

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

The Probabilistic Approach to Learning from Data

Prob. Readings:

Lecture notes from 10-600 (See Piazza post for the pointers)

Murphy 2

Bishop 2

HTF --

Mitchell --

Matt Gormley Lecture 4 January 30, 2016

Reminders

- Website schedule updated
- Background Exercises (Homework 1)
 - Released: Wed, Jan. 25
 - Due: Wed, Feb. 1 at 5:30pm(The deadline was extended!)
- Homework 2: Naive Bayes
 - Released: Wed, Feb. 1
 - Due: Mon, Feb. 13 at 5:30pm

Outline

Generating Data

- Natural (stochastic) data
- Synthetic data
- Why synthetic data?
- Examples: Multinomial, Bernoulli, Gaussian

Data Likelihood

- Independent and Identically Distributed (i.i.d.)
- Example: Dice Rolls

Learning from Data (Frequentist)

- Principle of Maximum Likelihood Estimation (MLE)
- Optimization for MLE
- Examples: 1D and 2D optimization
- Example: MLE of Multinomial
- Aside: Method of Langrange Multipliers

• Learning from Data (Bayesian)

- maximum a posteriori (MAP) estimation
- Optimization for MAP
- Example: MAP of Bernoulli—Beta

Generating Data

- Natural (stochastic) data
- Synthetic data
- Why synthetic data?
- Examples: Multinomial, Bernoulli, Gaussian

In-Class Exercise

- 1. With your neighbor, write a function which returns samples from a Categorical
 - Assume access to the rand() function
 - Function signature should be: categorical_sample(phi) where phi is the array of parameters
 - Make your implementation as efficient as possible!
- 2. What is the **expected runtime** of your function?

Data Likelihood

- Independent and Identically Distributed (i.i.d.)
- Example: Dice Rolls

Learning from Data (Frequentist)

- Principle of Maximum Likelihood Estimation (MLE)
- Optimization for MLE
- Examples: 1D and 2D optimization
- Example: MLE of Multinomial
- Aside: Method of Langrange Multipliers

Learning from Data (Bayesian)

- maximum a posteriori (MAP) estimation
- Optimization for MAP
- Example: MAP of Bernoulli—Beta

Takeaways

- One view of what ML is trying to accomplish is function approximation
- The principle of maximum likelihood estimation provides an alternate view of learning
- Synthetic data can help debug ML algorithms
- Probability distributions can be used to model real data that occurs in the world (don't worry we'll make our distributions more interesting soon!)

The remaining slides are extra slides for your reference.

Since they are background material they were not (explicitly) covered in class.

Outline of Extra Slides

Probability Theory

- Sample space, Outcomes, Events
- Kolmogorov's Axioms of Probability

Random Variables

- Random variables, Probability mass function (pmf), Probability density function (pdf), Cumulative distribution function (cdf)
- Examples
- Notation
- Expectation and Variance
- Joint, conditional, marginal probabilities
- Independence
- Bayes' Rule

Common Probability Distributions

Beta, Dirichlet, etc.

PROBABILITY THEORY

Example 1: Flipping a coin

Sample Space	Ω	{Heads, Tails}
Outcome	$\omega\in\Omega$	Example: Heads
Event	$E \subseteq \Omega$	Example: {Heads}
Probability	P(E)	$P({\text{Heads}}) = 0.5$ $P({\text{Tails}}) = 0.5$

Probability provides a science for inference about interesting events

Sample Space	Ω	The set of all possible outcomes
Outcome	$\omega\in\Omega$	Possible result of an experiment
Event	$E \subseteq \Omega$	Any subset of the sample space
Probability	P(E)	The non-negative number assigned to each event in the sample space

- Each outcome is unique
- Only one outcome can occur per experiment
- An outcome can be in multiple events
- An elementary event consists of exactly one outcome

Sample Space	Ω	{1,2,3,4,5,6}
Outcome	$\omega\in\Omega$	Example: 3
Event	$E \subseteq \Omega$	Example: {3} (the event "the die came up 3")
Probability	P(E)	$P({3}) = 1/6$ $P({4}) = 1/6$

Sample Space	Ω	{1,2,3,4,5,6}
Outcome	$\omega\in\Omega$	Example: 3
Event	$E \subseteq \Omega$	Example: {2,4,6} (the event "the roll was even")
Probability	P(E)	$P({2,4,6}) = 0.5$ $P({1,3,5}) = 0.5$

Example

Probability Theory: Definitions

Example 3: Timing how long it takes a monkey to reproduce Shakespeare

Sample Space	Ω	[0, +∞)
Outcome	$\omega\in\Omega$	Example: 1,433,600 hours
Event	$E \subseteq \Omega$	Example: [1, 6] hours
Probability	P(E)	P([1,6]) = 0.000000000001 $P([1,433,600,+\infty)) = 0.99$

Kolmogorov's Axioms

- 1. $P(E) \geq 0$, for all events E
- 2. $P(\Omega) = 1$
- 3. If $E_1, E_2, ...$ are disjoint, then $P(E_1 \text{ or } E_2 \text{ or } ...) = P(E_1) + P(E_2) + ...$

Kolmogorov's Axioms

- 1. $P(E) \ge 0$, for all events E
- 2. $P(\Omega) = 1$
- 3. If E_1, E_2, \ldots are disjoint, then

$$P\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} P(E_i)$$

All of probability can be derived from just these!

