Introduction to Machine Learning

Reinforcement Learning

Barnabás Póczos

Contents

Markov Decision Processes:

- State-Value function, Action-Value Function
- Bellman Equation
- Policy Evaluation, Policy Improvement, Optimal Policy

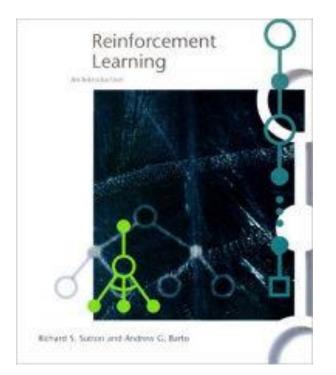
Dynamical programming:

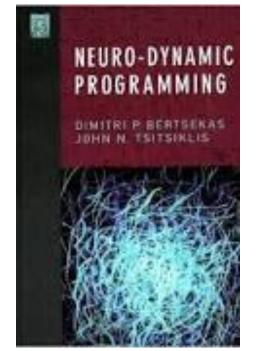
- Policy Iteration
- Value Iteration

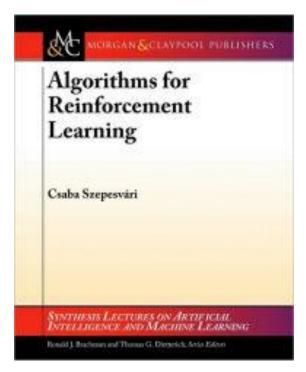
Modell Free methods:

- MC Tree search
- TD Learning

RL Books







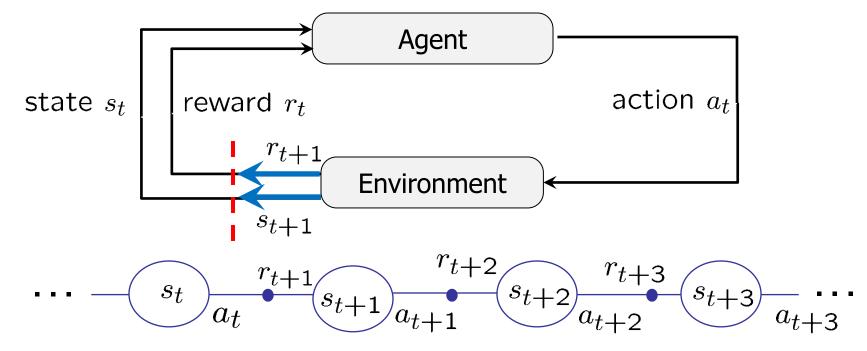
Introduction to Reinforcement Learning

Reinforcement Learning Applications

Finance

- Portfolio optimization
- Trading
- □ Inventory optimization
- Control
 - ✤ Elevator, Air conditioning, power grid, …
- Robotics
- Games
 - ✤ Go, Chess, Backgammon
 - Computer games
- Chatbots

Reinforcement Learning Framework



- * Agent and environment interact in discrete time steps: t = 0, 1, 2, ...
- * Agent observes state $s_t \in S$ in time step t.
- * Produces action $a_t \in \mathcal{A}(s_t)$ in time step t.
- \star Get resulting reward $r_{t+1} \in \mathbb{R}$
- \star and resulting next state $s_{t+1} \in \mathcal{S}$

Markov Decision Processes

RL Framework + Markov assumption

$\mathsf{MDP} = (\mathcal{S}, \mathcal{A}, P, R, s_0, \gamma).$

- $\ensuremath{\mathcal{S}}$: observable state space
- \mathcal{A} : action space
- P: state transition probabilities
- R: reward function
- s_0 : starting state
- γ : reward discont rate.

