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Figure 1: First 3 columns: Results for cheering, walk cycle, and swimming motion. In each column, the top image shows the 4 inputs
(overlapped, each with different color) and the bottom image shows the 15 outputs (overlapped, each with different color). These are frames
from the animations. Please see the animations in the video. Last column: Results for 2D handwritten characters “a” and “2”. Each image

shows both the 4 inputs (blue) and 15 outputs (green).

Abstract

We present a novel method to model and synthesize variation in mo-
tion data. Given a few examples of a particular type of motion as
input, we learn a generative model that is able to synthesize a family
of spatial and temporal variants that are statistically similar to the
input examples. The new variants retain the features of the original
examples, but are not exact copies of them. We learn a Dynamic
Bayesian Network model from the input examples that enables us
to capture properties of conditional independence in the data, and
model it using a multivariate probability distribution. We present
results for a variety of human motion, and 2D handwritten charac-
ters. We perform a user study to show that our new variants are less
repetitive than typical game and crowd simulation approaches of
re-playing a small number of existing motion clips. Our technique
can synthesize new variants efficiently and has a small memory re-
quirement.
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1 Introduction

Variation in human motion exists because people do not perform
actions in precisely the same manner every time. Even if a person
intends to perform the same action more than once, each motion
will still be slightly different. However, current animation systems
lack the ability to realistically produce these subtle variations. For
example, typical crowd animation systems [McDonnell et al. 2006]
utilize a few walking motion clips for every walk cycle and every
character of the simulation. This can lead to synthesized motion
that look unrealistic due to the exact repetition of the original walk
cycles. Hence a variation model that can generate even slight dif-
ferences of the original walk cycles has the potential to greatly im-
prove the naturalness of the output motion. Crowds in games and
films [Thalmann et al. 2005] also do not produce human-like vari-
ations. Animators for films and games often use cycle animation,
where a fixed number of motion cycles are used to create the mo-
tions for multiple characters. Inevitably, there will be cycles that are
exactly repeated both spatially (in multiple characters) and tempo-
rally (at different times for the same character). As soon as an ex-
ample repetition is identified, the whole animation can immediately
deemed to be unnatural. The methods in this paper can be applied
to such animation scenarios to make them more compelling.

Previous methods [Perlin 1995; Bodenheimer et al. 1999] consider
variation to be an additive noise component. However, these meth-
ods are not robust for automatically generating animations because
there is no guarantee that the added noise will match well with the
existing motion. In addition, recent biomechanical research [Har-
ris and Wolpert 1998] has argued that variation is not just noise or
error, but is a functional component of motion. From this point of
view, adding random noise to existing motion is not a principled
approach.

We take a data-driven approach to the problem of modeling and
synthesizing variation. Given a small number of examples of a par-
ticular type of motion (ie. cheering, walk cycle, swimming breast
stroke) as input, we learn a model from the input data, and use
this model to synthesize spatial and temporal variants of that mo-
tion. We demonstrate that the Dynamic Bayesian Network (DBN)



[Friedman et al. 1998; Ghahramani 1998] model solves this prob-
lem well as it provides a formal and robust approach to model the
distribution of the data. A DBN represents a multivariate probabil-
ity distribution of the degrees-of-freedom of motion, and it is from
this distribution that we sample to synthesize our new variants. An
important feature of our approach is that it can work with a small
number of input examples. This is useful as it is difficult to acquire
a large number of examples of a particular motion. Another advan-
tage is that no post-process smoothing operation is needed, which
is beneficial as such an operation may smooth out details of motion
that our method generates. There are three major steps for learning
a model and synthesizing new variants. First, we learn the structure
of the DBN with the input examples. We use a greedy algorithm
based on a variant of the Bayesian Information Criterion score to
learn a good structure. Second, we use the learned structure and
the original data to synthesize new variants. Third and optionally,
we can use an inverse kinematics method developed in conjunction
with our DBN framework to satisfy any foot and hand constraints.

The key result of our method is that we can take a few examples
of a particular type of motion as input, and produce an unlimited
number of spatial and temporal variants as output. A new vari-
ant is spatially different as all new poses are distinct from those of
the input examples, and temporally different as the timing of the
whole motion is distinct from the input examples. The new variants
are statistically and visually similar to the inputs, but are not exact
copies. We demonstrate our approach with a variety of full-body
human motion data, and 2D handwritten characters. The memory
requirement of our model consists of the space required to store the
few input examples and the learned DBN structure. Most of the
processing time is in the learning phase; the runtime for synthesiz-
ing new variants is efficient and can be done as a continuous stream
one frame at a time.

To evaluate our approach, we perform a user study to show that:
(1) our new variants are just as natural as motion capture data, and
(i1) our new variants are less repetitive than “Cycle Animation”. In
addition, we demonstrate that “just adding noise” to existing mo-
tion can create poses and timings that look obviously awkward.
We show this with two methods to add noise to motion: (i) a
naive/strawman method, and (ii) the Perlin noise function. Finally,
since our input examples have to be similar (so that we can model
their variation), it is useful to know what we mean by “similar” and
how we get them to begin with. Hence we provide a DBN-based
and data-driven method to select “similar” examples that can be
used well with our approach.

2 Background

One previous approach for generating variation in motion is to add
noise. Perlin [1995] adds noise functions to procedural motion to
create more realistic animations of running, standing, and dancing.
Bodenheimer and his colleagues [1999] adds noise to cyclic run-
ning motion. The noise is added only to the upper body, and is syn-
chronized with the arm swings in the running cycle. Adding noise,
however, provides no guarantee that the noise will match well with
the existing motion. Adding arbitrary noise can lead to artifacts in
the motion, while adding noise with tuned distributions requires a
trial and error process of manual parameter tuning. In our approach,
the variations that we generate come from the data and not from a
separate additive component.

