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Abstract

In this paper we describe a part of the Why2-Atlas tu-
toring system that models students’ reasoning in the
domain of qualitative physics. The main goals of the
model are (1) to evaluate correctness of the student’s
essay, and, in case the essay contains errors, (2) to di-
rect remedial tutoring actions according to plausible er-
rors in the student’s reasoning. To meet these goals, a
backchaining theorem prover generates a set of assump-
tions and a chain of reasoning (a proof) that plausibly
led the student to write the observed essay. A proof
can include correct as well as buggy reasoning steps
and assumptions. After a proof is generated, it is ana-
lyzed for correctness and the analysis is used to generate
appropriate feedback to the student. We describe the
weighted abductive theorem proving framework, outline
previous and upcoming evaluations and discuss possible
future directions.

Introduction

The Why2-Atlas tutoring system is designed to encour-
age students to write their answers to qualitative physics
problems as essays that include explanations of their
arguments (VanLehn, Jordan, Rosé, Bhembe, Böttner,
Gaydos, Makatchev, Pappuswamy, Ringenberg, Roque,
Siler, & Srivastava, 2002). If the essay is incomplete or
incorrect, the system generates elicitation or remedia-
tion feedback, respectively. For the purpose of evaluating
completeness and correctness of the essay, a deep under-
standing of its contents is necessary. In the domain of
qualitative physics, a deep understanding of the essay in-
volves reasoning about logical relationships between the
statements in the essay. The theorem proving approach
that we use in Why2-Atlas provides the means to re-
cover a structure of logical dependencies that connects
the propositions representing (a) the essay text, (b) the
problem statement, and (c) plausible student reasoning
steps not explicitly stated in the essay.

Previously, formal methods for analyzing natural lan-
guage text have encountered a number of challenges,
such as the difficulty of obtaining propositional represen-
tations for sentences and the need for large amounts of
commonsense knowledge in order to interpret the many
concepts expressed. Consider, for example the qualita-
tive physics problem presented in Figure 1 along with
an actual student explanation. To address all the errors
in the essay, the propositional representation of the es-
say must account for such commonsense knowledge as
“An elevator has a ceiling” and “A human has a head.”

Question: Suppose a man is in a free-falling elevator and

is holding his keys motionless right in front of his face. He

then lets go. What will be the position of the keys relative

to the man’s face as time passes? Explain.

Explanation: The keys are affected by gravity which

pulls them to the elevator floor, because the keys then have

a combined velocity of the freefall and the effect of gravity.

If the elevator has enough speed the keys along with my

head would be pressed against the ceiling of the elevator,

because the acceleration of the elevator car along with me

and the keys would overwhelm the gravitational pull.

Figure 1: The statement of the problem and an example
explanation.

In addition, even if the system is able to represent the
respective statements, it also needs to be able to rea-
son about correctness of logical relations between these
statements (a statement b can be false in the context of
the problem, while the statement a → b can be true).
Such reasoning would also be desirable for the purpose
of providing a more substantive feedback to the student,
e. g. excessive argumentation. An informal example of
a possible chain of reasoning that student used to arrive
at the statement “The keys would be pressed against the
ceiling of the elevator” is shown in Figure 2.

An abductive theorem proving approach allows one
to cope with propositions that cannot be proven due to
lack of applicable rules by assuming such propositions
are true without a proof (the operation is also referred to
in the literature as abducing) when such assumptions al-
low a proof to be completed. The fewer the assumptions
made, the better the proof. Weighted abduction takes
this approach farther and assigns a cost to the set of as-
sumptions depending on their individual weights and the
chain of reasoning that led to the generation of these as-
sumptions. A proof can include correct as well as buggy
reasoning steps and assumptions.

In this paper we describe a part of the Why2-Atlas tu-
toring system that models students’ reasoning of qualita-
tive physics. The theorem prover, called Tacitus-lite+, is
a derivative of SRI’s Tacitus-lite (Hobbs, Stickel, Martin,
& Edwards, 1988, p. 102) that, among other extensions,
incorporates sorts. First we provide an overview of the
knowledge representation. Next we describe the abduc-



