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Abstract

The problem of anomaly detection for bio-
surveillance is typically approached in an un-
supervised setting, due to the small amount
of labeled training data with positive exam-
ples of disease outbreaks. On the other hand,
such model-based methods as the Bayesian
scan statistic (BSS) naturally allow for adap-
tation to the supervised learning setting, pro-
vided that the models can be learned from a
small number of training examples. We pro-
pose modeling the spatial characteristics of
outbreaks from a small amount of training
data using a generative model of outbreaks
with latent center. We present the model and
the EM-based learning of its parameters, and
we compare its performance to the standard
BSS method on simulated outbreaks injected
into real-world Emergency Department visits
data from Allegheny County, Pennsylvania.

1. Introduction

The spatial scan statistic (Kulldorff, 1997) has
emerged as a technique of choice for cluster detection
in such applications as disease outbreak detection and
anomalous pattern detection in spatio-temporal data
streams. The spatial scan maximizes a likelihood ra-
tio statistic over a given set of space-time regions in
order to find the most likely clusters. The choice of
search regions is critical for timely and accurate event
detection. However, most recent spatial scan methods
make simple prior assumptions on the spatial and tem-
poral distribution of events, and suffer from reduced
detection power when these simplifying assumptions
are incorrect.

The Bayesian scan statistic (BSS) method, proposed
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in (Neill et al., 2006), addresses some of the drawbacks
of the original frequentist scan statistic and enables
incorporation of prior knowledge of the effects and
spatio-temporal characteristics of an outbreak. How-
ever, estimation of the parameters of a Bayesian model
in the biosurveillance domain is hampered by the fact
that there are only small amounts of labeled data avail-
able, rarely including the data from true outbreaks.
One way to overcome this problem is to parameterize
the model in a way that captures common properties
of outbreaks, thus reducing the number of model pa-
rameters to learn. In this paper we extend the BSS
method by developing a generative model for the spa-
tial region affected by outbreaks. The model assumes
a latent center of an outbreak, and the probability
that each location is affected by the outbreak depends
on its spatial distance from the center. The learned
model can be used to compute the prior probability
p(H1(S)) that each spatial region S will be affected
by an outbreak. By combining these region priors with
the likelihood of the data in a Bayesian framework, we
can compute the posterior probability that any given
space-time region has been affected by an outbreak.
Our new detection method was evaluated on simulated
disease outbreaks injected into real-world Emergency
Department data, demonstrating that learning of the
region model substantially improves the timeliness and
accuracy of outbreak detection.

2. Bayesian scan statistic

In the spatial event detection framework (Neill et al.,
2006), we are given an observed count ci and expected
count bi for each of a set of spatial locations si, and
wish to detect spatial regions (sets of locations) where
the observed counts are significantly higher than ex-
pected. The Bayesian scan statistic searches over a set
of spatial regions S, computing the posterior probabil-
ity that each region has been affected by an outbreak:
p(H1(S) |D) ∝ p(D |H1(S))p(H1(S)), where D is the
observed data. Similarly, we can compute the poste-
rior probability of the null hypothesis of no outbreaks
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as p(H0 |D) ∝ p(D |H0)p(H0). The likelihood of the
data given the outbreak in a region S ⊆ {s1 . . . sn} is
defined according to the Gamma-Poisson model con-
ventional for disease modeling (Mollié, 1999): ci ∼
Poisson(qibi), and qi ∼ Gamma(δα, β). Here qi repre-
sents the relative risk for location si, δ represents the
multiplicative effect of the outbreak on the affected lo-
cations, and δ = 1 for locations not affected by the out-
break. Expected counts (baselines) bi are estimated
from historical data using a 28-day moving average.