Markov assumption: $P(s_{t+1}|s_0, a_0, ..., s_t, a_t) = P(s_{t+1}|s_t, a_t)$

Reward assumption: $R(s_0, a_0, ..., s_t, a_t, s_{t+1}) = R(s_t, a_t, s_{t+1}) = r_{t+1} \in \mathbb{R}$

Policy:
$$\pi(s, a) = P(a_t | s_t) \in [0, 1]$$
, that is $a_t \sim \pi(s_t, \cdot)$
Goal : $\max_{\pi} \mathbb{E}[r_0 + r_1 + ...]$

Discount Rates

Goal:
$$\max_{\pi} \mathbb{E}[r_0 + r_1 + r_2 + ...]$$

An issue:

 $r_0 + r_1 + r_2 + \ldots$ can be infinte...

Solution:

New goal: $\max_{\pi} \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t r_t]$, for some $0 < \gamma < 1$ discount rate

RL is different from Supervised/Unsupervised learning

- * Functions to be learned: $\pi : S \to A$
- \star However, training examples are not in the form of (s, a) pairs!
- \star Training examples are in the form of $\{(s_t, a_t), r_t\}_{t=1}^T$

(or $\{(s_t, a_t, s_{t+1}), r_t\}_{t=1}^T$)

State-Value Function

For a given state s and policy π , the value of state s:

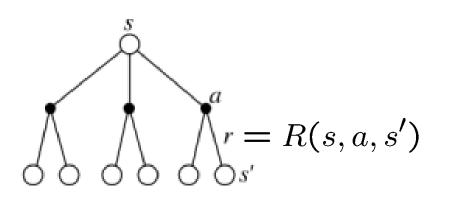
$$V^{\pi}(s) := \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \, | \, s_{t} = s \right]$$

This is the state-value function of policy π

Bellman Equation of V state-value function:

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \sum_{s' \in \mathcal{S}} P(s'|s, a) [R(s, a, s') + \gamma V^{\pi}(s')]$$

Backup Diagram:



Bellman Equation

Proof of Bellman Equation:

$$V^{\pi}(s) := \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} | s_{t} = s \right]$$

$$= \mathbb{E}_{\pi} \left[r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+2} | s_{t} = s \right]$$

$$= \sum_{a \in \mathcal{A}} \pi(a_{t} = a | s_{t} = s) \sum_{s' \in \mathcal{S}} P(s_{t+1} = s' | s_{t} = s, a_{t} = a)$$

$$\times \left(R(s, a, s') + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+2} | s_{t} = s, a_{t} = a, s_{t+1} = s' \right)$$

$$= \sum_{a \in \mathcal{A}} \pi(a | s) \sum_{s' \in \mathcal{S}} P(s' | s, a) [R(s, a, s') + \gamma V^{\pi}(s')]$$

$$\Rightarrow V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a | s) \sum_{s' \in \mathcal{S}} P(s' | s, a) [R(s, a) + \gamma V^{\pi}(s')]$$

Action-Value Function

Value of state s after taking action a.

$$Q^{\pi}(s,a) := \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \,|\, s_{t} = s, a_{t} = a \right]$$

Bellman Equation of the Q Action-Value function:

$$Q^{\pi}(s,a) = \sum_{s' \in \mathcal{S}} P(s'|s,a) \left[R(s,a,s') + \gamma \sum_{a' \in \mathcal{A}} \pi(a'|s') Q^{\pi}(s',a') \right]$$

Proof: similar to the proof of the Bellman Equation of V state-value function. **Backup Diagram:**

Relation between Q and V Functions

Q from V:

$$Q^{\pi}(s,a) = \sum_{s' \in \mathcal{S}} P(s'|s,a) \left[R(s,a,s') + \gamma V^{\pi}(s') \right]$$

V from Q:

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) Q^{\pi}(s,a)$$

The Optimal Value Function and Optimal Policy

Partial ordering between policies:

$$\pi_1 \ge \pi_2 \Leftrightarrow V^{\pi_1}(s) \ge V^{\pi_2}(s) \qquad \forall s \in \mathcal{S}$$

Some policies are not comparable!