In words:

- Each event has non-negative probability.
- 2. The probability that some event will occur is one.
- The probability of the union of many disjoint sets is the sum of their probabilities

The complement of an event E, denoted ~E,
 is the event that E does not occur.

RANDOM VARIABLES

Random Variable	X (capital letters)	Def 1: Variable whose possible values are the outcomes of a random experiment
Value of a Random Variable	${\mathcal X}$ (lowercase letters)	The value taken by a random variable

Random Variable	X	Def 1: Variable whose possible values are the outcomes of a random experiment
Discrete Random Variable	X	Random variable whose values come from a countable set (e.g. the natural numbers or {True, False})
Continuous Random Variable	X	Random variable whose values come from an interval or collection of intervals (e.g. the real numbers or the range (3, 5))

Random Variable	X	Def 1: Variable whose possible values are the outcomes of a random experiment $ \text{Def 2: A measureable function from the sample space to the real numbers: } $
Discrete Random Variable	X	Random variable whose values come from a countable set (e.g. the natural numbers or {True, False})
Continuous Random Variable	X	Random variable whose values come from an interval or collection of intervals (e.g. the real numbers or the range (3, 5))

Discrete Random Variable	X	Random variable whose values come from a countable set (e.g. the natural numbers or {True, False})
Probability mass function (pmf)	p(x)	Function giving the probability that discrete r.v. X takes value x. $p(x) := P(X = x)$

Sample Space	Ω	{1,2,3,4,5,6}
Outcome	$\omega\in\Omega$	Example: 3
Event	$E \subseteq \Omega$	Example: {3} (the event "the die came up 3")
Probability	P(E)	$P({3}) = 1/6$ $P({4}) = 1/6$

Example

Random Variables: Definitions

Sample Space	Ω	{1,2,3,4,5,6}
Outcome	$\omega\in\Omega$	Example: 3
Event	$E \subseteq \Omega$	Example: {3} (the event "the die came up 3")
Probability	P(E)	$P({3}) = 1/6$ $P({4}) = 1/6$
Discrete Ran- dom Variable	X	Example: The value on the top face of the die.
Prob. Mass Function (pmf)	p(x)	p(3) = 1/6 p(4) = 1/6

Example

Random Variables: Definitions

Sample Space	Ω	{1,2,3,4,5,6}
Outcome	$\omega\in\Omega$	Example: 3
Event	$E \subseteq \Omega$	Example: {2,4,6} (the event "the roll was even")
Probability	P(E)	$P({2,4,6}) = 0.5$ $P({1,3,5}) = 0.5$
Discrete Ran- dom Variable	X	Example: 1 if the die landed on an even number and o otherwise
Prob. Mass Function (pmf)	p(x)	p(1) = 0.5 p(0) = 0.5

Discrete Random Variable	X	Random variable whose values come from a countable set (e.g. the natural numbers or {True, False})
Probability mass function (pmf)	p(x)	Function giving the probability that discrete r.v. X takes value x. $p(x) := P(X = x)$

Continuous Random Variable	X	Random variable whose values come from an interval or collection of intervals (e.g. the real numbers or the range (3, 5))
Probability density function (pdf)	f(x)	Function the returns a nonnegative real indicating the relative likelihood that a continuous r.v. X takes value x

- For any continuous random variable: P(X = x) = 0
- Non-zero probabilities are only available to intervals:

$$P(a \le X \le b) = \int_a^b f(x)dx$$

Example

Random Variables: Definitions

Example 3: Timing how long it takes a monkey to reproduce Shakespeare

Sample Space	Ω	$[0, +\infty)$
Outcome	$\omega\in\Omega$	Example: 1,433,600 hours
Event	$E \subseteq \Omega$	Example: [1, 6] hours
Probability	P(E)	P([1,6]) = 0.000000000001 $P([1,433,600,+\infty)) = 0.99$
Continuous Random Var.	X	Example: Represents time to reproduce (not an interval!)
Prob. Density Function	f(x)	Example: Gamma distribution

"Region"-valued Random Variables

Sample Space	Ω	{1,2,3,4,5}
Events	X	The sub-regions 1, 2, 3, 4, or 5
Discrete Ran- dom Variable	X	Represents a random selection of a sub-region
Prob. Mass Fn.	P(X=x)	Proportional to size of sub-region

