



#### 10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

# Gaussian Naïve Bayes

#### **Naïve Bayes Readings:**

"Generative and Discriminative Classifiers: Naive Bayes and Logistic Regression" (Mitchell, 2016)

Murphy 3
Bishop -HTF -Mitchell 6.1-6.10

Optimization Readings: (next lecture)

Lecture notes from 10-600 (see Piazza note)

"Convex Optimization" Boyd and Vandenberghe (2009) [See Chapter 9. This advanced reading is entirely optional.]

Matt Gormley Lecture 6 February 6, 2016

#### Reminders

- Homework 2: Naive Bayes
  - Release: Wed, Feb. 1
  - Due: Mon, Feb. 13 at 5:30pm
- Homework 3: Linear / Logistic Regression
  - Release: Mon, Feb. 13
  - Due: Wed, Feb. 22 at 5:30pm

## Naïve Bayes Outline

- Probabilistic (Generative) View of Classification
  - Decision rule for probability model
- Real-world Dataset
  - Economist vs. Onion articles
  - Document → bag-of-words → binary feature vector
- Naive Bayes: Model
  - Generating synthetic "labeled documents"
  - Definition of model
  - Naive Bayes assumption
  - Counting # of parameters with / without NB assumption
- Naïve Bayes: Learning from Data
  - Data likelihood
  - MLE for Naive Bayes
  - MAP for Naive Bayes
- Visualizing Gaussian Naive Bayes

Last Lecture

This Lecture

### **Naive Bayes: Model**

#### Whiteboard

- Generating synthetic "labeled documents"
- Definition of model
- Naive Bayes assumption
- Counting # of parameters with / without NB assumption

# What's wrong with the Naïve Bayes Assumption?

#### The features might not be independent!!

- Example 1:
  - If a document contains the word "Donald", it's extremely likely to contain the word "Trump"
  - These are not independent!

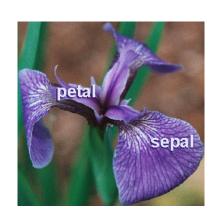
\* ELECTION 2016 \* MORE ELECTION COVERAGE

Trump Spends Entire Classified National
Security Briefing Asking About Egyptian
Mummies



NEWS IN BRIEF August 18, 2016 VOL 52 ISSUE 32 · Politics · Politicians · Election 2016 · Donald Trump

- Example 2:
  - If the petal width is very high,
     the petal length is also likely to
     be very high