Optimal policy and optimal state-value function:

$$V^*(s) := \max_{\pi} V^{\pi}(s) = V^{\pi^*}(s), \qquad \forall s \in \mathcal{S}$$

 π^* : policy whose value function is the maximum out of all policies simultaneously for all states

V*(s) shows the maximum expected discounted reward that one can achieve from state s with optimal play

The Optimal Action-Value Function

Similarly, the **optimal action-value function:**

$$Q^*(s,a) := \max_{\pi} Q^{\pi}(s,a)$$

Important Properties:

$$Q^*(s,a) = \mathbb{E}\left[r_{t+1} + \gamma V^*(s_{t+1}) \,|\, s_t = s, a_t = a\right]$$

$$V^*(s) = \max_{a \in \mathcal{A}} Q^*(s, a)$$
$$Q^*(s, a) = \sum_{s' \in \mathcal{S}} P(s'|s, a) \left[R(s, a, s') + \gamma V^*(s') \right]$$

Theorem: For any Markov Decision Processes

(*) there exists an optimal policy π^* that is at least as good as all other plicies:

$$\pi^* \ge \pi \quad \forall \pi$$

(*) There can be many optimal policies, but all optimal policies achieve the optimal value function:

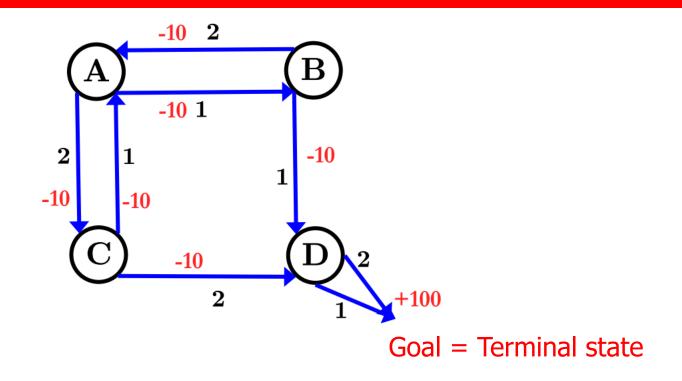
$$V^{\pi^*}(s) = V^*(s) \quad \forall s$$

(*) All optimal policies achieve the optimal action-value function,

$$Q^{\pi^*}(s,a) = Q^*(s,a) \quad \forall s,a$$

(*) There is always a deterministic optimal policy for any MDP

Example



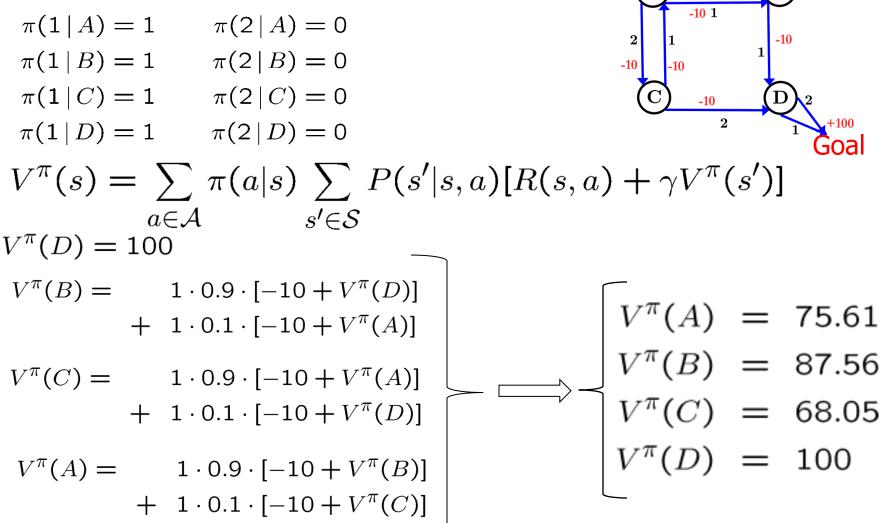
4 states

- 2 possible actions in each state. [E.g in A: 1) go to B or 2) go to C]
- \square P(s' | s, a) = (0.9, 0.1) with 10% we go to a wrong direction

