]. The system
described in [22] predicts the degree of groundedness of a material by treating relevant
dialogue acts as evidence of understanding, e.g. acts that acknowledge understanding,
acts that refer to the material, or acts that rely on the understanding of the material.
Our work is similar to the approach of [22] in that we use the following user’s turn
(namely the presence of Thanks) as a feature in our predictor of the answer helpful-
ness (which implies question understanding). Unlike [22], however, we also utilize the
distant discourse information of the presence of Greeting in the user’s first turn. In
summary, we are modeling how well the answer was grounded, how well the question
was understood, and how well the answer will be grounded (based on the presence of
a Greeting). In this respect, the work on detecting unhelpful answers can be viewed
as modeling actual and anticipated grounding behavior in human-robot dialogues.

The paper is organized as follows. Section 2 introduces the corpus of human-robot
dialogues. Section 3 presents the results of the analysis of associations between the
initiator of the interaction and discourse and between the presence of Greeting in the
user’s first turn and discourse. We analyze user’s thanking behavior in Section 4. In
Section 5 we evaluate the performance of the user’s Greeting and user’s Thanks as
predictors of the answer unhelpfulness. The paper concludes with a discussion of the
results and an outline of the future work on improving the user model and the ways
it may be used in dialogue management.

2 HUMAN-ROBOT DIALOGUE

2.1 Roboceptionist

The Roboceptionist is a robot stationed in a kiosk at a high-traffic entrance of a
Carnegie Mellon University building (Figure 1). The robot’s face is rendered on a flat-
screen display that is mounted on a neck joint enabling it to pan to follow the passers-



U: where can I find frank

R: Frank Jones is in 4001 Wean Hall. Would you like directions?

U: no

R: OK

U: I was lookinf for another frank

R: I didn’t understand that. It might help if you rephrase it. [...]

U: I was looking for another frank

R: The closest match I have in my directory is Frank Jones in 4001 Wean Hall.
Would you like directions?

U: any frank in smith hall

R: I didn’t understand that. It might help if you rephrase it. [...]

U: camonnl

R: Whatever

Figure 2: A verbatim fragment of an actual dialogue, with the person’s last name
and room modified for privacy, parts of robot utterances truncated for brevity, and
the labels “U:” and “R:” added to denote the user and robot turns.

by who are detected by the laser range scanner. Greeting of a passer-by is triggered
by a user entering an area that is close to the robot with a minimal forward velocity.
Regardless of whether the Roboceptionist has initiated the interaction by greeting the
user, the user can start interacting with the robot by typing on the keyboard mounted
in front of the robot. The Roboceptionist will respond by producing a synthesized
voice reply as well as text that appears on the screen, next to its face. The first
version of the Roboceptionist was introduced in 2003, and after an initial peak, it
currently averages 30-40 interactions per day.

The robot has been provided with a back story covering its past career and per-
sonal life, developed by students in the Drama department. Occasionally, the robot
refers to these story lines, which makes them a recurring topic of dialogues. The other
topics that the robot is designed to handle, and that make a large fraction of the dia-
logues, include the weather and directions to rooms, buildings and people [13]. With
the exception of followup questions, like the one in the second line of the dialogue
in Figure 2, the robot’s dialogue manager is reactive, namely it keeps track of only
the last user turn. In particular, the robot does not remember whether it exchanged
greetings with the current user.

2.2 Human-robot dialogue corpus

The corpus of human-robot dialogues that we analyze represents transcripts of uncon-
trolled interactions that are collected on a near-daily basis. To generate the dataset,
the transcripts are first automatically segmented into individual dialogues, and di-
alogues with more than 20 turns' are discarded to eliminate outliers and some of
the errors of the segmentation procedure. We annotated the dialogue using a multi-
dimensional annotation in the spirit of DIT++ [1], tailoring it to our domain as
necessary. Specifically, we manually labeled 1960 turns of 287 dialogues that oc-

'Here, and in the remainder of the paper, we count separately each user and robot turn.



curred over 8 days in March of 2008 with respect to such dialogue acts as Greeting,
Thanks, Goodbye, UserQuestion, Answer, InterpNegFeedback (robot’s admitting its
failure to make sense of the preceding user’s turn), and Rude language. Discourse
patterns of interest to us, such as QuestionAnswered, Persistence, AnswerThanked
are expressed in terms of these dialogue acts.