Step # Proposition Justification

1 before the release, the keys have been in contact with the man, and
the man has been in contact with the elevator

given

2 at the moment of release, velocity of the keys is equal to velocity of
the elevator

bodies in contact over a time interval
have same velocities

3 after the release, nothing is touching the keys given
4 after the release, the keys are in freefall if there is no any contact then the body

is in freefall
5 after the release, the keys’ acceleration is not equal to the elevator’s

acceleration
*elevator is not in freefall

6 after the release, the keys’ velocity is not equal to the elevator’s velocity if initial velocity is the same and accel-
erations are different the final velocities
are different

7 the keys touch the ceiling of the elevator if the keys’ velocity is smaller than the
elevator’s velocity, the keys touch the
ceiling

Figure 2: An informal proof of the excerpt “The keys would be pressed against the ceiling of the elevator” (From
the essay in Figure 1). The buggy assumption is preceded by an asterisk.

tive theorem proving framework and the heuristics we
developed that aim at maximization of the plausibility
of the proof as a model of the student’s reasoning and
the utility of the proof for the tutoring system. The
measure of plausibility is evaluated with respect to (a)
the misconceptions that were identified as present in the
essay by the prover and by a human expert, and (b) the
proof as a whole. The utility for the tutoring task can be
interpreted in terms of relevance of the tutoring actions
(triggered by the proof) to the student’s essay, whether
the proof was plausible or not. We also discuss the as-
sumptions of cognitive economy and concept-level consis-
tency that we make about the student in relation to the
plausibility of the model. Next we summarize previous
evaluations of the Why2-Atlas system (VanLehn et al.,
2002) and of an early version of the abductive reasoning
engine (Jordan, Makatchev, & VanLehn, 2003). Finally
we conclude with a section on our future work.

Knowledge Representation for Students’

Reasoning about Qualitative Physics

Envisionment and idealization

Generating an internal (mental) representation plays a
key role for both novice and expert problem solving
(Ploetzner, Fehse, Kneser, & Spada, 1999; Reimann &
Chi, 1989). (Reimann & Chi, 1989) describes the inter-
nal representation in terms of “objects, operators, and
constraints, as well as initial and final states.” This no-
tion of internal representation overlaps with envision-
ment, which is defined in qualitative physics problem
solving (de Kleer, 1990) as a sequence of events described
in the problem or implied by the description. A further
step, translating the envisionment into the domain ter-
minology (bodies, forces, motion properties) is referred
to as idealization in (Makatchev, Jordan, & VanLehn,
2004a).

For the problem in Figure 1, for example, a possible
envisionment is: (1) the man is holding the keys (elevator
is falling); (2) the man releases the keys; (3) the keys
move up with respect to the man and hit the ceiling of
the elevator. The idealization would be:

Bodies: Keys, Man, Elevator, Earth.

Forces: Gravity, Man holding keys

Motion: Keys’ downward velocity is smaller than the
downward velocity of the man and the elevator.

Many misconceptions that students have are rooted
in the envisionment and idealization (Ploetzner et al.,
1999). To make the task of representing possible cor-
rect and erroneous envisionments feasible we restrict our-
selves to problems with few plausible envisionments. The
rules of mechanics, which rely mostly on the formal do-
main terminology, are augmented by rules for reasoning
about most common envisionments, which use a looser
language. Further we briefly describe these representa-
tions.

Qualitative mechanics ontology

The ontology for the subset of qualitative mechanics
that the system addresses consists of bodies (e. g., keys,
man), agents (air), phenomena (e. g., gravity, friction),
and conventional physical quantities (e. g., force, veloc-
ity, position). To adequately represent justifications,
we also have representations for physics laws (Newton’s
First Law) and basic algebraic expressions (F = ma).
While internally the reasoning is done within a coordi-
nate system that is fixed for each problem (for example,
horizontal axis x directed to the right and vertical axis y
directed up), a student’s reasoning can be independent
of coordinate system choice, operating instead in rela-
tive terms (up, down, in front of). The representation
and corresponding translation rules are described in the
following section.

Logical constants and variables, corresponding to bod-
ies, agents, and quantities are associated with a sort sym-
bol. Sorts are partially ordered by a natural subset or-
der. Domains of the predicate symbols are restricted to
certain sorts (so that each argument position has a cor-
responding sort symbol). These associations and con-
straints constitute an order-sorted signature (Walther,
1987).