# Naïve Bayes: Learning from Data

#### Whiteboard

- Data likelihood
- MLE for Naive Bayes
- MAP for Naive Bayes

#### **VISUALIZING NAÏVE BAYES**

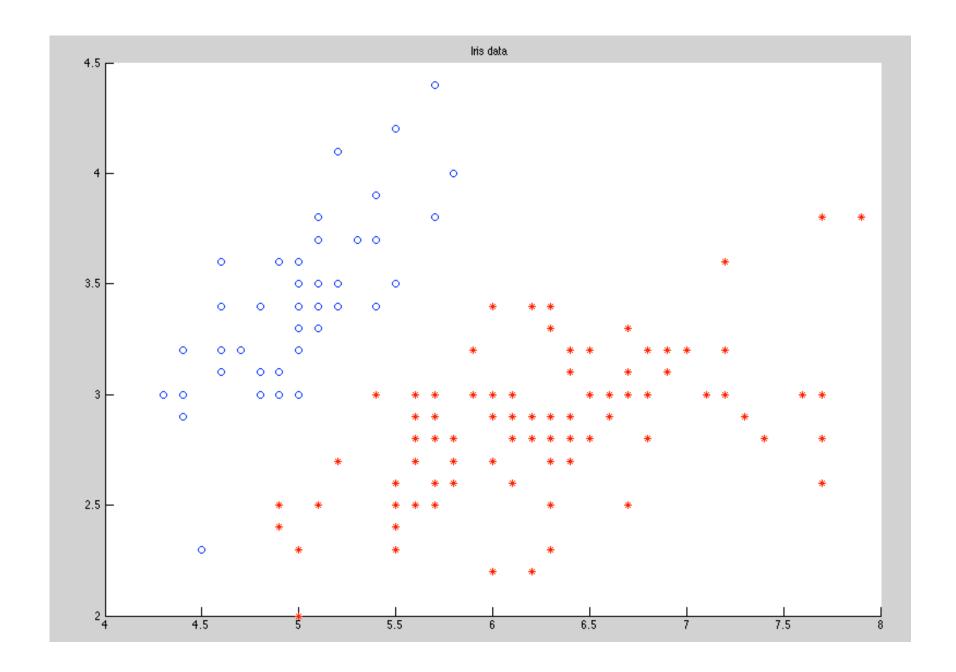




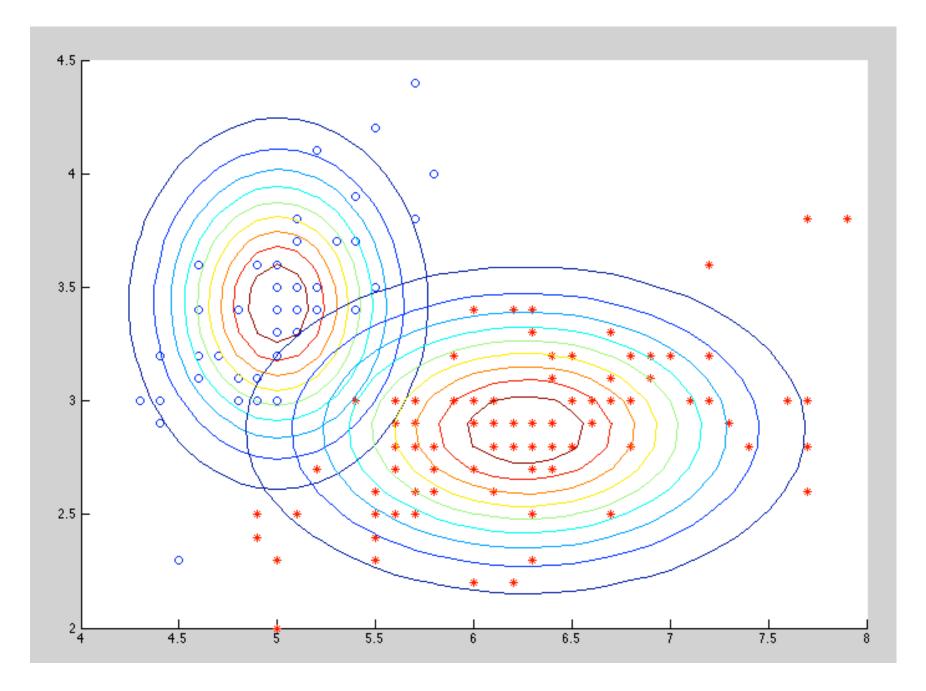
#### Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers from 3 different species: Iris setosa (0), Iris virginica (1), Iris versicolor (2) collected by Anderson (1936)

| Species | Sepal<br>Length | Sepal<br>Width | Petal<br>Length | Petal<br>Width |
|---------|-----------------|----------------|-----------------|----------------|
| 0       | 4.3             | 3.0            | 1.1             | 0.1            |
| 0       | 4.9             | 3.6            | 1.4             | 0.1            |
| 0       | 5.3             | 3.7            | 1.5             | 0.2            |
| 1       | 4.9             | 2.4            | 3.3             | 1.0            |
| 1       | 5.7             | 2.8            | 4.1             | 1.3            |
| 1       | 6.3             | 3.3            | 4.7             | 1.6            |
| 1       | 6.7             | 3.0            | 5.0             | 1.7            |



