School of Computer Science
Carnegie Mellon

10-601B Introduction to Machine Learning

Deep Learning
(Part 1)

Readings: Matt Gormley
Nielsen (online book) Lecture 16
October 24, 2016

Reminders

* Midsemester grades released today

Outline

* Deep Neural Networks (DNNs)
— Three ideas for training a DNN
— Experiments: MNIST digit classification Part |
— Autoencoders
— Pretraining
 Convolutional Neural Networks (CNNs)
— Convolutional layers
— Pooling layers
— Image recognition
* Recurrent Neural Networks (RNNs)
— Bidirectional RNNs
— Deep Bidirectional RNNs
— Deep Bidirectional LSTMs
— Connection to forward-backward algorithm

Part Il

PRE-TRAINING FOR DEEP NETS

= VE(fo(xi),Y;)

Training ldea #1: No pre-training

Idea #1: (Just like a shallow network)
® Compute the supervised gradient by backpropagation.
® Take small steps in the direction of the gradient (SGD)

Training Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5
v 2.0
o
=
Ll
X

1.5

1.0

Shallow Net Idea #1 ldea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training)

Training Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5

. 2.0
o
| :I I
Ll
R
1.5 -
1.0 I I | |
Shallow Net Idea #1 Idea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training) 8

Training ldea #1: No pre-training

Idea #1: (Just like a shallow network)
® Compute the supervised gradient by backpropagation.
® Take small steps in the direction of the gradient (SGD)

* What goes wrong?

A. Gets stuckin local optima
* Nonconvex objective
* Usually start at a random (bad) point in parameter space

B. Gradientis progressively getting more dilute
* “Vanishing gradients”

Problem A:

Trainin ,
5 Nonconvexity

* Where does the nonconvexity come from?

* Even asimple quadratic z = xy objective is
nonconvex:

10

Problem A:

Trainin ,
5 Nonconvexity

* Where does the nonconvexity come from?

* Even asimple quadratic z = xy objective is
nonconvex:

Stochastic Gradient

Stochastic Gradient

Stochastic Gradient

Stochastic Gradient
..........

of the nearest hill...

onconvexi

Problem A:
Nonconvexity

Training

Stochastic Gradient
Descent...

... climbs to the top
of the nearest hill...

...which might not ¥~
lead to the top of
the mountain

Problem B:

raining Vanishing Gradients
The gradient for an edge * '
at the base of the T
network depends on the "™ W =0 & U=
gradients of many edges B%
above it im0 (o) - (o
2 »
LN
The chain rule multiplies vwewe o) Ca) - (s
many of these partial | ’
derivatives together & e o

Problem B:

Trainin
e Vanishing Gradients

The gradient for an edge > K
at the base of the —
network depends on the ™=« & & — &=

gradients of many edges
b1 bz cee bE
The chain rule multiplies vwewe o) (&) - (s

above it dden ayr
many of these partial %

derivatives together o (B N x

)

Problem B:

fraining Vanishing Gradients
The gradient for an edge > o1 5

at the base of the — «,
network depends on the "=+ W& & & &=
gradients of many edges 0.3

above it e Lyer

W N
lzm‘l 0.2_=7
The chain rule multiplies vwewe o) (&) - (s

many of these partial M7

derivatives together & . D -

Training ldea #1: No pre-training

Idea #1: (Just like a shallow network)
® Compute the supervised gradient by backpropagation.
® Take small steps in the direction of the gradient (SGD)

* What goes wrong?

A. Gets stuckin local optima
* Nonconvex objective
* Usually start at a random (bad) point in parameter space

B. Gradientis progressively getting more dilute
* “Vanishing gradients”

20

ldea #2: Supervised

Trainin
ning Pre-training

Idea #2: (Two Steps)
® Train each level of the model in a greedy way
® Then use our original idea

1. Supervised Pre-training
— Use labeled data

— Work bottom-up
Train hidden layer 1. Then fix its parameters.
Train hidden layer 2. Then fix its parameters.