Pullen and Bregler’s work [2000; 2002] for generating motion vari-
ations is most closely related to our work. They model the correla-
tions between the DOFs in the data with a distribution, and synthe-
size new motion by sampling from this distribution and smoothing
the motion. However, important aspects of the correlations are man-

ually defined. For example, they specify manually that the hip angle
affects the knee, and the knee angle affects the ankle. The structure
learning in our DBN framework learns these joint relationships au-
tomatically from data. In addition, they use their method to animate
a 2-dimensional 5-DOF wallaby figure, and a more complex 3D
character. We demonstrate results of different kinds of motion for
a full-body human figure, and for 2D handwritten characters. Fur-
thermore, our approach requires no smoothing, which is a signif-
icant advantage as sampling-and-smoothing methods will smooth
out certain details of the motion. In comparison to Pullen and Bre-
gler’s work, our approach is more automatic, general, and robust.
Li and his colleagues [2002] also generate new motion that is statis-
tically similar to the original data. They use 20 minutes of dancing
motion as training data. If a large amount of data is available, it
is possible to use random resequencing of motion clips without be-
ing able to detect repetition in the motion. One of the strengths of
our work is that our approach can handle a small amount of orig-
inal data. Chenney and Forsyth [2000] also generates a space of
plausible solutions and sample from it to generate different motion,
although their focus is not on human motion.

There has been work on learning the style of motion from train-
ing data [Brand and Hertzmann 2000] and transferring the style be-
tween motions [Hsu et al. 2005]. Style and variation differ in the
following way: a happy walk and a sad walk are different styles of
walking, while two “similar” happy walks are different variations
of “happy walks”. Interpolation methods [Rose et al. 1998; Wiley
and Hahn 1997] have been developed to generate a spectrum of new
motions that are interpolated from the original data. Interpolation
and variation are also different approaches: we interpolate a five-
foot jump and a ten-foot jump to get an eight-foot jump, while we
take two “similar” five-foot jumps to generate variations of “five-
foot jumps”.

Bayesian Networks (BNs) have been used in the animation com-
munity for solving different problems, in contrast to the variation
problem that our paper solves. BNs were used to model the mo-
tion of virtual humans [Yu and Terzopoulos 2007], where the vari-
ables in their network correspond to high-level behaviors. Kwon
and his colleagues [2008] use DBNs for the problem of animating
the interactions between two human-like characters. Ikemoto and
her colleagues [2009] use similar types of probabilistic methods for
the problem of motion editing.

There are existing motion models that are related to our DBN
model; in general, our work focuses on the variation problem.
Chai and his colleagues [2007] focus on generating motion with
a low-dimensional control input. They use an m-order linear time-
invariant system. In our work, a fully connected DBN of Markov
order m with appropriate conditional probability settings is a linear
time-invariant dynamic system. Indeed, we used such settings in
our initial attempts to construct a DBN. As this method did not work
well, we eventually decided to use a non-parametric approach. The
ST-Isomap model [Jenkins and Matari¢ 2004] focuses on reducing
the dimensionality of the data and finding manifolds of the data.
While these manifolds represent spatial and temporal relationships,
it is not clear whether or not they can be used to generate natural
variants. This is an issue that we focused on as we designed our
method. Wang and his colleagues [2008] models manifolds of mo-
tion from data and sample from them to generate new motion. In
our initial attempts, we also tried a similar approach of modeling
the data with a linear combination of functions (radial basis func-
tions in our case), but this did not work well. We therefore use and
advocate a non-parametric approach, as we found that it is more
robust than parametric approaches.

There is much interest in the problem of adding variety to virtual
crowds. Maim and his colleagues [2008] take a fixed number of



template character meshes, and vary them by changing their color
and adding different accessories to them. On the other hand, our
work takes a fixed number of template motions and synthesize new
variant motions from them. McDonnell and her colleagues [2008]
perform user experiments to study the perception of clones in vir-
tual crowds. They assume that the motion of crowds of characters
must be cloned. In contrast, our approach creates motion with no
exact clones, even though the new variants are visually similar.

3 Overview

We start with a description of a DBN model (Section 4). Given a
small number of input motion clips that represent variations of a
type of motion, we learn the structure of a DBN model automati-
cally (Section 5). We use a nonparametric regression approach to
compute the probability distributions, and we justify this approach
in Section 5.2. This is a notable difference between our application
of DBN and the common use of DBNSs in the literature. The learned
model and data can then be used to generate any number of spa-
tial and temporal variants of that motion (Section 6). We develop
an inverse kinematics framework that is compatible with our DBN
model to satisfy foot and hand constraints (Section 7). For evalua-
tion (Section 8), we describe: (i) results for a variety of full-body
human motion and 2D handwritten characters; (ii) a user study to
show that our new variants are natural compared to motion capture
data, and that our new variants are less repetitive than “Cycle An-
imation”; and (iii) two methods (strawman and Perlin) for adding
noise to existing motion that can lead to unnatural animation. Sec-
tion 9 describes the limitations of our approach, and introduces a
DBN-based method to characterize how “similar” the inputs have
to be in order to work well with our approach.

4 Dynamic Bayesian Network

We first describe the basic formulation and notations for a Bayesian
Network (BN) model, and then extend this description to a Dy-
namic Bayesian Network (DBN) model [Friedman et al. 1998;
Ghahramani 1998].