We used this manually labeled corpus of dialogues to train decision tree classifiers
for each of the dialogue acts. The examples of the decision tree classifiers for user’s
Greeting and user’s Question are shown in Figure 3. Using unstemmed words as the
features, these classifiers each achieve the accuracy of at least 0.89 and F1-scores of
at least 0.88 (10-fold cross-validation is used to select the size of the trees). The high
quality of the automated labeling justifies expanding the analysis to a larger corpus
of dialogues. The results presented below correspond to the automatically labeled
corpus of 1676 dialogues (11,024 dialogue turns) that occurred during the months of
March and April of 2008.

3 RELATING DISCOURSE FEATURES TO THE
INITIATOR AND THE GREETING

3.1 Data analysis

In the following data analysis, we estimate the relation between two (not mutually
exclusive) ways to begin a dialogue and the discourse: (1) whether the dialogue has
been initiated by the robot and (2) whether the user has started the dialogue with
a Greeting (e.g. “Hi”, “Good morning”). We define a dialogue as initiated by the
robot if the user started typing within 10 seconds from the time the robot has greeted
a passer-by.

The features of dialogues that we compare include start time, dialogue duration in
seconds, dialogue duration in number of turns, total number of user’s words, average
number of user’s words per user’s turn, user’'s Goodbye as their last turn (Ending-
WithBye), robot’s admitting its failure to make sense of the preceding user’s turn (In-
terpNegFeedback), user’s rude language (Rude), user’s Persistence—robot’s Interp-
NegFeedback followed by a non-empty user’s turn that is not a Goodbye, UserQues-
tion, user’s QuestionAnswered (i.e. question was parsed correctly and received a
reasonable answer?), and user thanking the robot after the question has been rea-
sonably answered (AnswerThanked). Under user greeting/no-greeting conditions we
also compare the total number of user’s words and average number of user’s words
per user’s turn for the “inner” dialogue turns that exclude the two user turns trivially
affected by the presence of a Greeting: an initial Greeting and trailing Goodbye.

The results are shown in Tables 1 and 2. Where the units are not specified,
the number represents the fraction of all the relevant dialogues where the respective
dialogue pattern is present. For example, the fraction of dialogues containing the

2We are loose in our interpretation of what constitutes a reasonable answer. We consider an
answer to any plausible interpretation of the question as reasonable. For example, the robot’s
answer in the second line of Figure 2 is reasonable, albeit unhelpful.
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(a) Decision tree classifier of the user’s Greeting dialogue act.
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(b) Decision tree classifier of the user’s Question dialogue act.

Figure 3: Classification trees for user’s Greeting and Question dialogue acts.



QuestionAnswered pattern is counted only among the dialogues that include user’s
questions, and the fraction of dialogues containing the AnswerThanked pattern is
counted only among the dialogues that include user’s questions that were reasonably
answered by the robot. Differences of the means of variables that represent numerical
counts or times are tested for significance by a two-sample t-test. The 2-by-2 contin-
gency tables that show counts of dialogues containing respective discourse patterns
among all the relevant dialogues that (a) were initiated by the robot/user, or (b)
do/do not include greeting in the user’s first turn, are tested for independence using

Pearson’s Chi-squared test with Yates’ continuity correction.

3

robot-init. | user-init. | p-value
start time 2:29pm 2:43pm 0.16
duration (sec) 38.95 A7.77 0.38
num. of all turns 6.34 6.70 0.15
num. of user’s words 9.10 9.28 0.70
user’s words per user’s turn 2.70 2.70 0.99
Greeting 0.43 0.38 0.05
EndingWithBye 0.13* 0.18* < 0.01
InterpNegFeedback 0.51 0.53 0.40
Rude 0.03 0.02 0.38
Persistence 0.72 0.70 0.62
UserQuestion 0.58 0.62 0.19
QuestionAnswered 0.50** 0.40** < 0.01
AnswerThanked 0.15 0.17 0.63

Table 1: Associations between the initiator of the dialogue and the discourse, using
dialogue turns labeled by a classifier. Values marked with * and #* correspond to
significant results at 0.05 and 0.01 levels respectively.