Train hidden layer n. Then fix its parameters.
2. Supervised Fine-tuning
— Use labeled data to train following “Idea #1”

— Refine the features by backpropagation so that they become
tuned to the end-task

S—— ldea #2: Supervised
: Pre-training

Idea #2: (Two Steps)
® Train each level of the model in a greedy way

® Then use our original idea

Output

22

Training

Output

Hidden Layer 2

Hidden Layer 1

ldea #2: Supervised
Pre-training

ldea #2: Supervised

Traini
raining Pre-training

ldea #2: Supervised

T ini ° °
anne Pre-training

Output y
/,\
Hidden Layer 3 Cy Cy Cg
==
Hidden Layer 2 by b, be
==
Hidden Layer 1 a, ay &p

Training Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5

. 2.0
o
| :I I
Ll
R
1.5 -
1.0 I I | |
Shallow Net Idea #1 Idea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training)

Training Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5

. 2.0
o
| :I I
Ll
R
1.5 -
1.0 I I | |
Shallow Net Idea #1 Idea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training)

ldea #3: Unsupervised

Trainin
ning Pre-training

Idea #3: (Two Steps)
® Use our original idea, but pick a better starting point
® Train each level of the model in a greedy way

1. Unsupervised Pre-training
— Use unlabeled data

— Work bottom-up
Train hidden layer 1. Then fix its parameters.
Train hidden layer 2. Then fix its parameters.

Train hidden layer n. Then fix its parameters.
2. Supervised Fine-tuning
— Use labeled data to train following “Idea #1”

— Refine the features by backpropagation so that they become
tuned to the end-task

28

The solution:
Unsupervised pre-training

Unsupervised pre-
training of the first layer:

* What should it predict?

e What else do we
observe?

Output y

* The input! /,\

The solution:
Unsupervised pre-training

Unsupervised pre-
training of the first layer:

* What should it predict?

e What else do we
observe?

* The input! W

Hidden Layer a & ap

This topology defines an m
Auto-encoder.

Auto-Encoders

Key idea: Encourage z to give small reconstruction error:
— X’ is the reconstruction of x
— Loss = || x - DECODER(ENCODER(X)) ||?

— Train with the same backpropagation algorithm for 2-layer
Neural Networks with x_ as both input and output.

ampotr [% % % v

DECODER: x’=h(W’z) W
wor @ O - @

ENCODER: z = h(Wx) m

Slide adapted from Raman Arora

The solution:
Unsupervised pre-training

Unsupervised pre-
training
* Work bottom-up

— Train hidden layer 1.
Then fix its parameters. : : : :
“Input” X4 X Xg Xu

— Train hidden layer 2.
Then fix its parameters. W

— coe Hidden Layer a & 8

— Train hidden layer n. m
Then fix its parameters.

Input Xy X X3 Xu

The solution:
Unsupervised pre-training

Unsupervised pre-

training
* Work bottom-up v) (=) - (&
— Train hidden layer 1. @%
Then fix its parameters.HiddenLayer . B . &
— Train hidden layer 2.
Then fix its parameters. B%
— eee Hidden Layer a a, ap

— Train hidden layer n.

Then fix its parameters.
Input X4 X Xg X

The solution:
Unsupervised pre-training

. b1’ bz, bF,
Unsupervised pre-
training B%
* Work bottom-up igenier (&) (e - (e
— Train hidden layer 1. @%
Then fix its parameters. \ 5 . &
— Train hidden layer 2. y '
Then fix its parameters.
— Hidden Layer -0 a ap

— Train hidden layer n.

Then fix its parameters.
Input X4 X Xg X

The solution:
Unsupervised pre-training

Unsupervised pre- y
training /f\
* Work bottom-up N B - &
— Train hidden layer 1.
Then fix its parameters.
— Train hidden layer 2. weniover (g) -~ (&
Then fix its parameters. B%
— Train hidden layer n. tdenoyer (e ® v &
Then fix its parameters. m
Supervised fine-tuning
Backprop and update all = 5 2 - @

parameters

Deep Network Training

Idea #1:

1l

Supervised fine-tuning only

Idea #2:

1l

Supervised layer-wise pre-training

2. Supervised fine-tuning

Idea #3:

1. Unsupervised layer-wise pre-training
2. Supervised fine-tuning

36

Training Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5

. 2.0
o
| :I I
Ll
R
1.5 -
1.0 I I | |
Shallow Net Idea #1 Idea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training) 5,

Training Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5

. 2.0
o
| j I
Ll
R
1.5 -
1.0 i | : L
Shallow Net Idea #1 Idea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training) s

Is layer-wise pre-training

Training

always necessary?

In 2010, arecord on a hand-writing
recognition task was set by standard supervised
backpropagation (our Idea #1).

How? A very fast implementation on GPUs.

See Ciresen et al. (2010)

Deep Learning

* Goal: learn features at different levels of
abstraction

* Training can be tricky due to...
— Nonconvexity
— Vanishing gradients

* Unsupervised layer-wise pre-training can
help with both!

