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Optimization for ML

s

Linear Regression

Optimization Readings:
Lecture notes from 10-600 (see
Piazza note)

“ ” Boyd and
Vandenberghe (2009) [See Chapter
9. This advanced reading is entirely
optional.]

Linear Regression Readings:

Murphy 7.1-7.3 Matt Gormley
Bishop 3.1 Lecture 7
HTF 3.1-3.4

Mitchell 4.1-4.3 February 8, 2016



Reminders

* Homework 2: Naive Bayes
— Release: Wed, Feb. 1
— Due: Mon, Feb. 13 at 5:30pm
* Homework 3: Linear [ Logistic Regression

— Release: Mon, Feb. 13
— Due: Wed, Feb. 22 at 5:30pm



Optimization Outline

Optimization for ML
— Differences
— Types of optimization problems
— Unconstrained optimization
— Convex, concave, nonconvex
Optimization: Closed form solutions
— Example: 1-D function
— Example: higher dimensions
— Gradient and Hessian
Gradient Descent
— Example: 2D gradients
— Algorithm
— Details: starting point, stopping criterion, line search
Stochastic Gradient Descent (SGD)
— Expectations of gradients
— Algorithm
— Mini-batches
— Details: mini-batches, step size, stopping criterion
— Problematic cases for SGD
Convergence
— Comparison of Newton’s method, Gradient Descent, SGD
— Asymptotic convergence
— Convergence in practice



Optimization for ML

Not quite the same setting as other fields...

— Function we are optimizing might not be the
true goal
(e.g. likelihood vs generalization error)

— Precision might not matter
(e.g. data is noisy, so optimal up to 1e-16 might
not help)

— Stopping early can help generalization error
(i.e. “early stopping” is a technique for
regularization — discussed more next time)



Optimization for ML

Whiteboard

— Differences

— Types of optimization problems
— Unconstrained optimization

— Convex, concave, nonconvex



Convexity

Function f : R™ — R s convex
if V x4 ERM,XQ ERM,O <t<1:

flExn+ (1 —8)x2) < tf(x1) + (1 — 1) f(x2)
There is only one local optimum if the function is convex

Slide adapted from William Cohen



Optimization: Closed form solutions

Whiteboard

— Example: 1-D function
— Example: higher dimensions
— Gradient and Hessian
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These are the gradients that
Gradient Ascent would follow.
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Negative Gradients
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These are the negative gradients that

10

Gradient Descent would follow.
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Negative Gradient Paths
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Shown are the paths that Gradient Descent

would follow if it were making infinitesimally
small steps.
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Gradient Descent

Whiteboard
— Example: 2D gradients
— Algorithm
— Details: starting point, stopping criterion, line
search



Gradient ascent

To find argmin, f(x): B

* For t=1.... \\
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Slide courtesy of William Cohen



Likelihood: ascent

Loss: descent

Slide courtesy of William Cohen

Gradient descent

14



Pros and cons of gradient descent

Simple and often quite effective on ML tasks
Often very scalable
Only applies to smooth functions (differentiable)

Might find a local minimum, rather than a global
one

J(09,0,) .

Slide courtesy of William Cohen



Gradient Descent

Algorithm 1 Gradient Descent

procedure GD(D, %)

1:

2 0+ 0

3: while not converged do
4 00— \VoJ(0)

5 return 6

In order to apply GD to Linear
Regression all we need is the

gradient of the objective Ve J(0)
function (i.e. vector of partial
derivatives).




Gradient Descent

Algorithm 1 Gradient Descent

1. procedure GD(D, 6V)

2 0+ 09

3: while not converged do
4 00— \VoJ(0)

5 return 6

There are many possible ways to detect convergence.
For example, we could check whether the L2 norm of
the gradient is below some small tolerance.

Ve J(0)]]2 < ¢

Alternatively we could check that the reduction in the
objective function from one iteration to the next is small.



Stochastic Gradient Descent (SGD)

Whiteboard
— Expectations of gradients
— Algorithm
— Mini-batches
— Details: mini-batches, step size, stopping
criterion
— Problematic cases for SGD



Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

1: procedure SGD(D, 9(0)) 2y
2 0+ 00 ;
3: while not converged do i
4: for i € shuffle({1,2,...,N}) do 4|
5 0« 0 —\VeJ(0) \
6 return 6 |

We need a per-example objective:

Let J(0) = Zi\;l J(0)




Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

1: procedure SGD(D, 9(0)) 5

2 0+« 0O .
2 while not converged do AN NN i
4: for i € shuffle({1,2,...,N}) do o N\

5. for k € {1,2,..., K} do N0\
6 O < O — A5 J () IR N
7 return 0

We need a per-example objective:

Let J(0) = Zi\;l J(0)




Convergence

Whiteboard
— Comparison of Newton’s method, Gradient
Descent, SGD
— Asymptotic convergence
— Convergence in practice



Linear Regression Outline

Regression Problems
— Definition
— Linear functions
— Residuals
— Notation trick: fold in the intercept
Linear Regression as Function Approximation
— Objective function: Mean squared error
— Hypothesis space: Linear Functions
Optimization for Linear Regression

— Normal Equations (Closed-form solution)
* Computational complexity
* Stability
— SGD for Linear Regression
* Partial derivatives
* Update rule
— Gradient Descent for Linear Regression
Probabilistic Interpretation of Linear Regression
— Generative vs. Discriminative
— Conditional Likelihood
— Background: Gaussian Distribution
— Case #1: 1D Linear Regression
— Case #2: Multiple Linear Regression



Regression Problems

Whiteboard
— Definition
— Linear functions
— Residuals
— Notation trick: fold in the intercept



Linear Regression as Function

Approximation

Whiteboard

— Objective function: Mean squared error
— Hypothesis space: Linear Functions



Optimization for Linear Regression

Whiteboard
— Normal Equations (Closed-form solution)

* Computational complexity
* Stability
— SGD for Linear Regression

e Partial derivatives
* Updaterule

— Gradient Descent for Linear Regression



Probabilistic Interpretation of Linear

Regression
Whiteboard
— Generative vs. Discriminative
— Conditional Likelihood
— Background: Gaussian Distribution
— Case #1: 1D Linear Regression
— Case #2: Multiple Linear Regression



Convergence Curves

Log-log plot of training MSE versus epochs

10
: —Batchupdate |} . o the batch method,
: —Online update ] the training MSE is
- ____Minimum MSE by |; initially large due to
10°! normal equation || uninformed
: ' initialization

* Inthe online update,
N updates for every
epoch reduces MSE to
a much smaller value.

Mean Square Error on training data

10° 10
Epochs

© Eric Xing @ CMU, 2006-2011 27