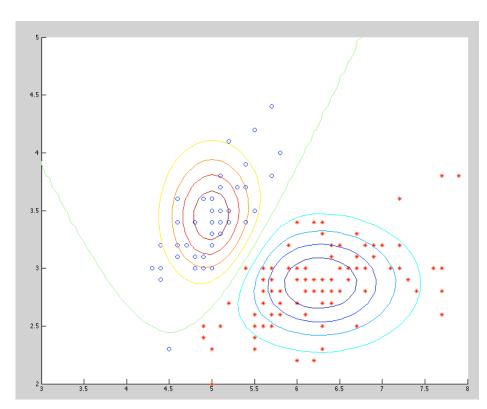
Slide from William Cohen

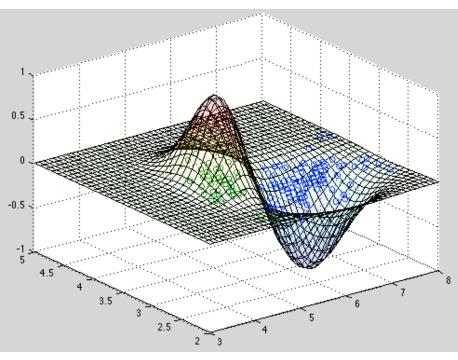


Slide from William Cohen

#### Plot the difference of the probabilities

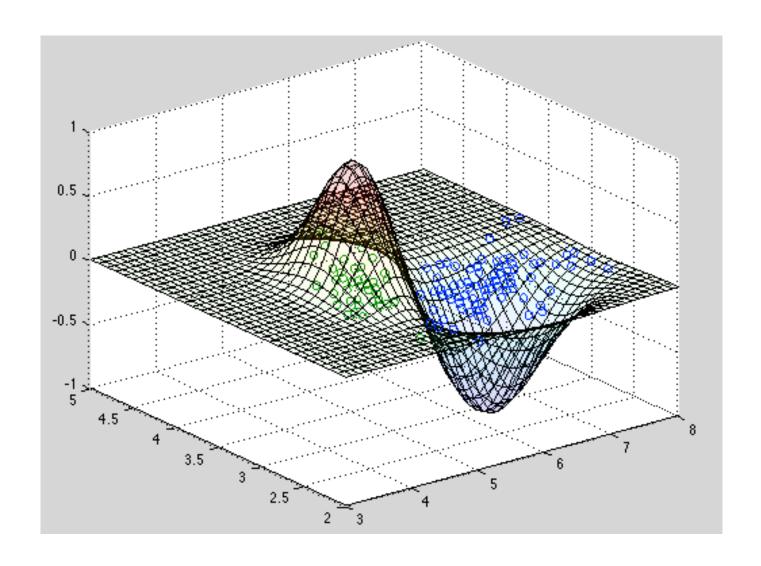
z-axis is the difference of the posterior probabilities: p(y=1 | x) - p(y=0 | x)



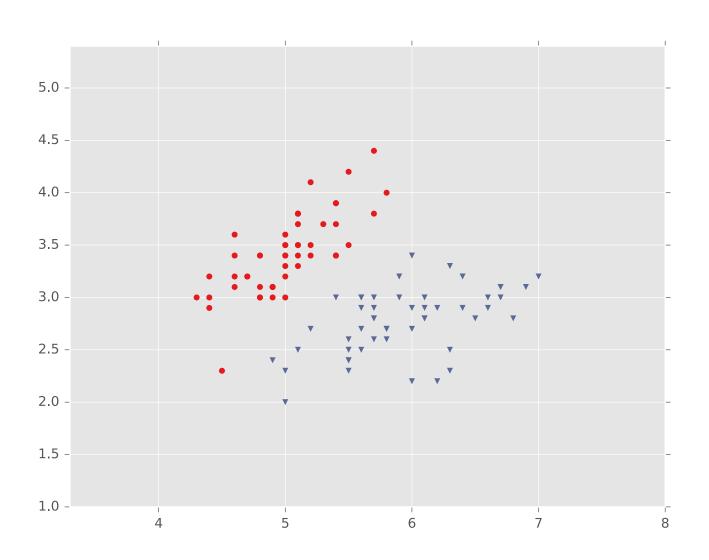


Slide from William Cohen

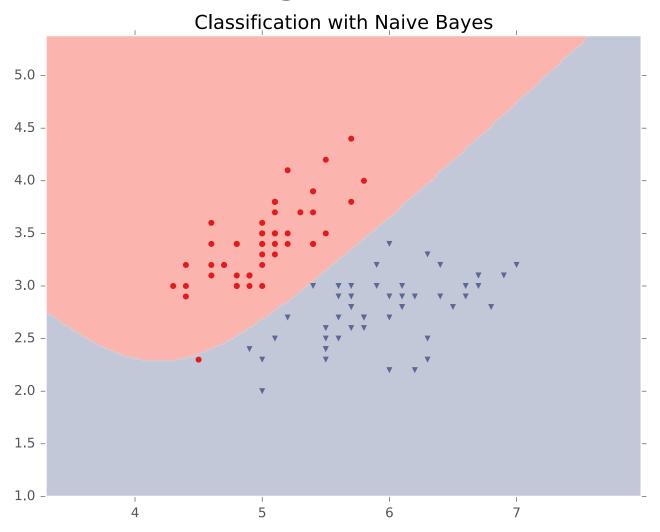
# Question: what does the *boundary* between positive and negative look like for Naïve Bayes?