Description Sort
quantity Quantity1b
identifier Id
body (or two bodies in case of force) Body
axial component or not Comp
qualitative derivative of the magnitude D-mag
quantitative derivative of the magnitude D-mag-num
zero or non-zero magnitude Mag-zero
quantitative magnitude Mag-num
sign for axial component Dir
quantitative direction Dir-num
qualitative derivative of the direction D-dir
beginning of time interval Time
end of time interval Time

Table 1: Slots of a vector quantity of sort Quantity1b.

Time is represented using time instants as basic prim-
itives. Time intervals are denoted as a pair (ti, tj) of
instants. This and the order relation before on time
points enables us to reason about a reasonably rich sub-
set of the mechanics domain.

Argument slots and an order-sorted signature for a
predicate representing a vector quantity that involves a
single body (for example velocity, total-force) are
shown in Table 1.

A number of relation predicates are used to specify
various algebraic and logical relations between physical
quantities (see Table 2).

Two bodies can also be related via a state of
contact with possible fillers detached, attached, and
moving-contact (for the case of relative motion between
bodies in contact).

Rules

The rules cover correct reasoning at the formal domain
level of an idealized problem (“zero acceleration implies
constant velocity”), buggy reasoning at this same level
(“zero force implies decreasing velocity”), and some com-
mon relevant aspects of the idealization and envision-
ment stages (“if axis y is directed upward and velocity
is vertical and positive then velocity is upward”).

The rules are represented as extended Horn clauses,
namely the head of the rule is an atom or a conjunc-
tion of multiple atoms. Further details of the knowledge
representation are covered in (Makatchev et al., 2004a).

Weighted Abductive Theorem Proving

Order-sorted abductive logic programming
framework

Similar to (Kakas, Kowalski, & Toni, 1998) we define
the abductive logic programming framework as a triple
〈T,A, I〉, where T is the set of givens and rules, A is
the set of abducible atoms (potential hypotheses) and
I is a set of integrity constraints. Then an abductive
explanation of a given set of sentences G (goals) is (a)
a subset ∆ of abducibles A such that T ∪ ∆ ` G and
T ∪∆ satisfies I, and (b) the corresponding proof of G.
The set ∆ is assumptions that explain the goals G. Since
an abductive explanation is generally not unique, various

criteria can be considered for choosing the most suitable
explanation (see Section “Proof search heuristics”).

An order-sorted abductive logic programming frame-
work 〈T ′, A′, I ′〉 is an abductive logic programming
framework with all atoms augmented with the sorts of
their argument terms (so that they are sorted atoms)
(Makatchev et al., 2004a). Assume the following no-
tation: a sorted atom is of the form p(x1, . . . , xn) :
(τ1, . . . , τn), where the term xi is of the sort τi. Then, in
terms of unsorted predicate logic, formula ∃x p(x) : (τ)
can be written as ∃x p(x)∧ τ(x). For our domain we re-
strict the sort hierarchy to a tree structure that is natu-
rally imposed by set semantics and that has the property
∃x τi(x) ∧ τj(x)→ (τi 4 τj) ∨ (τj 4 τi) where τi 4 τj is
equivalent to ∀x τi(x)→ τj(x).

Tacitus-lite+ uses backward chaining with the order-
sorted version of modus ponens:

q(x′, z′) : (τ5, τ6)
p(x, y) : (τ1, τ2)← q(x, z) : (τ3, τ4)
τ5 4 τ3, τ6 4 τ4

p(x′, y′) : (min(τ5, τ1), τ2)

Proof search heuristics

The aim of the proof search heuristics is to quickly find
a proof that optimizes a measure of utility of the proof
for tutoring applications and a measure of plausibility of
the proof as a model of a student’s reasoning. A highly
plausible proof has a high value for its utility measure
since it potentially allows the tutoring system to generate
feedback that is more relevant to the student’s actual
mental state. However a less plausible proof would have
the same utility measure if it results in the same tutoring
action as a more plausible proof. In fact, we would prefer
a less plausible proof over the more plausible proof, their
utility measures being same, if the former takes less time
to compute.

The plausibility measure is based on two cognitive as-
sumptions. The first assumption, cognitive economy, can
be interpreted in the context of the abductive proofs
as a preference for a simpler proof structure (for exam-
ple a smaller proof) and a smaller cost for the proposi-
tions that have to be assumed. The second assumption,
concept-level consistency, is based on the fact that even
young children are unlikely to make mistakes in tasks in-
volving taxonomic categories (Chi & Ceci, 1987). Thus
we assume that, while proofs can have errors, errors in
categorical and taxonomic reasoning are less plausible.
For example, the consistency constraints that we enforce
for proofs prevent propositions such as “velocity of the
keys is increasing” and “velocity of the keys is constant”
from appearing within the same proof.