A BN is a directed acyclic graph that represents a joint probabil-
ity distribution over a set of random variables X = {X1,..., X }.
Each node of the graph represents a random variable. The edges
represent the dependency relationship between the variables. A
node X; is independent of its non-descendants given its parent
nodes Pa(X;) in the graph. This conditional independency is sig-
nificant because we only use the values of parent nodes of X; to
predict the value of each X;. This graph defines a joint probability
distribution over X as follows:

P(X1, ..., Xn) = [ [ P(X: | Pa(X)) )

Most BNs and DBNs that treat X; as a continuous variable use
a linear regression model [Neapolitan 2003]. However, we found
that linear or non-linear parametric models did not work well for
our problem domain. We speculate this may be because the amount
of data is not large enough. Hence we compute P(X; | Pa(X;)) us-
ing a non-parametric regression approach, which we found to work
well for our motion data.

A DBN models the process of how a set of random variables change
over time. It represents a joint probability distribution over all pos-
sible trajectories of the random variables. Figure 2 shows an exam-
ple. In our case of human motion, X; is the trajectory of values of
the 7*"-DOF of motion, and X[t] is the set of values of all the DOFs
at time ¢. X;[t] is the value of the i*"-DOF at time ¢. The prior
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Figure 2: A DBN for the variables X1, ..., X,. Each node X;
represents one DOF in the motion data. We use the prior network to
model the first 2 frames. The transition network models subsequent
frames given the previous 2 frames. We assume a 2nd-order Markov
property because it is the simplest model that works well.

network Gpri0r represents the joint distribution of the nodes in the
first two time steps, X[0] and X[1]. The transition network Girans
specifies the transition probability P(X[t + 2] | X[t], X[t + 1]) for
all £. Note that the transition network predicts the values at time
t 4 2 given those at ¢ and ¢ + 1. Hence there are no incoming edges
into the nodes at time ¢ and ¢ + 1. We assume that the trajecto-
ries satisfy the second order Markov property: the values at time
t and ¢t + 1 can be used to predict those at ¢ + 2. We found that
assuming a first order Markov property does not work well for our
motion data, and we justify our second order assumption in Section
8. We also assume that the transition probabilities are stationary:
the probabilities in G¢rqns are independent of ¢. The DBN defines
a joint probability distribution over X[0], ..., X[T]:

ngo], L X[T]) =
Py (X101, X[1]) - [ Pettrane (X[t + 2] | X[t], X[t + 1))

(€3

Similarly, we apply a non-parametric approach to predict X[t + 2]
given X[t] and X[t + 1]. Hence we do not have parameters and
we only learn the dependency structure from the data. The data it-
self implicitly defines the function in a non-parametric approach.
Note that our non-parametric regression method for the transition
network slightly differs from that of the prior network. This im-
proves the robustness of our approach: no post-process smoothing
operation is needed.

5 Structure Learning

We take as input a small number of motion clips (usually four) of
a particular type of motion. The motion need not be cyclic. These
motion clips must be “similar” to each other, as we are trying to
model the variation between them. Hence their lengths can be
slightly different.

Let neq be the number of input motion sequences, where the [

motion sequence has length n;. For each sequence, the data in the
first two frames (X[0] and X[1]) are used to train the prior network.
If nseq is large enough, we can use the first two frames from each
sequence. Otherwise, we can also take more pairs of frames near
the beginning of each sequence. For example, we can take the first
ten pairs of frames (X[0] and X[1], X[1] and X[2], ..., X[9] and
X[l()]) as the training data for the prior network. Let npyi0r be the
total number of such instances or pairs of frames. For the transition
network, we use the previous two frames to predict each frame.



Hence there are a total of n¢rans = (71 — 2) instances of train-
ing data for the transition network. The structure for the prior and
transition networks are learned separately given this data.

Given the input data, we wish to learn the best structure (or set of
edges in the DBN) that matches the data. The set of nodes are al-
ready defined as in Figure 2. We would therefore like to find the
best G that matches the data D: P(G|D) «x P(D|G) - P(G). This
formulation leads to a scoring function that allows us to compute
a score for any graph. We then use a greedy search approach to
find a graph with a high score. The DBN literature provides many
approaches to compute this score. One possibility is the Bayesian
Information Criterion (BIC) score: there is one term in this score
corresponding to P(D|G) and one penalty term corresponding to
P(G). We use a similar score except we do not have a penalty term.
Instead we perform cross validation across the data by splitting the
data into training and test sets, a common strategy in existing DBN
approaches [Ernst et al. 2007]. Doing cross validation allows us
to measure how well a given graph matches the data without over-
training the graph on the data and without using a penalty term.
Section 5.1 describes the greedy search for a graph, and the scor-
ing functions for the prior and transition networks in more detail.
To compute our score, we have to compute the conditional proba-
bility distribution for each node: P(X; | Pa(X;)). We use a non-
parametric regression approach to compute this probability. Section
5.2 provides justification and more details about this approach.

5.1 Structure Search

We learn the structure by defining a scoring function for any graph,
and then searching for a graph with a high score. This is done sep-
arately for the prior and transition networks of the DBN. The use
of search is shared with existing DBN techniques. However, the
scoring function is different because of the non-parametric regres-
sion. It is intractable to find the graph with the highest score due to
the large number of nodes in the graph. We therefore use a greedy
search approach.

Prior Network. The prior network is a BN. To learn the structure,
we start with any initial set of edges. We then apply an edge update
that gives the best improvement towards the overall score. There
are three possible edge updates: (i) an edge addition adds a directed
edge between two nodes that were not originally connected, (ii) an
edge deletion deletes an existing edge, and (iii) an edge reversal
reverses the direction of an existing edge. Note that these are all
subject to the BN constraint, and so we cannot apply an edge update
that creates cycles in the graph. We continue to apply the best edge
update until there is no improvement in the overall score. As this
greedy method depends on the initial set of edges, we can repeat
the algorithm multiple times by initializing with a different set of
edges every time. We then take the set of edges with the highest
score among the multiple runs.