Calculating the Value of Policy π

-10 2

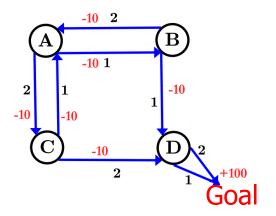
π_1 : always choosing Action 1



Calculating the Value of Policy π

$\pi_{\rm 2}$: always choosing Action 2

- $\pi(1|A) = 0$ $\pi(2|A) = 1$
- $\pi(1|B) = 0$ $\pi(2|B) = 1$
- $\pi(1 | C) = 0$ $\pi(2 | C) = 1$
- $\pi(1 | D) = 0$ $\pi(2 | D) = 1$

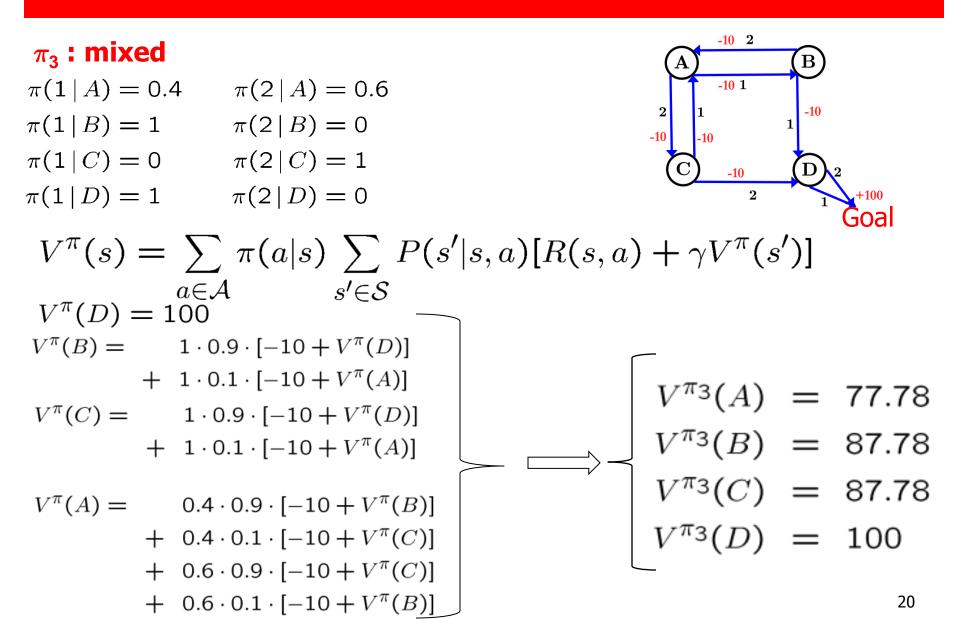


Similarly as before:

$$V^{\pi_2}(A) = 75.61$$

 $V^{\pi_2}(B) = 68.05$
 $V^{\pi_2}(C) = 87.56$
 $V^{\pi_2}(D) = 100$

Calculating the Value of Policy π



Comparing the 3 policies

	π_1	π_2	π_3
Α	75.61	75.61	77.78
В	87.56	68.05	87.78
С	68.05	87.56	87.78
D	100	100	100

 $\pi_1 \leq \pi_3$ and $\pi_2 \leq \pi_3 \Rightarrow \pi_3$ is optimal among these 3 policies π_1 and π_2 are not comparable

Bellman optimality equation for V*

Similarly, as we derived Bellman Equation for V and Q, we can derive Bellman Equations for V* and Q* as well

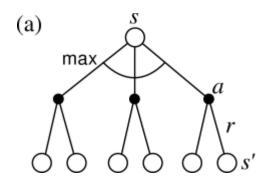
We proved this for V:

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \sum_{s' \in \mathcal{S}} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi}(s')]$$