A proof is considered sufficiently cheap if the total cost
of its assumed atoms is below a certain threshold. The
cost is computed for each proposition of the proof via the
following procedure. First, costs are uniformly assigned
to the goal atoms (observations), namely the proposi-
tional representation of the student’s essay. Conjunct
atoms pi in the body of a rule have pre-assigned weights



Relation 1st and 2nd arguments 3rd argument 4th argument
non-equal any terms
before Time
rel-position Body Rel-location
compare Mag-num or D-mag-num of any scalar or vector quantity Ratio Difference
compare-dir Dir-num of any vector quantity Rel-dir
dependency any terms Rel-type time interval

Table 2: Relations.

wi (Stickel, 1988):

pw1

1
∧ · · · ∧ pwm

m → r1 ∧ · · · ∧ rn.

If this rule is used to prove a goal g by unifying it
with atom rj , then the cost of assuming pi, 1 ≤ i ≤ m,
is computed according to the following cost propagation
formula: cost(pi) = cost(g) ·wi. The cost of the proof is
the total cost of all assumed atoms.

A weighted abductive proof for the student’s state-
ment “The keys would be pressed against the ceiling of
the elevator” is shown in Figure 3. Total cost of the proof
is 0.15, the cost of its only assumption. Incidentally, the
proof indicates a possible presence of the wrong assump-
tion “The elevator is not in freefall,” which is made by
the student likely due to a wrong interpretation of a
problem given.

Since the cost of a proposition is a penalty for assum-
ing it without a proof, it can also be interpreted as a
degree of disbelief in the proposition. This interpreta-
tion suggests that more general existentially quantified
propositions should be cheaper to assume than more spe-
cific propositions. The mechanism for such cost adjust-
ment is implemented in the most recent version of the
theorem prover.

Various rule choice heuristics have the aim of finding
a sufficiently cheap proof of a small size. Generally, if
atoms in the head of the rule are unifiable with a sub-
set of goals then application of such a rule will result in
the subset of atoms being removed from the goal list.
If a rule has atoms in its body that are unifiable with
the goals, then the new subgoals will be factored with
the unifiable goals, namely only the most specific of the
unifiable atoms will be left on the goal list. These nu-
ances imply that proving via rules that have heads and
bodies that are unifiable with larger subsets of goals lead
to a faster reduction of the goal list and consequently a
smaller resultant proof.

In addition, a set of atoms can be cross-referenced
via shared variables. The cross-reference graph encodes
a large amount of semantics for the proposition corre-
sponding to the respective set of atoms. One of the rule
choice heuristics currently being evaluated in the theo-
rem prover is based on the similarity between the graph
of cross-references between the propositions in a candi-
date rule and the graph of cross-references between the
set of goals. The metric for the match between two la-
beled graphs is computed as the size of the largest com-
mon subgraph using the decision-tree-based algorithm
proposed in (Shearer, Bunke, & Venkatesh, 2001). For
further details on the proof search heuristics we refer the
reader to (Makatchev, Jordan, & VanLehn, 2004b).

Evaluation

Although students in a baseline evaluation of the Why2-
Atlas system showed significant learning gains (VanLehn
et al., 2002), the sentence-level representations of the
students’ essays produced by the system, that are the
input to Tacitus-lite+, were too sparse for any miscon-
ceptions to be correctly identified. To evaluate Tacitus-
lite+ we developed a test suite of 45 student generated
essays in which we manually corrected and completed the
input generated by the system for input to Tacitus-lite+
and annotated the misconceptions expressed in each es-
say that Tacitus-lite+ should identify. The student es-
says were randomly selected from those collected during
the baseline evaluation and from subsequent experiments
with students and human tutors. In the 45 essays of the
test suite, three essays have two misconceptions each,
eight essays have one misconception each, and the rest
of the essays don’t have any misconceptions from the
list of 54 misconceptions that could arise for the train-
ing problems according to our physics experts.

There are two types of evaluations of interest to us
for the abductive theorem prover: (1) the accuracy of
the misconceptions revealed by the proofs and (2) the
accuracy of the proofs as models of the students. We
summarize here the results of both for an earlier version
of Tacitus-lite+, as described in (Jordan et al., 2003),
and plan to repeat both in the near future for the newer
version described in this paper.

