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Reminders

* Website schedule updated

» Background Exercises (Homework 1)
— Released: Wed, Jan. 25

— Due: Wed, Feb. 1 at 5:30pm
(The deadline was extended!)

* Homework 2: Naive Bayes
— Released: Wed, Feb. 1
— Due: Mon, Feb. 13 at 5:30pm



Outline

Generating Data

— Natural (stochastic) data

— Synthetic data

— Why synthetic data?

— Examples: Multinomial, Bernoulli, Gaussian
Data Likelihood

— Independent and Identically Distributed (i.i.d.)

— Example: Dice Rolls
Learning from Data (Frequentist)

— Principle of Maximum Likelihood Estimation (MLE)

— Optimization for MLE

— Examples: 1D and 2D optimization

— Example: MLE of Multinomial

— Aside: Method of Langrange Multipliers
Learning from Data (Bayesian)

— maximum a posteriori (MAP) estimation

— Optimization for MAP

— Example: MAP of Bernoulli—Beta



Generating Data

Whiteboard
— Natural (stochastic) data
— Synthetic data
— Why synthetic data?
— Examples: Multinomial, Bernoulli, Gaussian



In-Class Exercise

1. With your neighbor, write a function which
returns samples from a Categorical

— Assume access to the rand() function

— Function signature should be:

categorical_sample(phi)
where phi is the array of parameters

— Make your implementation as efficient as
possible!

2. What is the expected runtime of your
function?



Data Likelihood

Whiteboard

— Independent and Identically Distributed (i.i.d.)
— Example: Dice Rolls



Learning from Data (Frequentist)

Whiteboard

— Principle of Maximum Likelihood Estimation
(MLE)

— Optimization for MLE

— Examples: 1D and 2D optimization

— Example: MLE of Multinomial

— Aside: Method of Langrange Multipliers



Learning from Data (Bayesian)

Whiteboard

— maximum a posteriori (MAP) estimation
— Optimization for MAP
— Example: MAP of Bernoulli—Beta



Takeaways

One view of what ML is trying to accomplish is
function approximation

The principle of maximum likelihood
estimation provides an alternate view of
learning

Synthetic data can help debug ML algorithms

Probability distributions can be used to model
real data that occurs in the world



The remaining slides are extra
slides for your reference.

Since they are background
material they were not
(explicitly) covered in class.



Outline of Extra Slides

* Probability Theory

— Sample space, Outcomes, Events

— Kolmogorov’s Axioms of Probability
* Random Variables

— Random variables, Probability mass function (pmf), Probability
density function (pdf), Cumulative distribution function (cdf)

— Examples
— Notation
— Expectation and Variance
— Joint, conditional, marginal probabilities
— Independence
— Bayes’ Rule
 Common Probability Distributions
— Beta, Dirichlet, etc.



PROBABILITY THEORY
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Probability Theory: Definitions
Example 1: Flipping a coin
Sample Space 0 {Heads, Tails}
Outcome w € () Example: Heads
Event ECQ Example: {Heads}

Probabilit P{Heads}) = 0.5
ORI P(E) ey - o5




Probability Theory: Definitions

Probability provides a science for inference
about interesting events

Sample Space 0 The set of all possible outcomes
Outcome w € N Possible result of an experiment
Event ECQ Any subset of the sample space

Probability P(E) The non-negative number assigned
to each event in the sample space

* Each outcome is unique

* Only one outcome can occur per experiment

* Anoutcome can be in multiple events

* An elementary event consists of exactly one outcome
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Probability Theory: Definitions
Example 2: Rolling a 6-sided die

Sample Space () {1,2,3,4,5,6}
Outcome w € N Example: 3

Event  C () Example: {3}
- (the event “the die came up 3”)

Probability (1) igs}}j - 1];2
) —
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Probability Theory: Definitions
Example 2: Rolling a 6-sided die