3.2 Discussion

While the initiator of the dialogue does not show as much effect on the discourse
as whether the user started with a Greeting, robot-initiated dialogues show a slight
increase in the fraction of dialogues with QuestionAnswered, user’s Greeting, and
a negative effect on EndingWithBye. Further analysis is necessary to explain these
differences.

The effect of the user’s Greeting on the length of the dialogue in terms of the
number of turns can be explained by the additional pair of greeting turns. It appears
that presence of a Greeting does not change the overall verbosity of the dialogue when
the Greeting and Goodbye turns are excluded. However, the average length (words
per turn) of the inner turns is slightly larger for the interactions that start with a

3An abridged version of this corpus analysis has been presented as a short paper at HRI'09 [16].



Greeting | —~Greeting | p-value
start time 2:24pm* 2:47Tpm* 0.02
duration (sec) 43.61 45.44 0.84
num. of all turns 7.66** 5.88** < 0.01
num. of user’s words 10.16™* 8.60** < 0.01
user’s words per user’s turn 2.34** 2.94** < 0.01
num. of user’s words (inner) 8.35 8.31 0.92
user’s words per u. turn (inner) 3.18* 3.00* 0.03
num. of user’s turns (inner) 2.61 2.80 0.12
EndingWithBye 0.21* 0.14** < 0.01
InterpNegFeedback 0.46** 0.57** < 0.01
Rude 0.03 0.02 0.62
Persistence 0.76** 0.67* < 0.01
UserQuestion 0.61 0.60 0.66
QuestionAnswered 0.48* 0.41* 0.02
AnswerThanked 0.25** 0.09** < 0.01

Table 2: Associations between a Greeting in the user’s first turn and the discourse,
using dialogue turns labeled by a classifier. Values marked with % and %% correspond
to significant results at 0.05 and 0.01 levels respectively.

Greeting. Users starting with a Greeting tend to exhibit more Persistence and are
more than 2.6 times are as likely to thank the robot after it answers their question
(AnswerThanked). They also have a better chance of having their questions parsed.
The fact that users that start with a Greeting have fewer chances of being not under-
stood by the robot (InterpNegFeedback) is not explained by the presence of trivial
“hi-hi-bye-bye” interactions, since the difference remains significant for interactions
containing more than 4 turns (not shown in the Table).

4 ANALYSIS OF USER’S THANKING BEHAV-
IOR

The analysis presented in Section 3 uncovered the tendency of users who greet the
robot to also say thanks after having their questions answered. In this section, we
explore the user’s thanking behavior in more detail.

The annotation scheme we have used so far does not differentiate between the
types of the questions and is loose in defining what it means to have the question
reasonably answered. For example, in our particular context, the question “How old
are you?” does not warrant “thanks” even after a helpful answer. On the other
hand, an answer to another information seeking question, “Where is Wean Hall?”
can be followed by “Thanks.” We hypothesize a relationship between the relevance,
or helpfulness, of the robot’s answer and the presence of thanks in the following user’s



turn. For example, if the robot misinterpreted the question and gave directions to
a location that is different from the one intended by the user, the answer, while
reasonable, is certainly not helpful (as in the example in Figure 2). In this section,
we use a finer grained manual annotation of the user’s questions and robot’s answers
to uncover the relationship between the presence of user’s greeting, helpfulness of the
robot’s answer, and whether the user thanked the robot. In particular, we describe
and evaluate a classifier of Unhelpful robot’s answers that uses the presence of Thanks
in the user’s following turn and the presence of Greeting in the user’s first turn as its
features.