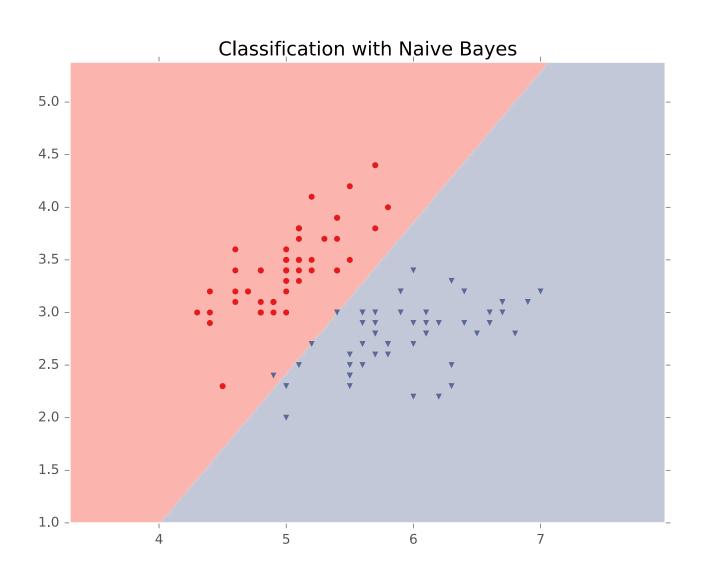
# Iris Data (2 classes)



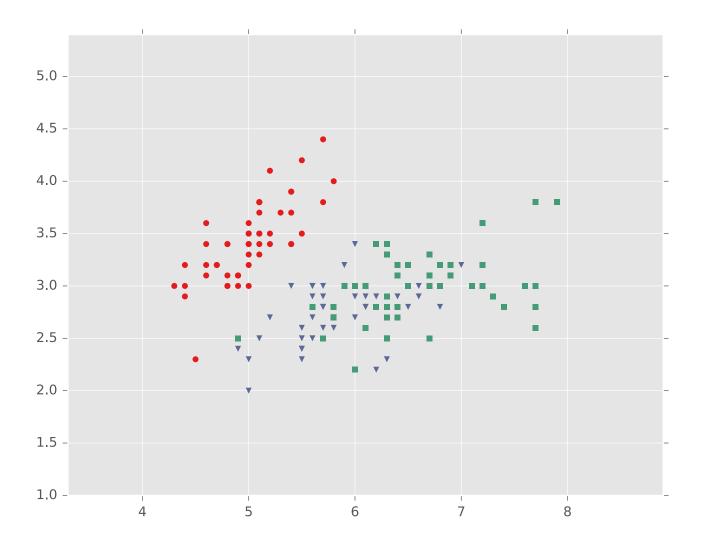
# Iris Data (sigma not shared)



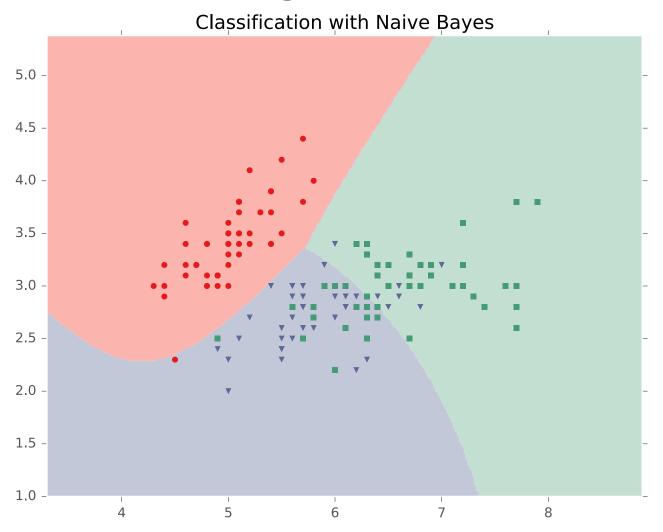
# Iris Data (sigma=1)



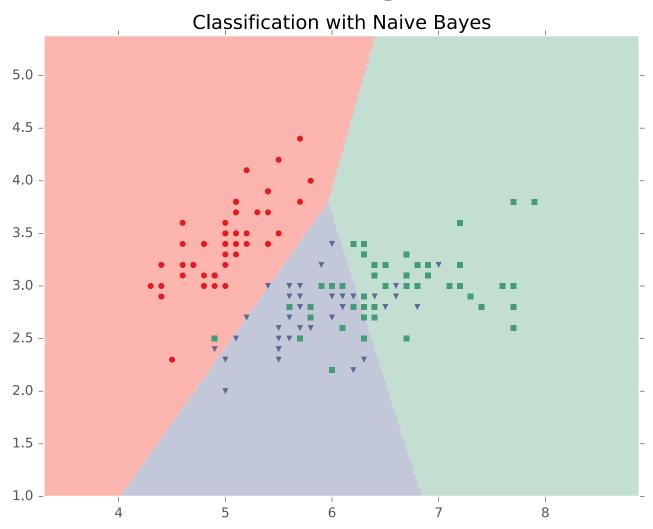
# Iris Data (3 classes)