We derive the scoring function by using a maximum likelihood ap-
proach: our goal is to find the graph that maximizes P(D|G). Re-
call, however, that we do not use a P(G) term as we use cross
validation and split the data into training and test sets. The score

for the prior network Gprior is
log P(D|Gyprior)

Mprior

= log [[ P(XD|Gprior)
j=1
Mprior

= " 1og P(X?|Gprior) &

j=1
Nprior 2n

Z Z log P(Xi(j) Pa(X;))

j=1 i=1

where X () represents the j instance of the prior network training

data, and X fj) is the value of node X; of the jth instance of data.
We sum over each instance of data for doing leave-one-out cross
validation: each j*" instance is one example of testing data and the
corresponding training data (used in the non-parametric regression)
does not include that instance. The training data for the %" instance
is the set of all nprior instances of the prior network training data
except the %" instance. Note that we do not model the time com-
ponent in the prior network even though they represent the first and
second frames of the motion. Hence there are 2n total nodes. The
last equality is due to the conditional independence of the nodes
given their parent nodes. Since the total score can be separated into
sums of terms for each node X;, we keep track of each node’s con-
tribution to the total score. Each edge update in the greedy search
can affect only one or two nodes, so we do not need to recompute
the total score every time we update an edge.

Transition Network. =~ We use a similar algorithm to learn the
structure of the transition network. The difference here is that we
do not allow any incoming edges to the nodes at time ¢ and ¢ + 1.
The nodes at time ¢ and ¢ 4+ 1 are assumed to be observed and
are used to predict those at time ¢ + 2. We initialize the graph
with the edges from X;[t] to X[t + 2] (Vi), and the edges from
X[t + 1] to X;[t + 2] (V7). From our experience with the data, the
search almost always selects these edges and therefore we always
keep these edges throughout the search to make the process more
efficient. The scoring function is similar to the one for the prior net-
work. The score for the transition network Girqns 1S also derived
from the P(D|G) term:

Ngeqmni—1 n

D3> tog PO Pa(X )Y @)

I=1 j=2 i=1

where X;[5]") is the value at node X [5] of the /*" motion sequence
of the transition network training data. This score is different from
the BN score in that we start with the first two frames in each se-
quence, and compute the subsequent frames in the sequence by
propagating the computed frames. So the second frame and the
newly synthesized third frame are used to compute the fourth frame,
the newly synthesized third and fourth frames are used to computed

the fifth frame, and so on. The Pa notation represents this propa-
gation of frames. The justification for this propagation instead of
treating each instance separately is that the learned structure would
otherwise not give a good result: the predicted trajectories devi-
ated from the actual ones when we attempted to treat each instance
separately. Intuitively, since we propagate the values when we syn-
thesize a new motion given the first two frames, we should do this
propagation when we learn the structure. We are effectively trying
to compute how good a given structure is by trying to re-synthesize
each input motion sequence given the first two frames, and com-
paring the synthesized sequence with the original data. Hence we
sum over each motion sequence for doing cross validation: each
1*" sequence is one example of testing data and the corresponding



training data (used in the non-parametric regression) does not in-
clude that sequence. Thus the training data for the I*" sequence is
the set of all n¢rqns instances of the transition network training data
except those in the [*" sequence. Note that we sum over the n nodes
in time ¢ 4 2 as these are the ones we are trying to compute in the
transition network. Note also that the non-parametric regression for
computing the probability in the transition network slightly differs
from that of the prior network.

5.2 Non-Parametric Regression for Computing Condi-
tional Distribution

The scoring functions for the prior and transition networks require
the computation of the conditional probability P(X;|Pa(X;)). We
briefly describe the parametric approaches that we attempted to use.
As these approaches did not work well, we instead rely on a non-
parametric regression method.

We attempted to model the relationship between X; and its parent
nodes as a linear relationship, but we found that it is not appropri-
ate for our motion data. We then attempted to model this relation-
ship by nonlinear regression. We tried to find the parameters of a
nonlinear function that takes the parents of X; as input and X; as
output, where the nonlinear function is a sum of multivariate radial
basis functions. While this worked well for the prior network of the
DBN, it performed poorly for the transition network. We speculate
this may be because there is not enough data to accurately estimate
the parameters of a nonlinear function. Instead, we employ a non-
parametric locally-weighted regression technique, which we found
worked well for our data.

Prior Network. We assume that P(X;|Pa(X;)) follows a Gaus-
sian distribution, and use kernel regression to find the mean and
standard deviation of this distribution. Recall that we are given
the graph and training data. The graph allows us to find the par-
ent nodes of X;. The training data allows us to find instances of
(px,,, x) corresponding to (Pa(X;), X;). Note that we also have
the actual value of Pa(X;), which we call pa(X;). Since a large
number of the instances px,, are far away from pa(X;), we pick the
k-nearest instances. The notation with the subscript k represents
these nearest instances. We measure the distance with a Euclidean-
distance metric: D(px,,pa(X;)). We then compute a weight for
each instance:

wy, = exp{—D(px,,pa(X;))*/Kiy} 5)

where K is the kernel width. Next, we compute a weighted mean
and variance based on these weights:

W Tl
pXs) = R

’ kg wi (g —p(X;))? ©®
var(X;) = kg Sk — -

w
k k

where nj is the number of non-zero weights wy, and the standard
deviation o (X;) is the square root of the above variance. For the
prior network, we have cases where X; has no parents. To compute
P(X;), we find instances of z corresponding to X;. The mean and
standard deviation of X is then the mean and standard deviation of
the instances xj.

