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Reminders

* Homework 9: Applications of ML
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Outline

Statistical Learning Theory
— True Error vs. Train Error
— Function Approximation View (aka. PAC/SLT Model)
— Three Hypotheses of Interest
Probably Approximately Correct (PAC) Learning
— PAC Criterion
— PAC Learnable
— Consistent Learner
— Sample Complexity
Generalization and Overfitting
— Realizable vs. Agnostic Cases
— Finite vs. Infinite Hypothesis Spaces
— VC Dimension
— Sample Complexity Bounds
— Empirical Risk Minimization
— Structural Risk Minimization
Excess Risk



LEARNING THEORY



1.

Questions For Today

Given a classifier with zero training error, what
can we say about generalization error?
(Sample Complexity, Realizable Case)

Given a classifier with low training error, what
can we say about generalization error?
(Sample Complexity, Agnostic Case)

. Is there a theoretical justification for

regularization to avoid overfitting?
(Structural Risk Minimization)



Statistical Learning Theory

Whiteboard:

— Function Approximation View (aka. PAC/SLT
Model)

— True Error vs. Train Error
— Three Hypotheses of Interest



PAC/SLT models for Supervised Learning
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atio UVCtﬁ,)n
. Generate instances from unknown distribution p*
x() ~ p*(x), Vi (1)
. Oracle labels each instance with unknown function c*
y = *(x), Vi (2)

. Learning algorithm chooses hypothesis 1 € H with low(est)
training error, R(h)

h = argmin R(h) (3)
h

. Goal: Choose an h with low generalization error R(h)



Two Types of Error

True Error (aka. expected risk)
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where S = {x(), ..., x(™)}V s the training data set, and x ~
S denotes that x is sampled from the empirical distribution.



Three Hypotheses of Interest

The true function c* is the one we are trying to learn and that labeled
the training data:

yW = c*(xV), vi (1)
The expected risk minimizer has lowest true error:

h* = argmin R(h) (2)
heH

The empirical risk minimizer has lowest training error:

A

h = argmin R(h) (3)
heH



PAC LEARNING



Probably Approximately Correct

(PAC) Learning
Whiteboard:
— PAC Criterion
— Meaning of “Probably Approximately Correct”
— PAC Learnable
— Consistent Learner
— Sample Complexity



PAC Learning

The PAC criterion is that our learner produces a high accuracy
learner with high probability:

P(|R(h) — R(h)| <€) >1—-14 (1)

Suppose we have a learner that produces a hypothesis h € H
given a sample of N training examples. The algorithm is called con-
sistent if for every e and o, there exists a positive number of training
examples N such that for any distribution p*, we have that:

P(|R(h) — R(h)| > €) < 6 (2)

The sample complexity is the minimum value of N for which this
statement holds. If N is finite for some learning algorithm, then ‘H
is said to be learnable. If N is a polynomial function of < and 3 for
some learning algorithm, then H is said to be PAC learnable.



SAMPLE COMPLEXITY RESULTS



Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to1).

We'll start with the
Four Cases we care about... flnlte case...

Realizable ? Agnosti?

Finite |H |

Infinite |H|




Generalization and Overfitting

Whiteboard:
— Realizable vs. Agnostic Cases
— Finite vs. Infinite Hypothesis Spaces
— Sample Complexity Bounds (Finite Case)



Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to1).

Four Cases we care about...

Realizable Agnostic

N > 1[log(|H|)+log(3)] labeled ex-

« s amples are sufficient so that with prob-
Finite |H| ability (1 — 6) all b € # with R(h) > e
have R(h) > 0.

Infinite |H|




Example: Conjunctions

In-Class Quiz:
Suppose H = class of conjunctions over x in {0,1}¥
If M =10, € = 0.1, 0 = 0.01, how many examples suffice?

Realizable Agnostic

N > 1[log(|H|)+log(3)] labeled ex-

« s amples are sufficient so that with prob-
Finite |H]| ability (1 — 8) all h € H with R(h) > e
have R(h) > 0.

Infinite |H|




Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

to1).
Four Cases we care about...

Realizable

Agnostic

N > 1[log(|H|)+log(3)] labeled ex-

« s amples are sufficient so that with prob-
Finite |H| ability (1 — 6) all b € # with R(h) > e
have R(h) > 0.

N > 55 [log(|H]) +log(3)] la-
beled examples are sufficient so
that with probability (1 — §) for
all h € H we have that |R(h) —
R(h)| < e.

Infinite |H|




Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to1).

Four Cases we care about...

Realizable Agnostic

N > %[log(|H|)+log(3)] labeled ex-| N > 5 [log(|H|) + log(2)] la-
. . amples are sufficient so that with nrob. | _beled examples are siifficient so
Finite |H |

ability (1 — §) all h € H with] U ngeq,a new definition of — 9) for
A complexity” for a Hypothesis space
have R(h) > 0. for these results (see VC Dimension) |t [R(h) —

Infinite |H| y [f




VC DIMENSION



E.g., thresholds on the real line |

E.g., intervals on the real line




Shattering, VC-dimension
Definition:
H[S] - the set of splittings of dataset S using concepts from H.
H shatters S if |H[S]| = 29I,

A set of points S is shattered by H is there are hypotheses in H
that split S in all of the 25! possible ways: i.e., all possible ways of
classifying points in S are achievable using concepts in H.