To assess the accuracy of the misconceptions identified
by the theorem prover, we compare the misconceptions
revealed by the proofs of each essay to those annotated
for each test suite essay. We accumulated the number
of true positives TP, false positives FP, true negatives
TN, and false negatives FN for each essay; and from this
computed recall TP/(TP+FN), precision TP/(TP+FP),
and positive false alarm rate FP/(FP+TN). In addition,
we calculated these measures for the theorem prover’s
results at various proof cost thresholds to see how the
performance changes as we move closer toward building
a complete proof. The results are shown in Figure 4.

The recall increases from 0 at a proof cost of 1 (where
everything is assumed without proof) to 62% at a proof
cost threshold of 0.2. As the recall increases, the pre-
cision degrades but then levels off. These results mean
that the earlier theorem prover can help to reveal up to
62% of the misconceptions that a human would recog-
nize, but at the cost of identifying some misconceptions
that are not justified by the essays. We consider recall to
be the more important measure for misconceptions since
it is important to find and address the misconceptions



Bodies in contact have same positions

If diff. initial pos. and some diff. velocities then same final pos.

If fixed contact then same velocity
1

(given)
(wrong assumption)

Student said:

2

elevator is not in freefall (0.15)

keys and ceiling are in contact (1)

final pos(keys) = final pos(ceiling) (1)

3after release, keys are not in contact with anything (0.1)

vel(keys) after release != vel(elevator) (0.5)

vel(keys) after release != vel(ceiling) (0.5)

acc(keys) after release != acc(elevator) (0.25)

vf=vi+a*t

Ceiling and elevator move together

Freefall acceleration is the same for all bodies

If no contact then freefall

7

6

5

4
initially, man, keys,

elevator are in contact (0.25)

initial pos(keys) != initial pos(ceiling) (0.5)

initial vel(keys) = initial vel(elevator) (0.25)

keys are in freefall (0.1)

(given)

(given)

Figure 3: A weighted abductive proof of the proposition representing the excerpt “The keys would be pressed against
the ceiling of the elevator.” Rule names are in italics; arrows are in the direction of abductive inference; costs of the
propositions are in parenthesis; the references to the steps in Figure 2 are in bold. Total cost of the proof is 0.15.

Figure 4: Recall, precision and false alarm measures as
proof cost threshold decreases.

that are expected to be obvious to a human tutor. The
positive false alarm is quite low and although our goal is
to reduce this value as close to 0 as possible, we consider
a high recall to be a higher priority as we expect that
it is more important not to miss misconceptions. On
the other hand, some possible drawbacks of not also try-
ing to lower the positive false alarms are inadvertently
strengthening the reasoning that leads to a misconcep-

tion and a loss of student motivation and cooperation if
the student perceives the system is too frequently giving
inappropriate feedback.

While these results are encouraging, we expect that
the recent improvements we’ve made to Tacitus-lite+,
along with additional testing and fine-tuning of rules,
will further improve the results. In addition, an evalua-
tion of misconceptions revealed is only a coarse measure
of the quality of the proofs generated. To determine
the fitness of the theorem prover’s modeling to support
assessments of completeness, we must also consider the
accuracy of the proof structure generated. Assessing the
accuracy of the proof structure is more difficult because
the proofs must be hand verified. It is difficult to cre-
ate a reliable gold standard against which to evaluate
the accuracy of proofs for essays and the reasons for any
inaccuracy. This is because, in general, language in con-
text gives rise to many inferences (Austin, 1962; Searle,
1975). For this assessment we judged whether the lowest
cost proofs generated for 15 of the test suite essays was a
plausibly good, satisfactory or bad model of the student
essay. As shown in Table 3, as the proof cost threshold
decreased and consequently the number of assumptions
made fell, the number of good proofs increased and the
number of bad ones fell to 0.