Transition Network. We compute one distribution for each node
¢ at time t 4 2 (X;[t + 2]). The regression for the transition network
is essentially the same as above with two important modifications.
The first modification is that we also have a weighted velocity term
when computing the distance function D (px,,, pa(X;[t+2])). This
velocity term is (X;[¢t + 1] — X;[t]) (recall that X;[t + 1] and X [t]
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Figure 3: We “unroll” the DBN from Figure 2 to synthesize new
variants. We show here the unrolled network for 5 time frames.
The first two frames come from the prior network of the DBN and
cannot contain cycles. Since the DBN represents a joint probability
distribution over the possible trajectories of each DOF, we sample
from this distribution to generate new variants.

are always parent nodes of X;[t + 2]). Including this term allows
us to find & nearest instances that better match pa(X;[t + 2]). The
second modification is related to X;[t + 2], whose values we have
to generate in order to compute probabilities and scores. Instead
of dealing with “absolute” X[t 4+ 2] values, we deal with “delta”
X[t + 2] values. In Equation 6, instead of xj representing the
k instances of x;[t 4+ 2] (where lower « means actual value),
now represents the k instances of (x;[t + 2] — z;[t + 1]). And
instead of X; representing X[t + 2], X; now represents (X[t +
2] — X;[t + 1]). To generate an actual value of z;[t + 2], we take
w(X;i[t+2] — X;[t+1]) and add this to the existing z;[t + 1] value.
Intuitively, since the “absolute” values have a much wider range,
sampling from this range will require post-process smoothing. The
“delta” values have a small range, and sampling from it is more
robust and no post-process smoothing is needed.

6 Synthesis of New Variants

We can use the learned structure and the input data to synthesize an
unlimited number of new spatial and temporal variants. Since the
DBN represents a joint probability distribution, we sample from
this distribution to synthesize new variants. We represent the p’s
and o’s that are computed for each node as a set ({Z, &). If we pick
& = 0, this gives the mean motion of the inputs. The set (i, &)
represents variations of motions away from this mean motion. Note
that the p’s are not fixed, since the u’s and ¢’s from previous time
frames can affect the p’s in later time frames.

Prior Network. We synthesize the first 2 frames of a new motion
with the prior network. We first find the partial ordering of the 2n
nodes in the prior network. Such an ordering always exists since
this network is acylic. We generate values for each of these nodes
according to this ordering. The nodes at the beginning will be the
ones without parents. We sample a value from each of the Gaussian
distribution of these nodes. The rest of the nodes will depend on
values already generated. We use the procedure in Section 5.2 to
find the mean and standard deviation for each node, except that we
use the learned structure and all the npri0- instances every time.
We then sample a value from the distribution of each node.

Transition Network. Given the first 2 frames, we synthesize
subsequent frames by “unrolling” the DBN (Figure 3). We perform
one locally-weighted regression for each node at each time frame.
We use the learned structure and all the n4rqx s instances every time.
We use the procedure in Section 5.2 to compute actual values of



X[t + 2]. The main difference is that after computing (X[t +
2] — X;[t+1]) and var(X;[t+2] — X;[t+1]), we sample from this
distribution and add the value to the existing x;[t + 1] value to get
the x; [t +2] value. No post-process smoothing operation is needed.
If the input motions are cyclic, we can synthesize a continuous and
unlimited stream of new poses.

7 Constraints

The synthesized poses from the previous section might need to be
cleaned up for handling foot and hand constraints. This fixes foot-
skate problems and also deals with cases where the foot/hand has to
be at a specific position. We develop an inverse kinematics frame-
work that fits with our DBN approach. Intuitively we need to satisfy
three constraints: (i) the foot/hand needs to be at specific positions
at certain times, (ii) the solution should be close to the mean values
(at each node and time) predicted by the DBN, and (iii) the solution
should maintain smoothness with respect to the previous frames.
The first constraint is a hard inverse kinematics constraint while the
last two are soft constraints. This naturally leads to an optimization
solution:
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where q, is the set of DOFs for one foot or hand at time ¢. There
are 6 joint angles for each foot, and 7 for each hand. q, is the set of
mean values (of the corresponding nodes and time) predicted by the
DBN, q,_; and q,_, are the DOFs from the previous two frames,
f() is the forward kinematics function that gives the end-effector
3D position corresponding to q,, and “pos” is the 3D position that
we want the foot/hand to be at. We run an optimization for each
foot/hand and time frame separately, in the usual forward time or-
der. If there is a large amount of motion, these 3D positions and
frames can be found with automated methods [Kovar et al. 2002].
However, we find that it is not difficult to identify these manually
for our motions. We initialize the optimization with the solution we
sample from the DBN. Since the solution we get from Section 6 is
already close to what we want, the optimization only makes minor
adjustments and is therefore efficient. The optimization uses a se-
quential quadratic programming method. We set w; to 1 and w> to
5.

8 Evaluation

A main result of our work is that we can synthesize spatial and tem-
poral variants of the input examples. Spatial variation means that
no new pose is exactly the same as any of the input poses or pre-
viously synthesized poses. Spatial differences can usually be better
seen in images of poses. Temporal variation means that a new vari-
ant motion has a different timing than any of the input motions or
previously synthesized variant motions. It is important to recognize
that a new variant does not have a one-to-one correspondence from
any of the input motions. This means that the new variant is not
simply a copy of one of the input motions plus some slight differ-
ences as is the case in previous work, but the timing of the whole
motion itself is different. Temporal differences are better visualized
in animations.