4.1 Manually labeled corpus of thanking behavior

We use a finer grained annotation for the analysis of thanking behavior that consists of
labeling user’s turns as Thankable and Non-thankable questions and robot’s responses
as Helpful and Unhelpful answers. We extended our manual annotation of the 8-day
corpus of 287 dialogues with these additional labels, considering partial answers as
unhelpful and excluding the combinations of an answer and a followup question, e.g.
“The Robotics Education Lab is in NSH 3206. Would you like directions?”, where the
thanking behavior is complicated by the interference with an answer to the question
“Would you like directions?”.

Notice, that the label Thankable question is defined by semantics and pragmatics,
rather than by syntactic features, so it is possible that an utterance is a Thankable
question, but not a UserQuestion according to the previous, more syntactically-biased
labeling scheme, as in “I meant another Frank.” (Figure 2). The contingency table
of UserQuestions and Thankable questions among all user utterances is presented in

Table 3.

Thankable question | ~Thankable question

UserQuestion 148 223
—UserQuestion 58 549

Table 3: Distribution of UserQuestions and Thankable questions among all user turns.

The split of the Thankable questions between users with and without Greeting in
their first turn is 92 to 114 (no significant departure from the independence hypothesis
according to Pearson’s Chi-squared test). 16 of these Thankable questions are followed
by a combination of an answer and a followup question and are removed from further
analysis.

4.2 Data analysis

We restrict our following analysis to the 190 sequences of dialogue turns that contain
a Thankable question, e.g. <Thankable question, Unhelpful answer, Thanks>. A
single dialogue can contain multiple sequences. Figures 4 and 5 show the mosaic
plots of the counts of discourse patterns starting with the user’s Thankable question,



followed by the robot’s Helpful, or Unhelpful, answer that were or were not, followed
by the user’s Thanks for three sets of dialogues: (a) dialogues where users greeted the
robot on their first turn, (b) dialogues where users did not greet the robot on their
first turn, and (c) all dialogues.

Color shading indicates cells responsible for the Pearson residuals that exceed (in
absolute value) critical values corresponding to 0.1 and 0.01 levels. The departure
from independence between user’s Thanks and the helpfulness of the answer is sig-
nificant (p < 0.01), both conditionally on the user’s Greeting and for all users pooled
together. Conditionally on Greeting, the violation of the independence hypothesis is
most prominent among the users who greeted the robot (p < 0.1 for all cells), espe-
cially when the users also Thanked the robot (p < 0.01). While users that did not
greet also tend to thank less, both users that greeted and users that did not appear to
thank a considerable fraction of unhelpful answers, in a sense of “Thanks anyways.”

5 Detecting unhelpful answers

We use two binary features (Greeting in the first turn and Thanks in the turn fol-
lowing a robot’s answer) to predict a binary variable (Unhelpful answer), hence we
can represent all possible deterministic classifiers by 16 decision trees. Two of the
classifiers are trivial and always output Helpful or Unhelpful. We compare the perfor-
mances of the set of two non-trivial classifiers that use Thanks as their only feature
with the set of all 16 classifiers (12 of which use both features non-trivially) that use
both features by comparing their ROC curves, namely the graphs of their respective
true positive rates tpr = tp/(tp + fn) versus false positive rates fpr = fp/(fp+ tn),
where tp corresponds to the answers correctly detected Unhelpful, fp to the answers
incorrectly detected as Unhelpful, tn to the answers correctly detected as Helpful,
and fn to the answers incorrectly detected as Helpful. One of the properties of ROC
space is that one could always combine a number of classifiers by random sampling
in a way that the ROC points of their combinations would trace a convex hull of the
ROC points/curves of the individual classifiers [15]. Therefore, to compare two sets
of classifiers we have to consider only the classifiers that are on the convex hull of
each of the sets. Since we can always add the two trivial constant classifiers to any
classifier set, the convex hulls will always contain points (0,0) and (1,1). For exam-
ple, the ROC curve corresponding to random combinations between these two trivial
classifiers (i.e. with probability p ask classifier (0,0) that outputs Helpful, otherwise
ask classifier (1, 1) that outputs Unhelpful) is the dotted diagonal in Figure 7.