Sample Space () {1,2,3,4,5,6}
Outcome w € N Example: 3

Event I C () Example: §2,4,6}
— (the event “the roll was even’”)
Probability P(E) P{2,4,6}) = 0.5
P{1,3,5}) = 0.5
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Probability Theory: Definitions

Example 3: Timing how long it takes a monkey to
reproduce Shakespeare

Sample Space 0 [0, +o0)

Outcome w € N Example: 1,433,600 hours
Event ECQ Example: [1, 6] hours
Probability P([1,6]) = 0.000000000001

P(E) P([1,433,600, +)) = 0.99
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Kolmogorov’s Axioms




Kolmogorov’s Axioms

In words:
1. Each event has non-negative probability.
2. The probability that some event will occur is one.

3. The probability of the union of many disjoint sets is
the sum of their probabilities
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Probability Theory: Definitions

* The complement of an event £, denoted ~E,
is the event that £ does not occur.

)




RANDOM VARIABLES



Random Variables: Definitions

Random X Def 1: Variable whose possible values
Variable are the outcomes of a random

(capital | experiment

letters)
Value of a 1 | The value taken by a random variable
Random (lowercase

Variable

letters)




Random Variables: Definitions

Random X Def 1: Variable whose possible values

Variable are the outcomes of a random
experiment

Discrete Random variable whose values come

Random X from a countable set (e.g. the natural

Variable numbers or {True, False})

Continuous X Random variable whose values come

Random from an interval or collection of

Variable intervals (e.g. the real numbers or the

range (3, 5))




Random Variables: Definitions

Random X Def 1: Variable whose possible values
Variable are the outcomes of a random
experiment
Def 2: A measureable function from
the sample space to the real numbers:
X :QQ—> F
Discrete X Random variable whose values come
Random from a countable set (e.g. the natural
Variable numbers or {True, False})
Continuous X Random variable whose values come
Random from an interval or collection of
Variable intervals (e.g. the real numbers or the

range (3, 5))




Random Variables: Definitions

Discrete Random variable whose values come
Random X from a countable set (e.g. the natural
Variable numbers or {True, False})

Probability p(.CE) Function giving the probability that
mass discrete r.v. X takes value x.

function

(pmf)

p(z) = P(X = x)




Random Variables: Definitions
Example 2: Rolling a 6-sided die

Sample Space
Outcome

Event

Probability

()
w € ()
E C ()

P(E)

£
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{1)2)3)475)6}

Example: 3

Example: {3}
(the event “the die came up 3”)

P{3}) = 1/6
P4} = 1/6



Random Variables: Definitions
Example 2: Rolling a 6-sided die

£
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Sample Space () {1,2,3,4,5,6}
Outcome w € N Example: 3
Event L C ( Example: {3}
— (the event “the die came up 3”)

Probability P(E) P{3}) = 1/6

P4} = 1/6
Discrete Ran- X Example: The value on the top face
dom Variable of the die.
Prob. Mass p(3)=1/6
Function p(gj) p(4) =1/6

(pmf)
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Random Variables: Definitions
Example 2: Rolling a 6-sided die

£
)(‘9%/@

Sample Space () {1,2,3,4,5,6}
Outcome w € N Example: 3
Event I C () Example: §2,4,6}
— (the event “the roll was even”)

Probability P(E) P{2,4,6}) = 0.5

P{1,3,59 = 0.5
Discrete Ran- X Example: 1if the die landed on an
dom Variable even number and o otherwise
Prob. Mass p(1) = 0.5
Function p(gj) p(o)=0.5

(pmf)
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Random Variables: Definitions

Discrete Random variable whose values come
Random X from a countable set (e.g. the natural
Variable numbers or {True, False})

Probability p(.CE) Function giving the probability that
mass discrete r.v. X takes value x.

function

(pmf)

p(z) = P(X = x)




Random Variables: Definitions

Continuous X Random variable whose values come
Random from an interval or collection of
Variable intervals (e.g. the real numbers or the
range (3, 5))
Probability f(:l?) Function the returns a nonnegative
density real indicating the relative likelihood
function that a continuous r.v. X takes value x
(pdf)