In general, we expect our approach to work on time-series data with
DOFs that are correlated. This means that some DOFs are corre-
lated with others, but it is not necessary that all DOFs are related
to each other. The DBN model, by design, works on these types
of data. Experimentally, we show that our approach works for two
different sets of data: human full-body motion and 2D handwritten

Figure 4: Given the learned structure and just one jumping mo-
tion as inputs, we synthesize four new variant motions. We overlap
poses from these four new motions at similar time phases of the
Jjump (lowest point of the character before jump, highest point of
Jjump, and lowest point after jump). We can see the variations in the
poses at these time phases. The poses for the head vary the least
because the head poses also vary the least in the input data.

characters. The success of our approach on these two rather differ-
ent data sets show that our approach is more generally applicable to
similar kinds of temporal sequences.

We assume that our data satisfies a second-order Markov property
in our DBN model. We made this assumption after first attempt-
ing to model the data with a first-order Markov model. While we
can learn a structure and generate the first frame of motion from
the prior network, the subsequent frames that are generated by the
transition network produce highly unnatural motions. After a few
frames, the new poses will diverge away from the poses in the in-
put motions. Intuitively, the algorithm is unable to find nearest in-
stances that are truly “near” the existing previous frame, and hence
it cannot generate the corresponding next frame accurately. How-
ever, we found that using two previous frames works well in finding
the k nearest instances, and this is the reason that a 2nd-order model
works well. We did not try 3rd or higher order models, since we al-
ready have a simpler (2nd-order) model that works well. We believe
that higher order models will produce similar results while having
a longer run-time. By assuming a 2nd-order model, we have only 2
frames of data; but for our human motion with 62 DOFs, there are
actually 124 pieces of information. We found that this information
is enough for the algorithm to find the nearest “patches” (or near-
est instances) of input data, in order to perform the non-parametric
regression to generate a subsequent frame.

Results for Full-body Human Animation. We show results for
five types of human motion data: cheering, walk cycle, swimming
breast stroke, football throws, and jumping. We use, respectively,
433, 322, 384, 666, and 309 frames of data (at 60 frames per sec-
ond) as input. These are the total number of frames for each motion
type. We have four input motion clips in each case.

We find that four input motions is the smallest number that learns
a DBN structure that gives good results. A larger number of in-
puts also works well, but we show the robustness of our method by
showing that it works with only a few inputs. The values of k that
we use to find the k nearest instances are between 15 and 60. In
the learned DBN structure, each node has between 2 and 15 parent
nodes (except for the nodes in the prior network that have no par-
ents). After learning a structure, we can synthesize variants of the
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Figure 6: Plots of four inputs (in blue) and fifteen output variants (in black or green) for cheering motion. Each curve represents one motion
clip. Note that these motions are not cyclic. Left Column: Two selected plots of DOF vs. time. Middle Column: Two selected plots of DOF
vs. DOF. Right Column: Two selected plots of PCA-dimension vs. PCA-dimension.
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Figure 5: We show plots of selected DOF's vs. time of the swim-
ming breast stroke motion. We see that each new cycle in the output
retains the general shape of the input data, but none of them is an
exact copy of the inputs.

four inputs. The results for cheering, walk cycle, and swimming
breast stroke motions (Figure 1) show variants generated with the
four inputs in each case. Given the learned structure and just one
input motion clip, we can also use the same approach to synthesize
variants of that single input. The results for football throws (please
see video) and jumping motions (Figure 4) show variants generated
with just one input in each case. It is possible to generate interesting
variations from a single input. With just one input, the variation at
each newly generated frame depends on the data from the & nearest
neighbors of the one input motion. This can result in combining the
DOFs from different frames to each frame of the newly synthesized
motion. In addition, if the motion is cyclic, we can synthesize a
continuous stream of new cycles. We show examples of these for
walk cycles (please see video) and swimming motion (Figure 5).

Figure 6 show graphs of the input and output cheering motions.

While these graphs are for cheering motion, they are typical of sim-
ilar graphs of other motion types. Note that the new output vari-
ants follow the general trajectories of the inputs, but are not exactly
the same. In the middle column of the figure, we can see some of
the joint correlations. For example, knowing the value of the right
shoulder can help us predict the value of the left shoulder. These
joint relationships are learned automatically. Indeed, the discov-
ered edges or dependencies in the DBN represent these kinds of
joint relationships that exist in the data. For the right column of the
figure, we performed PCA of the input and output data, and plotted
the results from the first few PCA dimensions. The PCA reduces
the 62-DOF data to 11 dimensions, keeping more than 99% of the
energy.

Results for 2D Handwritten Characters. The original input data
for the 2D characters were manually drawn by the authors directly
on the 2D screen. We recorded the x and y positions of the mouse
on the screen, and each character was drawn with one continuous
stroke. We have one set of data for the character “a” and another
set for the digit “2”. The average number of (x, y) points we have
for each “a” is 103, and for each “2” is 66. We have four input
characters in each case. We learn a DBN structure and synthesize
new characters/digits using the same procedure, except that we now
have 2 DOFs representing the x and y positions. The last column
of Figure 1 shows both the four inputs and fifteen new outputs in
each case. We can see the spatial variation in these images. The
timing of each new stroke is also different, and this can be seen in
the video.