Conclusions and Future work

In this paper we described an approach to modeling
of a student’s reasoning about qualitative physics prob-
lems by treating the student’s essay as an observation,
the problem statement as a set of given facts, and us-



Threshold 0.8 0.6 0.4 0.2

good 7 7 10 11
satisfactory 4 4 4 4
bad 4 4 1 0

Table 3: Evaluation of plausibility of proofs generated
for different proof cost thresholds.

ing an abductive proof of this observation as a plausi-
ble approximation of the student’s reasoning. Abduc-
tive proofs provide an intuitively natural representation
for logical relations between the arguments of the es-
say. The problem of insufficient coverage of the do-
main and common-sense knowledge—one of the difficul-
ties that formal methods face when applied to natural
language text analysis—is alleviated by allowing proofs
to include assumptions, namely propositions that can-
not be proven. Weighted abduction provides a facility
to rate such proofs by assigning costs to their respective
sets of assumptions. The weighted abductive theorem
prover has been implemented and evaluated with respect
to plausibility of proofs as models of students’ reasoning.

There are a number of challenges still to address. One
is to handle various degrees of formalism in the input
representations of the student’s language. For example,
if a student says “throw,” the current representation in-
put to Tacitus-lite+ is “apply an upward vertical force.”
But the student’s actual lexical choices need additional
reasoning relative to the model of the student in order to
determine whether the correct formal representation is
plausible for the student. Otherwise, the student is cred-
ited with understanding more about physics than may be
plausible. So the goal is to take over more of the natural
language semantic interpretation process within Tacitus-
lite+. The favorable evaluation results we have obtained
so far make it more promising that such a move will be
successful. Other challenges include increasing the cov-
erage of the rule-base, further improving the efficiency
of the theorem prover, and further improved consistency
checking.
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work on knowledge representation and rules.

References

Austin, J. L. (1962). How to Do Things With Words.
Oxford University Press, Oxford.

Chi, M. T. H., & Ceci, S. J. (1987). Content knowledge:
Its role, representation and restructuring in mem-
ory development. Advances in Child Development
and Behavior, 20, 91–142.

de Kleer, J. (1990). Multiple representations of knowl-
edge in a mechanics problem-solver. In Weld, D. S.,

& de Kleer, J. (Eds.), Readings in Qualitative Rea-
soning about Physical Systems, pp. 40–45. Morgan
Kaufmann, San Mateo, California.

Hobbs, J., Stickel, M., Martin, P., & Edwards, D. (1988).
Interpretation as abduction. In Proc. 26th Annual
Meeting of the ACL, Association of Computational
Linguistics, pp. 95–103.

Jordan, P., Makatchev, M., & VanLehn, K. (2003). Ab-
ductive theorem proving for analyzing student ex-
planations. In Proceedings of International Con-
ference on Artificial Intelligence in Education, pp.
73–80, Sydney, Australia. IOS Press.

Kakas, A., Kowalski, R. A., & Toni, F. (1998). The
role of abduction in logic programming. In Gab-
bay, D. M., Hogger, C. J., & Robinson, J. A.
(Eds.), Handbook of logic in Artificial Intelligence
and Logic Programming, Vol. 5, pp. 235–324. Ox-
ford University Press.

Makatchev, M., Jordan, P. W., & VanLehn, K. (2004a).
Abductive theorem proving for analyzing student
explanations to guide feedback in intelligent tutor-
ing systems. To appear in Journal of Automated
Reasoning, Special issue on Automated Reasoning
and Theorem Proving in Education.

Makatchev, M., Jordan, P. W., & VanLehn, K. (2004b).
Modeling students’ reasoning about qualitative
physics: Heuristics for abductive proof search. In
Proceedings of Intelligent Tutoring Systems Con-
ference, LNCS. Springer. To appear.

Ploetzner, R., Fehse, E., Kneser, C., & Spada, H. (1999).
Learning to relate qualitative and quantitative
problem representations in a model-based setting
for collaborative problem solving. The Journal of
the Learning Sciences, 8, 177–214.

Reimann, P., & Chi, M. T. H. (1989). Expertise in com-
plex problem solving. In Gilhooly, K. J. (Ed.), Hu-
man and machine problem solving, pp. 161–192.
Plenum Press, New York.

Searle, J. R. (1975). Indirect Speech Acts. In Cole, P., &
Morgan, J. (Eds.), Syntax and Semantics 3. Speech
Acts. Academic Press. Reprinted in Pragmatics.
A Reader, Steven Davis editor, Oxford University
Press, 1991.

Shearer, K., Bunke, H., & Venkatesh, S. (2001). Video in-
dexing and similarity retrieval by largest common
subgraph detection using decision trees. Pattern
Recognition, 34 (5), 1075–1091.

VanLehn, K., Jordan, P., Rosé, C., Bhembe, D., Böttner,
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