Definition: VC-dimension (Vapnik-Chervonenkis dimension)

The VC-dimension of a hypothesis space H is the cardinality of
the largest set S that can be shattered by H.

If arbitrarily large finite sets can be shattered by H, then
VCdim(H) = oo



Shattering, VC-dimension

Definition: VC-dimension (Vapnik-Chervonenkis dimension)

The VC-dimension of a hypothesis space H is the cardinality of
the largest set S that can be shattered by H.

If arbitrarily large finite sets can be shattered by H, then
VCdim(H) = oo

To show that VC-dimension is d:
- there exists a set of d points that can be shattered
- there is no set of d+1 points that can be shattered.

Fact: If H is finite, then VCdim(H) < log(|H]).



Shattering, VC-dimension

If the VC-dimension is d, that means there exists a set of
d points that can be shattered, but there is no set of d+1
points that can be shattered.

E.g.. H= Thresholds on the real line - } T
w
VCdim(H) = 1 N _
On O

E.g.. H= Intervals on the real line

VCdim(H) = 2 O

O
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Shattering, VC-dimension

If the VC-dimension is d, that means there exists a set of
d points that can be shattered, but there is no set of d+1
points that can be shattered.

E.g., H= Union of k intervals on the real line VCdim(H) = 2k
—

: A sample of size 2k shatters
>
VCdim(H) = 2k (treat each pair of points as a
separate case of infervals)

VCdim(H) < 2k + 1

+
o
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+
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Shattering, VC-dimension

E.g., H= linear separators in R? \ /
VCdim(H) > 3 >(




Shattering, VC-dimension

E.g., H= linear separators in R?
VCdim(H) < 4

Case 1: one point inside the triangle formed by
the others. Cannot label inside point as positive

and outside points as negative.

Case 2: all points on the boundary (convex hull).
Cannot label two diagonally as positive and other @
two as negative.

Fact: VCdim of linear separators in RY is d+1



SAMPLE COMPLEXITY RESULTS



Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to1).

Four Cases we care about...

Realizable Agnostic

N > %[log(|H|)+log(3)] labeled ex-| N > 5 [log(|H|) + log(2)] la-
. . amples are sufficient so that with nrob. | _beled examples are siifficient so
Finite |H |

ability (1 — §) all h € H with] U ngeq,a new definition of — 9) for
A complexity” for a Hypothesis space
have R(h) > 0. for these results (see VC Dimension) |t [R(h) —

Infinite |H| y [f




Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

to1).

Four Cases we care about...

Finite |H |

Infinite |H|

Realizable

Agnostic

N > 1[log(|H|)+log(3)] labeled ex-
amples are sufficient so that with prob-
ability (1 — 6) all h € H with R(h) > €
have R(h) > 0.

N > 55 [log(|H]) +log(3)] la-
beled examples are sufficient so
that with probability (1 — §) for
all h € H we have that |R(h) —
R(h)| < e.

N = O(% [VC(H)log(L) +log(3)]) la-
beled examples are sufficient so that
with probability (1 — §) all A € H with
R(h) > e have R(h) > 0.

N = O(% [VC(H) +log(5)]) la-
beled examples are sufficient so
that with probability (1 — §) for
all h € H we have that |R(h) —
}?(h)| <ee.




Generalization and Overfitting

Whiteboard:
— Sample Complexity Bounds (Infinite Case)
— Empirical Risk Minimization
— Structural Risk Minimization



EXCESS RISK



Excess Risk

There are two common quantities to consider based on the:
empirical risk minimizer A = argmin, .,, R(h) and
expected risk minimizer h* = argmin,,_,, R(h).

1. We can bound the difference between the expected risk and

A A

empirical risk R(h) — R(h). Note that both of these quantities
are functions of the ERM hypothesis h.

A

2. The excessrisk R(h) — R(h*) is the difference in true error be-

A

tween the ERM hypothesis A and the expected risk minimizer
h*.

A

We aim to prove that P(R(h) — R(h*) <€) > (1 — ) or

A

equivalently that P(R(h) — R(h*) > €) < 0.



Excess Risk Results

A

Bounds on the excess risk R(h) — R(h™*):
e realizable case, finite |H|: O (logg\lfﬂl))

e agnostic case, finite |H|: O (\/mgg\l;ﬂ))

e infinite [74]: O <\/ V() ]i[oguv))




1.

Questions For Today

Given a classifier with zero training error, what
can we say about generalization error?
(Sample Complexity, Realizable Case)

Given a classifier with low training error, what
can we say about generalization error?
(Sample Complexity, Agnostic Case)

. Is there a theoretical justification for

regularization to avoid overfitting?
(Structural Risk Minimization)
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