To evaluate our method further, we have another example of 2D
strokes where we can compare against the ground truth. We define
a simple set of equations to generate the ground truth 2D circular
strokes (Figure 7(left)). Note that there is some randomization in
the equations to vary the ground truth strokes. We then select four
strokes from the set of fifteen ground truth ones and use them as
input. We learn a DBN and synthesize new output strokes with the
same procedure. Figure 7(left) shows the four inputs and fifteen
outputs. As expected, the fifteen outputs generated from our DBN
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Figure 7: Left: 15 ground truth strokes (red), 4 input strokes (blue) and 15 output strokes (green). Note that the blue and green ones are
overlaid. Right: Gprior and Girans from the learned DBN model. p(X2[0]) is 5.91 and o(X2[0]) is 0.77.

approach are visually similar to the ground truth strokes. Figure
7(right) shows the DBN that was learned from the four inputs.

Memory and Performance Time. We require memory to store
the learned DBN structure and the four input motions. The DBN
structure consists of a set of sparse directed edges in Gprior and
G'trans, and the means and standard deviations of the nodes in
Gprior that have no parents. The memory for the DBN structure
is small, and hence the total memory is essentially the four input
motions. It takes between half an hour and two hours to learn the
DBN structure for each type of human motion we described above.
This learning process can be done offline. The runtime process of
synthesizing new human motion can be done efficiently: in our ex-
amples, it takes about 0.1 second to generate 1 second of motion.

User Study.  We performed two experiments in the user study.
For Experiment A, we compare “Our Variants” with “Motion Cap-
ture” data. “Our Variants” are motion clips generated by our ap-
proach. The purpose is to decide which is more natural. We ran this
experiment for cheering motion and walk cycles separately. Each
user watches a random mixture of 15 of these motion clips. Af-
ter watching each motion, we ask the user to provide a score from
1 to 9 (inclusive) of how natural or human-like that motion is. A
higher score corresponds to more naturalness. We tested 15 users,
and we have a total of 225 scores. We performed ANOVA on these
scores (Figure 8). For cheering motion, p is 0.9298 and this sug-
gests that the means from the two samples (of “Our Variants” and
“Motion Capture”) are not significantly different. For walk cycles,
p is 0.5779 and this again suggests that the means from the two
samples are not significantly different. Therefore, for both cheering
motion and walk cycles, motion synthesized by our approach is just
as natural as motion capture data.

For Experiment B, we compare “Our Variants” with “Cycle Ani-
mation”. “Our Variants” are long sequences where each sequence
consists of at least 15 concatenated motion clips generated by our
approach. These motion clips are all slightly different. A “Cycle
Animation” is a long sequence consisting of at least 15 concate-
nated motion clips: each of these is randomly selected from the
4 input motions. The purpose is to decide which is more repeti-
tive. A long sequence is repetitive if many of the motion clips are
exactly repeated. We ran this experiment for cheering motion and
walk cycles separately. Each user watches a random mixture of 15
of these long sequences. After watching each sequence, we ask the
user to provide a score from 1 to 9 (inclusive) of how repetitive
that sequence is. A higher score corresponds to more repetition.
We tested 15 users, and we have a total of 225 scores. We per-
formed ANOVA on these scores (Figure 8). For cheering motion, p
is 1.0243e-8 and this suggests that the means from the two samples
(of “Our Variants” and “Cycle Animation”) are significantly differ-
ent. For walk cycles, p is 4.4868e-8 and this again suggests that the
means from the two samples are significantly different. Therefore,

for both cheering motion and walk cycles, “Our Variants” are less
repetitive than “Cycle Animation”. In Experiment B, note that each
long sequence has at least 15 motion clips. It takes some time to
recognize whether or not there are clips that are exactly repeated.
Hence Experiment B does not apply to relatively short animations,
since “motion clones” are difficult to detect in short animations (as
shown in [McDonnell et al. 2008]).

Experiments with Adding Noise. A simple possible approach
to generate variation is to add noise to existing motion. We exper-
imented with two such methods on the walk cycle data. The first
is a naive or strawman method. We time-warp the four input walk
cycles, compute simple statistics of the time-warped data for each
DOF separately, and use this information to add smoothed noise to
one of the four input cycles. We check that the noise-added motion
is changed by a similar amount compared to the variants that our
DBN approach generates. We do so by taking pairs from our fifteen
variants and the four inputs (each pair has one variant and one in-
put), computing the normalized sum of squared differences of joints
between each pair, and modeling these sums as a normal distribu-
tion. We also compute the normalized sum of squared differences
of joints between the noise-added motion and its corresponding in-
put, and check that this sum is within one standard deviation of the
mean of the normal distribution above. Our video shows examples
where we add noise only to the left shoulder and elbow. The anima-
tion shows that the left shoulder/arm motion is unnatural, and does
not fit with the rest of the walking motion. In contrast, our DBN
approach will learn that the left shoulder is correlated with other
joints, and handle these issues autonomously. In another example,
we add noise to all joints. While the overall walk motion still ex-
ists, it is visibly evident that the poses and timing of the motion are
awkward. Furthermore, adding noise requires a smoothing process
that can affect details of the original motion.

The second method is to add band-limited noise to one of the four
input cycles with the Perlin noise function [1995]. We also perform
the same noise-addition check as in the first method. Our video
shows examples where we add noise to several joints. We find that a
trial-and-error process of manual parameter tuning is needed. Most
importantly, a human understanding of the motion (ie. if the left
arm swings higher, the right arm is more likely to swing higher) is
required to add noise in a principled way. Otherwise, the motion
can become spatially or temporally awkward.