# Iris Data (sigma not shared)



# Iris Data (sigma=1)



# Naïve Bayes has a **linear** decision boundary (if sigma is shared across classes)

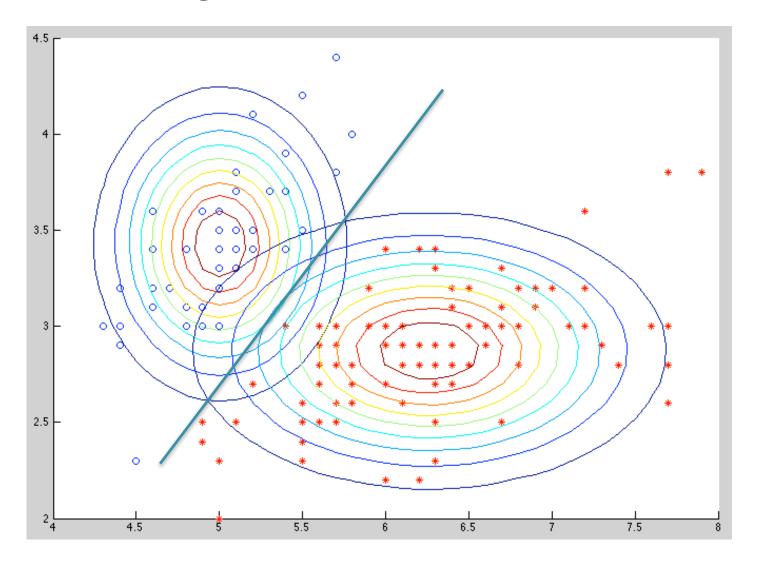
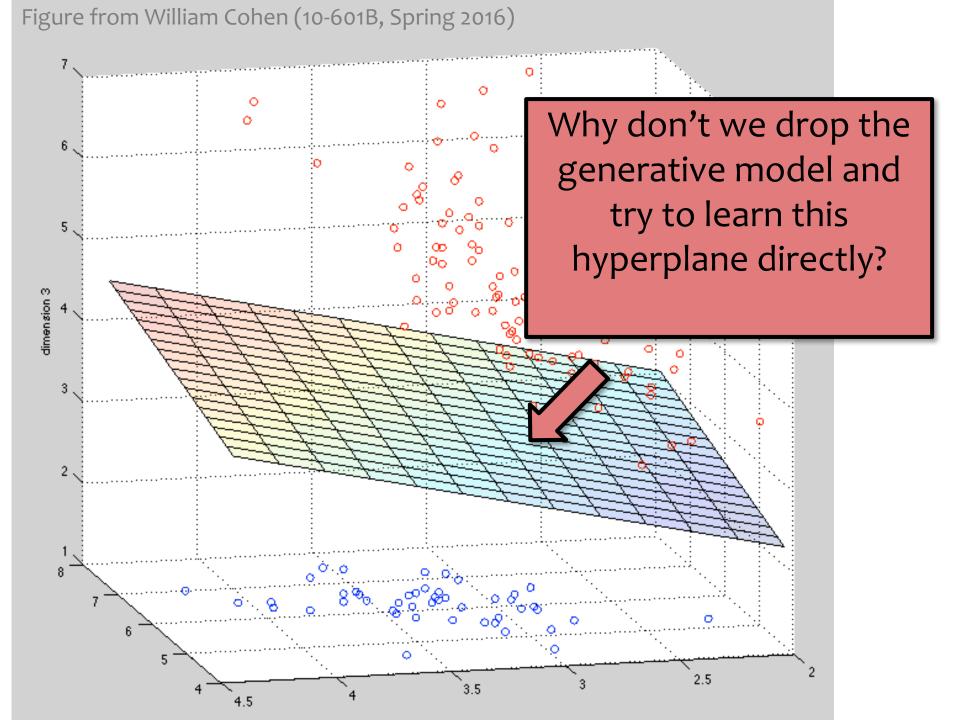


Figure from William Cohen (10-601B, Spring 2016) dimension 3 2.5



## Beyond the Scope of this Lecture

- Multinomial Naïve Bayes can be used for integer features
- Multi-class Naïve Bayes can be used if your classification problem has > 2 classes

### Summary

- Naïve Bayes provides a framework for generative modeling
- 2. Choose  $p(x_m | y)$  appropriate to the data (e.g. Bernoulli for binary features, Gaussian for continuous features)
- 3. Train by MLE or MAP
- 4. Classify by maximizing the posterior