Typically, in an unsupervised setting the prior proba-
bilities p(H1(S)) are unknown and set to an uninfor-
mative distribution, for example uniform over all re-
gions S under consideration. However, we expect some
outbreak regions to be much more likely than others,
depending on features such as region size, shape, and
the set of locations affected (e.g. urban vs. rural ar-
eas). When labeled outbreak data is available, the
prior probability of each possible outbreak region can
be learned to improve the timeliness and accuracy of
detection. Computing these region priors is especially
relevant to the problem that arises in practical spatial
scan implementations, considering only a restricted
search space (e.g. circular or rectangular regions) for
computational efficiency. In this case, there would
likely be no scanned regions that match the outbreak
region exactly, thus diluting the effect of the increased
counts over a number of overlapping scanned regions
and reducing the detection power of the algorithm.
Estimating the prior probability of each scanned re-
gion based on its spatial proximity to likely outbreak
regions has the potential to alleviate this problem.

Because there are an exponential number of possible
outbreak regions (subsets of locations) and the number
of training examples is small, we cannot learn a multi-
nomial distribution over all possible regions, but must
instead learn a model with fewer parameters. We as-
sume a generative model with latent center; this model
has few enough parameters to be learned from a small
amount of data, yet can model many possible distri-
butions of outbreak sizes, shapes, and commonly af-
fected areas. We note that latent center models of an
outbreak are common in the disease mapping litera-
ture (Lawson & Denison, 2002), but we use the model
for outbreak detection rather than mapping disease
risk. To the best of our knowledge, this is the first
work which incorporates such a generative model into
a spatial cluster detection framework.

3. Latent center model

Consider the following setting of the outbreak detec-
tion problem in metric space:
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Figure 1. Map of zipcode centroids for Allegheny County,
Pennsylvania. Crosses indicate locations affected by a sim-
ulated outbreak.

• A set of locations s1 . . . sN (e.g. zipcode cen-
troids).

• A distance metric d(si, sj) on the set of locations.
• Each location has a corresponding observed count

ci and expected count bi for the monitored time
interval.

• An outbreak affects some region S ⊆ {s1 . . . sN};
we assume that the set of locations affected is con-
stant over the outbreak duration.

We represent an outbreak region S ⊆ {s1 . . . sN} by
the values of N binary random variables X1 . . . XN ,
such that Xi = 1 if si ∈ S and Xi = 0 otherwise.
In this supervised learning setting we treat these vari-
ables as observations in our training dataset. For each
instance of an outbreak in the dataset, we assume that
the Xi are generated by the following process:

• Choose Y = sj ∼ Multinomial(1, θ), the center of
the outbreak region.

• Let r be an unknown parameter controlling the
spread of the outbreak. We consider the cases
when r is (a) a fixed parameter, (b) uniformly
distributed in some interval [r1, r2], and (c) drawn
from N(µ, σ).

• Given the center of the outbreak Y = sj and
the spread parameter r, p(Xi | Y = sj , r) ∼
K(d(si, sj), r), where K is some monotone func-
tion of r and the distance from the center. In this
work we assume a sigmoid function centered at r
and controlled with a steepness parameter h, so

that p(Xi | Y = sj , r) =
(

1 + e
d(si,sj)−r

h

)−1

. We
use longitude and latitude as the Cartesian coor-
dinates of each zip code centroid.
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To allow full Bayesian estimation of the multinomial
parameters θ, we assume a Dirichlet prior on θ =
(θ1, . . . , θN ) with parameters γ = (γ1, . . . , γN ). The
graphical model representation for the case of a Gaus-
sian distribution on outbreak radius is shown in Fig-
ure 2. Note that the variables Xi, denoting whether or
not each location si is affected, are independent given
the center of the outbreak and its radius.