The dashed line in Figure 7 corresponds to the convex hull of the set of two
classifiers that use Thanks as their only feature. From this set, only the classifier

A: Thanked — Helpful, else Unhelpful
is on the hull. The solid line corresponds to the convex hull of all 16 classifiers. The

two classifiers that are on the latter convex hull are A, and the classifier that extends
the condition in A to also predict Helpful for all users that greeted:

B: Thanked vV Greeted — Helpful, else Unhelpful.



For comparison we also plot the performance of classifiers

C that randomly samples between A and the trivial “always output Helpful”
classifier with a probability p such that its fpr is approximately equal to fpr of B,
and

D and E that use no features and approximately match B’s fpr and tpr respec-
tively.

The bars shown in Figure 7 correspond to the 90% empirical confidence intervals
that are constructed by applying the bootstrap to generate 1000 samples from the
original sample of 190 dialogue turn sequences (see [15] for details on using the boot-
strap for ROC curve analysis). The accuracy and Fl-scores shown in the figure are
indicative of a class skew. Indeed, the slope of iso-accuracy lines is

Jn+in  #Helpful 76 ~ 0.67
tp+ fp  #Unhelpful 114~

While neither the difference in tpr between the two-feature classifier B and the
single-feature classifier C nor the difference in ¢tpr between C and the random classifier
D is significant at 0.1 level, the improvements in tpr between B and D, and in fpr
between B and E are both significant at 0.05 level.

6 CONCLUSIONS

The analysis of the unconstrained human-robot dialogues that we presented has shown
that the user’s social dialogue acts, such as greeting and thanks are significantly
associated with the certain types of system’s errors and that greeting is associated
with discourse patterns at various stages of the dialogue. In particular, the user’s
greeting in the first dialogue turn is associated with remote and global discourse
features such as ending the dialogue with goodbye, persistence, and the likelihood
of receiving an answer. User’s thanks, while also associated with the greeting, is
a considerable predictor of (un)helpful answers, especially when combined with the
greeting. Fischer and Bateman [4] explain similar associations in their human-robot
dialogues using the principle of recipient design [23] and in particular Fischer [3]
shows that both dialogue openings and discourse patterns are associated with the
user’s preconceptions about robots. This explanation and the seemingly global scope
of associations involving the greeting in the user’s first turn motivated us to treat this
feature as a component of a user model.

Future work includes improving unhelpful answer detection by using additional
lexical-level features of the following user turn [11], and by expanding the user model
to include other features of the early dialogue turns.

Our larger goal, however, is to use the unhelpful answer detection and the user
model to help interpret user’s utterances and guide the dialogue. For example, long
range associations between dialogue acts provide additional cues to the structure of
the discourse that may improve discourse parsing [19] and semantic interpretation that
takes into account discourse context. The user model could help guide the dialogue



by providing additional encouragement to an anticipated non-persistent user. Finally,
detecting and adapting to its own unhelpfulness may give the robot a degree of meta-
cognition that could improve the interaction experience.
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(b) Users who did not greet the robot.

Figure 4: Thanking after a helpful answer within (a) users who greeted and (b)
users who did not greet the robot. The shading is based on the maximum absolute
values of Pearson residuals statistic. Cells shaded in light and in fully saturated
colors correspond to residuals that exceed critical values of the permutation test for
independence (conditional on Greeting) at 0.1 and 0.01 levels respectively.
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Figure 5: Thanking after a helpful answer for all users. The shading is explained in
the caption to Figure 4.
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(a) Users who greeted the robot.
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(b) Users who did not greet the robot.

Figure 6: True positive and false positive rates (ROC curves) for the classifiers of
Unhelpful answers relying on the user’s Thanks as the only feature (dashed line).
The detailed explanation is in the text.
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Figure 7: True positive and false positive rates (ROC curves) for the classifiers of
Unhelpful answers relying on the user’s Thanks as the only feature (dashed line) and
incorporating both the user’s Thanks and Greetings as features (solid line). The
detailed explanation is in the text.