"Region"-valued Random Variables

Sample Space Ω		Ω	All points in the region:
Ev	ents	X	The sub-regions 1, 2, 3, 4, or 5
D d	is aby subset of the		Resents a random selection of a sub-region
Pi	So both det of the samp here are	finitions le space	Proportional to size of sub-region $X=4$
		X=2	X=3 $X=5$

String-valued Random Variables

Sample Space	Ω	All Korean sentences (an infinitely large set)
Event	X	Translation of an English sentence into Korean (i.e. elementary events)
Discrete Ran- dom Variable	X	Represents a translation
Probability	P(X=x)	Given by a model

English:	machine learning requires probability and statistics
	P(X=) 기계 학습은 확률과 통계를 필요 $)$
Korean:	P(X= 머신 러닝은 확률 통계를 필요 $)$
	P(X= 머신 러닝은 확률 통계를 이 필요합니 $$ 다
	···

Cumulative distribution **function**

F(x) Function that returns the probability that a random variable X is less than or equal to x:

$$F(x) = P(X \le x)$$

For discrete random variables:

$$F(x) = P(X \le x) = \sum_{x' < x} P(X = x') = \sum_{x' < x} p(x')$$

For continuous random variables:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x')dx'$$

Random Variables and Events

Question: Something seems wrong...

- We defined P(E) (the capital 'P') as a function mapping events to probabilities
- So why do we write P(X=x)?
- A good guess: X=x is an event...

Random Variable

Def 2: A measureable function from the sample space to the real numbers:

 $X:\Omega\to\mathbb{R}$

Answer: P(X=x) is just shorthand!

Example 1:

These sets are events!

$$P(X = x) \equiv P(\{\omega \in \Omega : X(\omega) = x\})$$

Example 2:

$$P(X \le 7) \equiv P(\{\omega \in \Omega : X(\omega) \le 7\})$$

Notational Shortcuts

A convenient shorthand:

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

 \Rightarrow For all values of a and b:

$$P(A = a|B = b) = \frac{P(A = a, B = b)}{P(B = b)}$$

Notational Shortcuts

But then how do we tell P(E) apart from P(X)?

Instead of writing:

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

We should write:

$$P_{A|B}(A|B) = \frac{P_{A,B}(A,B)}{P_B(B)}$$

... but only probability theory textbooks go to such lengths.

Expectation and Variance

The **expected value** of X is E[X]. Also called the mean.

Discrete random variables:

Suppose X can take any value in the set \mathcal{X} .

$$E[X] = \sum_{x \in \mathcal{X}} xp(x)$$

Continuous random variables:

$$E[X] = \int_{-\infty}^{+\infty} x f(x) dx$$

Expectation and Variance

The **variance** of X is Var(X).

$$Var(X) = E[(X - E[X])^2]$$

Discrete random variables:

$$Var(X) = \sum_{x \in \mathcal{X}} (x - \mu)^2 p(x)$$

Continuous random variables:

$$Var(X) = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx$$

Joint probability

Marginal probability

Conditional probability

MULTIPLE RANDOM VARIABLES

Joint Probability

- Key concept: two or more random variables may interact.
 Thus, the probability of one taking on a certain value depends on which value(s) the others are taking.
- We call this a joint ensemble and write

$$p(x,y) = \text{prob}(X = x \text{ and } Y = y)$$

Marginal Probabilities

 We can "sum out" part of a joint distribution to get the marginal distribution of a subset of variables:

$$p(x) = \sum_{y} p(x, y)$$

• This is like adding slices of the table together.

• Another equivalent definition: $p(x) = \sum_{y} p(x|y)p(y)$.

Conditional Probability

- If we know that some event has occurred, it changes our belief about the probability of other events.
- This is like taking a "slice" through the joint table.

$$p(x|y) = p(x,y)/p(y)$$

Independence and Conditional Independence

• Two variables are independent iff their joint factors:

• Two variables are conditionally independent given a third one if for all values of the conditioning variable, the resulting slice factors:

$$p(x, y|z) = p(x|z)p(y|z) \qquad \forall z$$

MLE AND MAP

MLE

What does maximizing likelihood accomplish?

- There is only a finite amount of probability mass (i.e. sum-to-one constraint)
- MLE tries to allocate as much probability mass as possible to the things we have observed...