4. Inference

Let X = {X1, . . . , XM} be M instances of observed
outbreak regions, where the m-th outbreak region Xm

is represented by a vector of values of binary random
variables Xi: Xm = (Xm

1 , . . . , X
m
N ). Since an obser-

vation Xm d-separates the lower and upper parts of
the graph in Figure 2, the observed counts do not play
a role in the estimation of outbreak parameters θ and
µ. Similarly, given the set of outbreak locations and
their corresponding counts and baselines, the outbreak
region model parameters θ and µ do not contribute to
the inference about the effect δ of an outbreak. In
this paper we use the same MAP estimates of δ across
all detection methods; these estimates are described
in (Neill et al., 2006).

The posterior probability of the parameters is
p(θ, µ | X) ∝ p(X | µ, θ)p(µ)p(θ), and our goal is to
maximize the log-posterior:

log p(θ, µ |X) ∝ log p(X | µ, θ) + log p(µ) + log p(θ)

=
M∑

m=1

log
N∑

n=1

p(Xm | Y m = sn)p(Y m = sn)

+ log p(µ | λ, η) + log p(θ | γ). (1)

Direct maximization over θ is possible in closed form:

θMAP
n =

∑M
m=1 zmn + (γn − 1)
N +M(γn − 1)

, (2)

where the responsibilities zmn are

zmn = p(Y m = sn |Xm)

=
p(Xm | Y m = sn)p(Y m = sn)

p(Xm)
(3)

and

p(Xm) =
N∑

n=1

∫
p(Xm |Y m = sn, r)p(r)p(Y m = sn)dr.

We maximize over µ by maximizing the expected com-
plete data log likelihood as a lower bound on the log

likelihood log p(X | µ, θ). Namely,

log p(θ, µ |X) =
M∑

m=1

log
N∑

n=1

∫
p(Xm, Y m = sn, r)dr

+ log p(µ | λ, η) + log p(θ | γ)

≥
M∑

m=1

N∑
n=1

∫
zmnr log p(Xm, Y m = sn, r)dr

+ log p(µ | λ, η) + log p(θ | γ) (4)

due to Jensen’s inequality, where zmnr are responsibil-
ities defined as

zmnr = p(Y m = sn, r |Xm)

=
p(Xm | Y m = sn, r)p(Y m = sn, r)

p(Xm)
. (5)

The value of µ that maximizes the lower bound (4)
can be obtained in closed form:

µMAP =

(
η

λ2
+
∑M

m=1

∑N
n=1

∫
γmnrrdr

σ2

)

·
(

1
λ2

+
M

σ2

)−1

(6)

The EM algorithm (see for example (Nigam et al.,
2000)) alternates between the evaluation of the ex-
pected values of the hidden variables (responsibilities)
zmn and zmnr (eqs. (3), (5)) and maximization over θ
and µ (eqs. (2), (6)). We can find MLE estimates for
the fixed and uniform radius models similarly.

In addition to learning the parameters of the distribu-
tion of the centers of the outbreaks θ and of the radius
of the outbreak region µ we maximize the data log
likelihood over the steepness parameter h using a gen-
eralized EM step. Gradient descent on h is especially
prone to local optima, so we choose the final estimate
of h among the candidates generated via generalized
EM by comparing the respective average days to de-
tection performance on the training dataset.

5. Evaluation

5.1. Simulated outbreaks

The dataset consists of the daily counts of respiratory
Emergency Department visits in Allegheny County for
the year 2002, aggregated by zipcode, with N = 97
zipcodes spread geographically as shown in Figure 1.
The training data consists of 50 simulated outbreaks
injected in the first 6 months of data, and the test set
consists of 1000 simulated outbreaks injected in the
last 6 months.
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The simulation first generates an outbreak region and
then augments the background (presumably outbreak-
free) counts of Emergency Department visits in that
region, by injecting counts corresponding to the cases
of the outbreak. In this paper we use a simple linear
model of the total number of injected cases, by draw-
ing from Poisson(∆t), where ∆ = 2 is the rate of the
outbreak’s increase in severity and t is number of days
from the beginning of the outbreak (this is similar to
the FLOO model in (Neill et al., 2005)). Since our
main goal is to evaluate the performance of the differ-
ent outbreak region models, our simulations differ only
in the way that the outbreak regions are generated.