* For any continuous random variable: P(X =x) = 0

* Non-zero probabilities are only available to intervals:

P(aﬁXﬁb):/bf(x)de’




Exy
Random Variables: Definitions . %/

Example 3: Timing how long it takes a monkey to
reproduce Shakespeare

Sample Space 0 [0, +0)

Outcome w € Q Example: 1,433,600 hoursw
Event L C () Example: [1, 6] hours
Probability P([1,6]) = 0.000000000001
P(E) P([1,433,600, +)) = 0.99
Continuous D' Example: Represents time to
Random Var. reproduce (not an interval!)

Prob. Density f (x) Example: Gamma distribution
Function
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Exy
Random Variables: Definitions . %/

““Region”’-valued Random Variables
Sample Space Q {1,2,3,4,5}

Events X The sub-regions 1, 2, 3, 4, or 5 r‘ ‘
Discrete Ran- X Represents a random selection of a
dom Variable sub-region

Prob. Mass Fn. | P(X=x) Proportional to size of sub-region

o<
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Exy
Random Variables: Definitions . %/

““Region”’-valued Random Variables

Sample Space Q  Allpoints in the region: [N

Events X The sub-regions 1, 2, 3, 4, or 5 r‘ ‘

sents a random selection of a
ub-region

p| Recall that an event
dd isany subset of the
sample space.

So both definitions
of the sample space
here are valid.

P Proportional to size of sub-region
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Random Variables: Definitions %%
String-valued Random Variables

Sample Space Q All Korean sentences
(an infinitely large set)

Event X Translation of an English sentence
into Korean (i.e. elementary events)
Discrete Ran- X Represents a translation

dom Variable
Probability P(X=x) Given by a model

English: machine learning requires probability and statistics
P(x=7Ads22ENSAE ER )

Korean: P(X= il 2ld=2 =& SAE ER )
P(x= Ml fd2 =& 54 E 0l ERE LD



Random Variables: Definitions

Cumulative Function that returns the probability
distribution F(ZC) that a random variable X is less than or
function equal to x:

F(zx) = P(X < x)

* For discrete random variables:

F(x) = P(X < x) ZP ’):Zp(x’

r' <x r' <x

* For continuous random variables:

F(:I:):P(Xga:):/x f(x")dx'




Random Variables and Events

Question: Something seems wrong... Random | Def 2: A measureable
» We defined P(E) (the capital ‘P’)as | Variable | function from the
a functi.o.n. mapping events to sample space to the
PrelsREiiass real numbers:
* So why do we write P(X=x)?
* Agood guess: X=x is an event... X : () — R

Answer: P(X=x) is just shorthand! These sets are events!
Example 1:

P(X =z)=P{w e N: X(w) =2x})

P(X <7)

PHwe Q: X(w) <T})



Notational Shortcuts

A convenient shorthand:
P(A, B)
P(B)
= For all values of a and b:

P(A|B) =

P(A=a|lB=0) =




Notational Shortcuts
But then how do we tell P(E) apart from P(X) ?
‘ Event ‘@ ‘ RO, @
Instead of writing: P(A, B)
P(A|B) =
(A1B) = 5o
We should write: Ps (A, B)

... but only probability theory textbooks go to such lengths.



Expectation and Variance

The expected value of X'is E/X]. Also called the mean.

 Discrete random variables:

Suppose X can take any value in the set X'.

BIX] =Y ap()

reX




Expectation and Variance

The variance of Xis Var(X).
Var(X) = E[(X — E[X))?]

 Discrete random variables:

Var(X) = 3" (@ = p)p(a)

reX




MULTIPLE RANDOM VARIABLES



Joint Probability

e Key concept: two or more random variables may interact.
Thus, the probability of one taking on a certain value depends on
which value(s) the others are taking.

e We call this a joint ensemble and write
p(x,y) = prob(X =z and Y = y)

Z

TN

p(x.y.z)

Slide from Sam Roweis (MLSS, 2005)



Marginal Probabilities

e We can "sum out” part of a joint distribution to get the marginal
distribution of a subset of variables:

p(z) = plz,y)
Y

e This is like adding slices of the table together.