9 Limitations

The main limitation of our approach is that the input motion ex-
amples have to be “similar but slightly different”. They have to be
“similar” because we are learning a model for that particular type
of motion. They have to be “slightly different” because the small
differences among the inputs are where we get the variation from.
In the results section, we have shown examples that work with our
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Figure 8: ANOVA results from the user study.

approach and are “similar”. Here, we describe examples of inputs
that do not work with our approach and are not “similar”. For our
walk cycle data, we have four input motions where the character
walks two steps forward. If there is a walk cycle where the charac-
ter swings the arms much higher (please see video for the anima-
tion), it will not fit with the original four motions and will not work
as another input motion. We are still able to use the five motions
together to learn a DBN structure, but the synthesis step may not
produce a reasonable output motion. However, if we have four or
more of such higher-arm-swinging walk cycles, they can be used
together in our approach effectively. Another example is a walk
cycle where the character turns slightly to one side while walking
forward. This will also not fit with the original four inputs. We also
show examples of the handwritten digit “2” (please see video) that
do not work with our original four inputs.

It is difficult to precisely define what is meant by “similar” mo-
tions. Instead of making such a definition, we introduce a method
to characterize the types of inputs that work well with our approach.
We start with a given set of training data that we know works well.
This data can either be selected manually (ie. we tested them on
our approach) or can come from the results of this method. As an
example, we started with eight walk cycles that we have already
selected. We split these eight into groups of six and two. We
learn a DBN with the group of six and compute likelihoods with
the learned DBN for each of the other two. We use the likelihoods
that are described in Section 5. We repeat this process for different
combinations of six and two. The idea is to get a number of likeli-
hoods that we can use to characterize the training data. With this set
of likelihoods, we can set a threshold for deciding the likelihoods
that we should accept in a new set of testing data. We set the thresh-
old to be the tenth percentile of all the likelihoods. We can now take
a new testing set of motion clips. We used a new test set of eight
walk cycles in our example. We again separate this set into differ-
ent groups of six and two, so that we can compute a likelihood for
each motion clip. We then eliminate the motion clip with the lowest
likelihood if it is lower than the threshold. We now have seven mo-
tion clips and we repeat the process to compute likelihoods for each
of the seven clips. We stop this process until the lowest likelihood
is above the threshold. In our example, this process stops with five
walk cycles.

10 Discussion

We have presented a method for modeling and synthesizing varia-
tion in motion data. We use a Dynamic Bayesian Network to model
the input data. This allows us to build a multivariate probability
distribution of the data, which we sample from to generate new
motion. Given input data of a type of motion, our model can be
used to generate new spatial and temporal variants of that motion.
We show that our approach works with five types of full-body hu-
man motion, and two types of 2D handwritten characters. We per-

form a user study to evaluate our approach. For applications such
as crowd animation, our method has the advantage of being able
to take small, pre-defined example cycles of motion, and generate
many variations of these cycles. We believe that adding noise to
existing motion requires a manual trial-and-error process; the sig-
nificance of this paper is to provide a formal way to autonomously
model and synthesize variation with a small amount of data.

It is informative to highlight the differences between our method
and interpolation methods [Rose et al. 1998; Wiley and Hahn 1997].
Interpolation methods generate new motions that are “in between”
the original examples. Our method models a probability distribu-
tion of the original examples. Our method produces motions that
have different poses and timings than the input motions. This is
difficult to generate with interpolation methods. Finally, interpola-
tion methods require at least two example motions. Given a learned
structure, our model can synthesize new variants from just one ex-
ample motion.

There exist alternative approaches for adding noise to motion data
to create variation. We experimented with an approach that rep-
resents motions with their time-warped representations and then
performs PCA on them. We found that adding noise to the PCA-
reduced motion does not necessarily produce natural motion. While
the overall motion may be partially synchronized (ie. the left and
right arm swings in a walk cycle) due to the PCA reduction, we
still require much manual tuning to successfully add noise. An-
other approach is to take a convex combination of a small number
of motions and add noise to it. However, this is similar to the idea
of interpolation described above, which we view to be different
from our approach. In addition, we believe that adding noise re-
quires a manual trial-and-error process, whereas our approach can
autonomously generate a large number of outputs.

The learning and synthesis processes can, in theory, go into regions
where there is no data to support the regression. In practice, we
have not found this to be an issue. This might be due to the non-
parametric regression which is quite robust. On the other hand, this
was an issue when we initially attempted to use parametric regres-
sion methods. The learning and synthesis processes also need to
find the approximate phase of the overall motion in order to perform
the regression. It is possible for some of the k£ nearest neighbors to
not be within the correct phase of the overall motion. However,
this effect is minimized due to the other nearest neighbors and the
non-parametric method as a whole.

One interesting area for future work is to provide a method for the
user to control the variation that is generated. One possible chal-
lenge is to develop an intuitive way to control the “amount” of
variation. It is difficult to define what is “more” variation as this
depends on the input data. If the motion is jumping and we have
input data that has large variations in the swinging of the arms,
then the synthesized motions will also have large variations in the



arm swing. If the input data has more variation in the head move-
ment, the synthesized motions will have more variation in the head.
Hence one way to “control” the output motion is simply by taking
different input data to begin with. Another challenge is to enable
the user to generate “more” variation in a motion while automat-
ically constraining the output to lie within the “natural” range of
movement.

Another possibility for future work is to further explore the dif-
ference between “Cycle Animation” and “Our Variants” (from Ex-
periment B of the user study). The cycle animations are usually
relatively easy to identify. However, our variants are more difficult
to identify, and can often be mistaken as cycle animations. Even
though our variants can be very different numerically, they may
only be slightly different visually. Thus, there is still room for im-
provement.

Another direction of future work is to use the idea of variation to
compress motion data. If we can say that a set of motion clips
are variations of each other, it may be possible to discard some of
these motions. This is beause we can potentially re-synthesize a
discarded motion from the remaining motions, since the discarded
one is a variation of the remaining ones.
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