5.1.1. Outbreaks satisfying modeling
assumptions

We start with simulated outbreaks that follow the as-
sumptions of one of the models: in the experiment
shown in Figure 4(a) the outbreak is generated by se-
lecting its center uniformly at random (i.e. each zip-
code has equal probability of being the outbreak cen-
ter) and then selecting the radius r uniformly at ran-
dom from the interval [0, 0.2]. A location (zipcode) is
affected if and only if it is within distance r of the
outbreak center. Similarly, in the outbreaks corre-
sponding to Figure 4(b) the radius r is drawn from
the Gaussian distribution N(0.15, 0.05).

5.1.2. Outbreaks violating the assumption on
the distribution of the radius

In the subsequent simulations we increasingly deviate
from the assumptions used in our generative models of
the outbreak. In the simulation corresponding to Fig-
ure 4(c) we still select the outbreak center uniformly
at random but instead of specifying the outbreak by a
radius, we select k nearest neighbors of the outbreak
center, where k ∼ U{1, . . . , 25}, which is equivalent to
selecting an outbreak radius from a distribution that
depends on the outbreak center and the density of the
surrounding zipcode locations.

In the following simulation (results are shown in Fig-
ure 4(d)) we introduce noise to the outbreak boundary
by performing an additional coin toss for each location,
such that locations that are further from the radius are
more likely to be affected if they are inside and less
likely to be affected if they are outside of the circle of
the radius r centered at the outbreak center. To make
a fair comparison with the non-noisy boundary out-
breaks we attempt to closely replicate the distribution
on the outbreak radius induced by the k nearest neigh-
bor generating procedure of the previous experiment.
In particular we first select the k nearest neighbors as

in the previous experiment and then set the radius of
the outbreak r as the distance between the k-th near-
est neighbor and the center of the outbreak. Once the
r is found, we toss a biased coin for each location, with
probability of a location being affected determined by

the sigmoid function
(

1 + e
d−r

h

)−1

, where h = 0.1 and
d is the distance from the center of the outbreak.

5.1.3. Outbreaks with centers concentrated
in the downtown area vs. the suburbs

In the experiments shown in Figures 4(e) and 4(f) we
explore the influence of the density of the zipcode lo-
cations. In the outbreak simulation corresponding to
Figure 4(e) we draw outbreak centers from a bivariate
normal distribution discretized over the zipcode loca-
tions and centered at the geographical and density cen-
ter of the zipcode map, with standard deviations equal
to 0.1 along both axes. For the experiment shown in
Figure 4(f) we invert the discretized normal distribu-
tion on centers of the outbreaks used in the previous
experiment so that the outbreaks are more likely to be
centered away from the geographical and density cen-
ter of the zipcode map. Once the center is selected, the
noisy boundary outbreak region is generated similarly
to the outbreak corresponding to Figure 4(d).

5.1.4. Outbreaks violating the single-center
assumption

In Figure 5(a) we show results of detection of out-
breaks generated from two different centers. The re-
sultant outbreak region is the union of the two regions
each generated according to the model corresponding
to Figure 4(c).

5.2. Results

We evaluate our models by comparing the performance
of the original BSS method (using an uninformative
region prior) with BSS variants that learn each of the
three models of the outbreak region with different as-
sumptions on the distribution of the region spread pa-
rameter r. In particular we consider the cases when r is
modeled (1) as a fixed parameter, (2) as a random vari-
able with uniform distribution U [a, b], where a and b
are estimated from the training data, and (3) as a ran-
dom variable with normal distribution N(µ, σ), where
µ is estimated from the training data and σ = 0.1. In
each of the three models of the outbreak region, the
latent distribution on centers θ is estimated from the
training data as the maximum a-posteriori model as-
suming a multinomial distribution with Dirichlet prior.
In a final experiment we compare the performance of
the three models with their simpler versions that re-
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strict the distribution on centers to the uniform distri-
bution over zipcodes.