Theorem: Bellman optimality equation for V*:

$$V^*(s) = \max_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} P(s'|s, a) [R(s, a, s') + \gamma V^*(s')]$$

Backup Diagram:



Bellman optimality equation for V*

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \sum_{s' \in \mathcal{S}} P(s'|s, a) [R(s, a, s') + \gamma V^{\pi}(s')]$$

Proof of Bellman optimality equation for V*:

$$V^{*}(s) := \max_{a \in \mathcal{A}(s)} Q^{*}(s, a)$$

= $\max_{a} \mathbb{E}_{\pi^{*}} \left[\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} | s_{t} = s, a_{t} = a \right]$
= $\max_{a} \mathbb{E}_{\pi^{*}} \left[r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+2} | s_{t} = s, a_{t} = a \right]$
= $\max_{a} \mathbb{E}_{\pi^{*}} \left[r_{t+1} + \gamma V^{*}(s_{t+1}) | s_{t} = s, a_{t} = a \right]$
= $\max_{a} \sum_{s' \in \mathcal{S}} P(s'|s, a) [R(s, a, s') + \gamma V^{*}(s')]$

Bellman optimality equation for Q*

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a)$$

Bellman optimality equation for Q*:

$$Q^{*}(s,a) = \mathbb{E}\left[r_{t+1} + \gamma \max_{a'} Q^{*}(s_{t+1},a') | s_{t} = s, a_{t} = a\right]$$
$$= \sum_{s' \in S} P(s'|s,a) \left[R(s,a,s') + \gamma \max_{a'} Q^{*}(s',a')\right]$$

Proof: similar to the proof of the Bellman Equation of V*.

Backup Diagram: (b) s,a max max

Greedy Policy for V

Definition: Greedy policy for a given Q(s, a) function:

$$\pi(s,a) = \begin{cases} 1, & \text{if } a = \arg \max_a Q(s,a) \\ 0, & \text{otherwise;} \end{cases}$$

Equivalently, (Greedy policy for a given V(s) function):

$$\pi(s,a) = \begin{cases} 1, & \text{if } a = \arg\max_a P(s' | s, a)(R(s, a, s') + \gamma V(s')) \\ 0, & \text{otherwise;} \end{cases}$$

The Optimal Value Function and Optimal Policy

$$V^*(s) = \max_{\pi} V^{\pi}(s) = V^{\pi^*}(s), \qquad \forall s \in S$$

Bellman optimality equation for V*:

$$V^*(s) = \max_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} P(s'|s, a') \left[R(s, a, s') + \gamma V^*(s') \right]$$

This is a nonlinear equation!

Theorem: A greedy policy for V* is an optimal policy. Let us denote it with π^*

Theorem: A greedy optimal policy from the optimal Value function:

$$\pi^*(s) = \arg\max_{a \in \mathcal{A}} \left[R(s, a, s') + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, a) V^*(s') \right]$$

Policy evaluation:

Given policy π , what is $V^{\pi}(s)$ and $Q^{\pi}(s, a)$?

Policy improvement

Given policy π , can we create another policy π' such that $\pi' \ge \pi$, that is $V^{\pi'}(s) \ge V^{\pi}(s) \ \forall s$?

Finding an optimal policy

How can we find an optimal policy π^* ?

Policy Evaluation

Policy Evaluation with Bellman Operator

Bellman equation:

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \sum_{s' \in \mathcal{S}} P(s'|s, a) [R(s, a, s') + \gamma V^{\pi}(s')]$$

This equation can be used as a fix point equation to evaluate policy π

Bellman operator: (one step with π , then using V)

$$(T_{\pi}V)(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \sum_{s' \in \mathcal{S}} P(s'|s,a) \left[R(s,a,s') + \gamma V(s') \right]$$

Iteration:

 $V_0 := arbitrary$

$$V_{k+1} := (T_{\pi}V_k)$$

$$V_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \sum_{s' \in \mathcal{S}} P(s'|s,a) \left[R(s,a,s') + \gamma V_k(s') \right]$$

Theorem: then $V_k \rightarrow V^{\pi}$

29

Policy Improvement

Policy Improvement

Given π and V^{π} .