}V p(x.y)
e

y X

X

e Another equivalent definition: p(z) =), p(z|y)p(y).

Slide from Sam Roweis (MLSS, 2005)



Conditional Probability

e If we know that some event has occurred, it changes our belief
about the probability of other events.

e This is like taking a "slice” through the joint table.

p(zly) = plz,y)/p(y)

N

Z\

p(x.ylz)

Slide from Sam Roweis (MLSS, 2005)



Independence and
Conditional Independence

e Two variables are independent iff their joint factors:

p(z,y) = p(x)p(y)

p(x.y)

p(x)

p(y)

e Two variables are conditionally independent given a third one if for
all values of the conditioning variable, the resulting slice factors:

p(z,y|z) = p(z|z)plylz)  Vz

Slide from Sam Roweis (MLSS, 2005)



MLE AND MAP



MLE

What does maximizing likelihood accomplish?

* There is only a finite amount of probability
mass (i.e. sum-to-one constraint)

* MLE tries to allocate as much probability
mass as possible to the things we have
observed...

... at the expense of the things we have not
observed



MLE vs. MAP

Suppose we have data D = {z(V1N
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Background: MLE

Example: MLE of Exponential Distribution

pdf of Exponential(\): f(z) = Ae™

Suppose X; ~ Exponential(\) for1 <¢ < N.
Find MLE for data D = {z(V} ¥V,

First write down log-likelihood of sample.
Compute first derivative, set to zero, solve for .
Compute second derivative and check that it is
concave down at AME,



Background: MLE

Example: MLE of Exponential Distribution

e First write down log-likelihood of sample.

(x) = ) _log f(z'") (1)

N
= log(Aexp(=Az"))  (2)

i=1

N
Z log(A) + —Az® (3)
i=1

= Nlog(A) — A ) z® (4)



Background: MLE

Example: MLE of Exponential Distribution

e Compute first derivative, set to zero, solve for \.

() d Sl
% = —~Nlog(}) — A oz (1)
1=1
N
N :
:X—Zx@:o (2)
1=1
N
= AV (3)




Background: MLE

Example: MLE of Exponential Distribution

pdf of Exponential(\): f(z) = Ae™

Suppose X; ~ Exponential(\) for1 <¢ < N.
Find MLE for data D = {z(V} ¥V,

First write down log-likelihood of sample.
Compute first derivative, set to zero, solve for .
Compute second derivative and check that it is
concave down at AME,



MLE vs. MAP

Suppose we have data D = {z(V1N
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COMMON PROBABILITY
DISTRIBUTIONS



Common Probability Distributions

* For Discrete Random Variables:
— Bernoulli
— Binomial
— Multinomial
— Categorical
— Poisson

* For Continuous Random Variables:
— Exponential
— Gamma
— Beta
— Dirichlet
— Laplace
— Gaussian (1D)
— Multivariate Gaussian



Common Probability Distributions

Beta Distribution

probability density function:

F(Bla ) = 5

xa—l —ajﬁ_l
@p” 10

— a=0.1,6=0.9
— a=0.5,6=0.5
— a=1.0,6=1.0
— a=5.0,6=5.0
— a=10.0,8=5.0

f(dla, )




Common Probability Distributions

Dirichlet Distribution

f(dla, )

probability density function:

1

f(dlo, B) = 21— )

( ‘ 9 ) B(Oé,/B)
— a=0.1,6=0.9
— a=0.5,6=0.5
— a=1.0,8=1.0
— a=5.0,3=5.0
— a=10.0,6=5.0

— <\




Common Probability Distributions

Dirichlet Distribution

probability density function:

1

p(d]cr) =