The results of each simulation are presented as an
AMOC plot of average days to detection versus the
number of false positives per year. These plots are gen-
erated by setting the threshold on the total posterior
probability of an outbreak over the regions scanned
by BSS at the specific levels of false positives per year
(fp/year), and averaging the number of days since the
beginning of an outbreak until the threshold is first ex-
ceeded. Since the discretization over the levels of false
positives implies that the results will not vary for some
adjacent levels of fp/year, for the sake of presentation
in Figure 4 we group such fp/year levels together. In
cases when the threshold is not exceeded within 14
days, the outbreak is effectively missed; we count such
outbreaks as requiring 14 days to detection.

5.2.1. Outbreaks satisfying modeling
assumptions

We expect each model to perform best when the out-
breaks satisfy its modeling assumptions. For example,
in the case of the uniform radius outbreaks shown in
Figure 4(a), detection with the uniform model out-
performs other models in the range of 5–25 fp/year.
However, in the case of a Gaussian distribution on
the outbreak radius (Figure 4(b)), the Gaussian model
r ∼ N(µ, σ) does not outperform the other methods.
This is because the Gaussian model is sensitive to the
mean µ estimated from the training data. The Gaus-
sian mean estimate has high variance due to the small
amount of training data. The performance of the fixed
radius model suffers from a similar problem. The uni-
form model, however, appears to be robust to such
estimation errors, and outperforms the other models
despite the imprecision in the learned parameter val-
ues.

5.2.2. Outbreaks violating the assumption on
the distribution of the radius

For the outbreaks that do not follow our modeling as-
sumptions, results vary with the severity of the vi-
olation of the assumptions. For the case of the k-
nearest neighbor outbreak region (Figure 4(c)) the
uniform radius model performs better or comparably
with the Gaussian radius model for the range of 5–25
fp/year, while it starts lagging behind the Gaussian
radius model as noise in the region boundary is intro-
duced (Figure 4(d)). Both the uniform and Gaussian
radius models consistently outperform the fixed radius
model, and in the ranges of 0–16 fp/year both mod-
els outperform the original BSS model (without region

learning).

5.2.3. Outbreaks with centers concentrated
in the downtown versus suburbs

When the outbreaks with noisy boundary are centered
in the dense regions of the zipcode map, the methods
perform worse than when the regions are centered in
the periphery (Figures 4(e) and 4(f)). We explain this
by the fact that the noise model is not scaled with the
radius, so it has a larger effect on outbreaks of smaller
radius. Incidentally the k-nearest neighbor outbreaks
that are centered in the dense region of zipcodes tend
to have smaller radius for the same distribution over k,
than the outbreaks centered in the sparse zipcode re-
gions (Figure 3). The Gaussian radius model demon-
strated robustness to deviations in the radius distri-
bution and consistently outperformed or matched the
performance of the BSS without region learning, while
the uniform radius model fell behind the BSS model for
the dense zipcode outbreaks at levels of 17–25 fp/year.

5.2.4. Outbreaks violating the single-center
assumption

For the two-center outbreak model with uniform dis-
tribution of the outbreak centers, while methods that
model the outbreak region outperform the original
BSS method at low levels of false positives (0–4
fp/year), the region modeling does not improve, or
even reduces, performance at higher levels of false pos-
itives (Figure 5(a)). However, the differences in perfor-
mance were small for the uniform and Gaussian radius
models, while the fixed radius model performed poorly.