Theorem:

If there is a (deterministic) policy π' such that for all $s \in S$

$$Q^{\pi}(s,\pi'(s)) \ge V^{\pi}(s)$$

then $V^{\pi'} \ge V^{\pi}$

That is, if we improve one step everywhere (then π), then we improve the whole policy.

Proof of Policy Improvement

Proof:

$$V^{\pi}(s) \leq Q^{\pi}(s, \pi'(s))$$

$$= \mathbb{E}_{\pi'}[r_{t+1} + \gamma V^{\pi}(s_{t+1}) | s_t = s]$$

$$\leq \mathbb{E}_{\pi'}[r_{t+1} + \gamma Q^{\pi}(s_{t+1}, \pi'(s_{t+1})) | s_t = s]$$

$$= \mathbb{E}_{\pi'}\left[r_{t+1} + \gamma \mathbb{E}_{\pi'}[r_{t+2} + \gamma V^{\pi}(s_{t+2})] | s_t = s\right]$$

$$= \mathbb{E}_{\pi'}\left[r_{t+1} + \gamma r_{t+2} + \gamma^2 V^{\pi}(s_{t+2}) | s_t = s\right]$$

$$= \mathbb{E}_{\pi'}\left[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \gamma^3 r_{t+4} + \dots | s_t = s\right]$$

$$= V^{\pi'}(s)$$

If there is at least one < above, then $V^{\pi} \neq V^{\pi'}$

If we can't improve the policy this way, then the policy is optimal.

Finding the Optimal Policy

Finding the Optimal Policy

Model based approaches:

First we will discuss methods that need to know the model: P(s' | s, a) and R(s, a, s').

Policy IterationValue Iteration

Model-free approaches:

Then we will discuss "model-free" methods that do NOT need to know the model: P(s' | s, a) and R(s, a, s').

Monte Carlo MethodTD Learning

Policy Iteration

1. Initialization

- $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ for all $s \in \mathcal{S}$.
- $\pi(s)$ is a deterministic policy.
- $\delta > 0$ is a small threshold parameter.

2. Policy Evaluation

repeat

 $\begin{array}{l} \Delta \leftarrow 0\\ \text{for all } s \in \mathcal{S} \text{ do}:\\ v \leftarrow V(s)\\ a \leftarrow \pi(s)\\ V(s) \leftarrow \sum\limits_{s' \in \mathcal{S}} P(s'|s,a)[R(s,a,s') + \gamma V(s')]\\ \Delta \leftarrow \max(\Delta, |v - V(s)|)\\ \text{end for}\\ \text{until } \Delta < \delta \end{array}$

Policy Iteration

3. Policy Improvement

```
policyStable \leftarrow true
for all s \in S do:
     b \leftarrow \pi(s)
     \pi(s) \leftarrow \arg \max \sum P(s'|s,a)[R(s,a,s') + \gamma V(s')]
                    a \in \mathcal{A}(s) \ s' \in \mathcal{S}
     if b \neq \pi(s) then
          policyStable \leftarrow false
     end if
end for
if policyStable then
     STOP
else
     Go to 2 (Policy Evaluation)
end if
```

One drawback of policy iteration is that each iteration involves policy evaluation ³⁶

Value Iteration

Main idea:

Use the Bellman equation of V^* instead of V^π

The greedy operator:

$$[T^*V](s) := \max_{a \in \mathcal{A}(s)} \sum_{s' \in \mathcal{S}} P(s'|s, a) [R(s, a, s') + \gamma V(s')]$$

 V^* is the solution of $V = T^*(V)$ fixpoint iteration. The value iteration update:

$$k = 0$$
 and $V_0(s) \in \mathbb{R}$ for all $s \in S$

repeat

for all $s \in S$ do:

 $V_{k+1}(s) \leftarrow \max_{a \in \mathcal{A}(s)} \sum_{s' \in \mathcal{S}} P(s'|s, a) [R(s, a, s') + \gamma V_k(s')]$

end for

 $k \leftarrow k+1$ until $V_k(\cdot)$ converged

Model Free Methods

The previous approaches need to know the model: P(s, a, s') and R(s, a, s'). In practice, we often don't know them.