... at the expense of the things we have not observed

MLE vs. MAP

Suppose we have data $\mathcal{D} = \{x^{(i)}\}_{i=1}^N$

$$\boldsymbol{\theta}^{\mathsf{MLE}} = \operatorname*{argmax}_{\boldsymbol{\theta}} \prod_{i=1}^{N} p(\mathbf{x}^{(i)} | \boldsymbol{\theta})$$

Maximum Likelihood Estimate (MLE)

Example: MLE of Exponential Distribution

- pdf of Exponential(λ): $f(x) = \lambda e^{-\lambda x}$
- Suppose $X_i \sim \text{Exponential}(\lambda)$ for $1 \leq i \leq N$.
- Find MLE for data $\mathcal{D} = \{x^{(i)}\}_{i=1}^N$
- First write down log-likelihood of sample.
- Compute first derivative, set to zero, solve for λ .
- Compute second derivative and check that it is concave down at λ^{MLE} .

Example: MLE of Exponential Distribution

First write down log-likelihood of sample.

$$\ell(\lambda) = \sum_{i=1}^{N} \log f(x^{(i)}) \tag{1}$$

$$= \sum_{i=1}^{N} \log(\lambda \exp(-\lambda x^{(i)}))$$
 (2)

$$= \sum_{i=1}^{N} \log(\lambda) + -\lambda x^{(i)} \tag{3}$$

$$= N \log(\lambda) - \lambda \sum_{i=1}^{N} x^{(i)}$$
 (4)

Example: MLE of Exponential Distribution

• Compute first derivative, set to zero, solve for λ .

$$\frac{d\ell(\lambda)}{d\lambda} = \frac{d}{d\lambda} N \log(\lambda) - \lambda \sum_{i=1}^{N} x^{(i)}$$
 (1)

$$= \frac{N}{\lambda} - \sum_{i=1}^{N} x^{(i)} = 0$$
 (2)

$$\Rightarrow \lambda^{\mathsf{MLE}} = \frac{N}{\sum_{i=1}^{N} x^{(i)}} \tag{3}$$

Example: MLE of Exponential Distribution

- pdf of Exponential(λ): $f(x) = \lambda e^{-\lambda x}$
- Suppose $X_i \sim \text{Exponential}(\lambda)$ for $1 \leq i \leq N$.
- Find MLE for data $\mathcal{D} = \{x^{(i)}\}_{i=1}^N$
- First write down log-likelihood of sample.
- Compute first derivative, set to zero, solve for λ .
- Compute second derivative and check that it is concave down at λ^{MLE} .

MLE vs. MAP

Suppose we have data $\mathcal{D} = \{x^{(i)}\}_{i=1}^N$

$$\boldsymbol{\theta}^{\text{MLE}} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \prod_{i=1}^{N} p(\mathbf{x}^{(i)}|\boldsymbol{\theta})^{\underset{\text{Estimate (MLE)}}{\operatorname{Maximum Likelihood}}} \boldsymbol{\theta}^{\text{MAP}} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \prod_{i=1}^{N} p(\mathbf{x}^{(i)}|\boldsymbol{\theta}) p(\boldsymbol{\theta})^{\underset{\text{Maximum a posteriori}}{\operatorname{(MAP) estimate}}} \boldsymbol{\theta}^{\underset{\text{Maximum a posteriori}}{\operatorname{(MAP) estimate}}} \boldsymbol{\theta}^{\underset{\text{Maximum between the posteriori}}{\operatorname{Maximum a posteriori}}} \boldsymbol{\theta}^{\underset{\text{Maximum between the posteriori}}{\operatorname{Maximum a posteriori}}} \boldsymbol{\theta}^{\underset{\text{Maximum between the posteriori}}{\operatorname{Maximum between the posteriori}}} \boldsymbol{\theta}^{\underset{\text{Maximum between the posteriori}}{\operatorname{Maximum a posteriori}}} \boldsymbol{\theta}^{\underset{\text{Maximum between the posteriori}}{\operatorname{Maximum between the posteriori}}} \boldsymbol{\theta}^{\underset{\text{Maximum between the posteriori}}{\operatorname{Maxi$$

COMMON PROBABILITY DISTRIBUTIONS

- For Discrete Random Variables:
 - Bernoulli
 - Binomial
 - Multinomial
 - Categorical
 - Poisson
- For Continuous Random Variables:
 - Exponential
 - Gamma
 - Beta
 - Dirichlet
 - Laplace
 - Gaussian (1D)
 - Multivariate Gaussian

Beta Distribution

probability density function:

$$f(\phi|\alpha,\beta) = \frac{1}{B(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1}$$

Dirichlet Distribution

probability density function:

$$f(\phi|\alpha,\beta) = \frac{1}{B(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1}$$

Dirichlet Distribution

probability density function:

$$p(\vec{\phi}|\alpha) = \frac{1}{B(\alpha)} \prod_{k=1}^{K} \phi_k^{\alpha_k - 1} \quad \text{where } B(\alpha) = \frac{\prod_{k=1}^{K} \Gamma(\alpha_k)}{\Gamma(\sum_{k=1}^{K} \alpha_k)}$$