5.2.5. Multinomial versus uniform model of
outbreak centers

Evaluating N−1 parameters of the multinomial distri-
bution of outbreak centers from M < N training sam-
ples without further restrictions is bound to overfit,
hence in our last experiment we evaluate the benefits
gained by using this complex model as opposed to us-
ing a uniform distribution over the zipcode centroids.
The results of the three radius models using the uni-
form model versus the same three models using the
multinomial model of centers detecting the outbreaks
with centers concentrated in the downtown area are
shown in Figure 5(b). For this particular distribution
of outbreak centers that is correlated with the den-
sity of the zipcode locations, there are essentially no
benefits of using the more complex multinomial model
of outbreak centers. More complicated outbreak pat-
terns, however, may require the richer model, and we
will investigate this more fully in future work.
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Figure 2. A latent center model of an outbreak region.
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Figure 3. Normalized distributions of outbreak radii in the training (M = 50) and test (M = 1000) datasets for the
outbreaks centered (a) in the dense zipcode (downtown) area and (b) away from the dense zipcode area (suburbs).
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Figure 4. Days to detect versus false positives per year. Error bars indicate 95% confidence intervals. The + and − signs
along the horizontal axis correspond to signs of significant differences between the respective bar and the first bar (BSS
without region model) at α = 0.05 according to two-sample t-test. The experiments cover different types of outbreaks:
(a) Uniformly selected center of the outbreak and radius r ∼ U [0, 0.2]; (b) Uniformly selected center of the outbreak and
radius r ∼ N(0.15, 0.05); (c) Uniformly selected center of the outbreak, with k ∼ U{1, . . . , 25} nearest neighbors affected;
(d) Uniformly selected center of the outbreak, choosing k ∼ U{1, . . . , 25} nearest neighbors to determine the radius r of
the outbreak, and then tossing a biased coin for each location, with probability of a location being affected determined

by the sigmoid function
“

1 + e
d−r

h

”−1

, where h = 0.1 and d is the distance from the center of the outbreak (simulating

noisy outbreak boundary); (e) Centers of the outbreaks are concentrated in the dense (downtown) location area, noisy
outbreak boundary as in (d); (f) Centers of the outbreaks are concentrated away from the dense location area, noisy
outbreak boundary as in (d). More details are in the text.
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Figure 5. Days to detect versus false positives per year. Error bars indicate 95% confidence intervals. The experiments
cover different types of outbreaks: (a) A union of two outbreaks each generated in the same way as the outbreak
corresponding to Figure 4(d) (uniform distribution of centers, noisy outbreak boundary). The + and − signs along the
horizontal axis correspond to signs of significant differences between the respective bar and the first bar (BSS without
region model) at α = 0.05 according to two-sample t-test; (b) The outbreak is identical to the one shown in Figure 4(e).
For each of the three models of the radius distribution, we compare the version with uniform and with multinomial
distribution of the outbreak centers. The + and − signs along the horizontal axis correspond to signs of significant
differences between a method with the multinomial model of outbreak centers (even bars) and a respective method using
a uniform model of outbreak centers (odd bars), at α = 0.05 according to two-sample t-test. More details are in the text.

6. Conclusion

We address the problem of using a small amount of
outbreak data to improve the performance of event
detection methods by learning the distribution over af-
fected regions. In particular, we augment the Bayesian
scan statistic framework with a generative model of
the outbreak region, attempting to capture the spa-
tial connectivity, spatial size (spread) and spatial bias
(urban vs. rural areas) of the outbreaks. Our results
demonstrate that such region models can be estimated
from small amounts of training data, significantly im-
prove the time to detection as compared to the original
Bayesian scan statistic method, and are robust to es-
timation errors even when the outbreaks significantly
violate our modeling assumptions. The comparison
between three models for distribution of the radius of
the outbreaks demonstrates the improved performance
of the uniform and Gaussian radius models as com-
pared to learning only a single radius parameter, and
also highlights the robustness of the uniform model
to errors in parameter estimation. While the single
radius model often underperformed the original BSS
method, the uniform and Gaussian models tended to
outperform the original BSS method by a large mar-
gin for low false positive rates (0–4 fp/year), with very
similar performance for higher false positive rates.
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