Monte Carlo Policy Evaluation

Monte Carlo Policy Evaluation Without knowing the model

* Let R(s) be the reward that can be achieved from state s following policy π .

* It is a random variable with expected value $V^{\pi}(s)$.

$$V^{\pi}(s) := \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} | s_{t} = s \right]$$
$$= \mathbb{E}_{\pi}[R(s)]$$

Monte Carlo Estimation of $V^{\pi}(s)$

Empirical average: Let us use N simulations starting from state s following policy π. The observed rewards are:

$$R_1(s), R_2(s), \ldots, R_N(s)$$

Let
$$\widehat{V}(s) := \frac{1}{N} \sum_{k=1}^{N} R_k(s) \qquad \widehat{V}(s) \to V^{\pi}(s)$$

This is the so-called "Monte Carlo" method.

• MC can estimate $V^{\pi}(s)$ without knowing the model

Online Averages (=Running averages)

If we don't want to store the N sample points:

$$\hat{X}_{N} = \frac{\sum_{k=1}^{N} x_{k}}{N} = \frac{\sum_{k=1}^{N-1} x_{k} + x_{N}}{N}$$
$$= \frac{N-1}{N} \cdot \frac{\sum_{k=1}^{N-1} x_{k}}{N-1} + \frac{1}{N} x_{N}$$
$$= \left(1 - \frac{1}{N}\right) \hat{X}_{N-1} + \frac{1}{N} x_{N}$$
$$= \hat{X}_{N-1} + \frac{1}{N} (x_{N} - \hat{X}_{N-1})$$

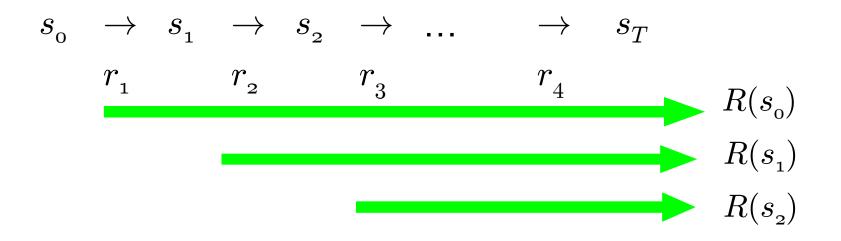
$$\alpha_k := 1/k$$
$$\hat{X}_N = \hat{X}_{N-1} + \alpha_N \cdot (x_N - \hat{X}_{N-1})$$

Similarly,

$$V_k(s_t) := V_{k-1}(s_t) + \alpha_k \cdot (R_k(s_t) - V_{k-1}(s_t))$$

A better MC method

From one single trajectory we can get lots of R estimates:



• Warning: These $R(s_i)$ random variables might be dependent!

Temporal Differences method

We already know the MC estimation of V^{π} :

 $V_k(s_t) := V_{k-1}(s_t) + \alpha_k \cdot (R_k(s_t) - V_{k-1}(s_t))$

Here is an other estimate:

$$V^{\pi}(s_{t}) \approx R_{k}(s_{t})$$

= $r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \dots$
= $r_{t+1} + \gamma \left(r_{t+2} + \gamma r_{t+3} + \dots \right)$
 $\approx r_{t+1} + \gamma V_{k-1}(s_{t+1})$

So let us use $r_{t+1} + \gamma V_{k-1}(s_{t+1})$, instead of $R_k(s_t)$

Temporal Differences method

MC estimate: $V_k(s_t) := V_{k-1}(s_t) + \alpha_k \cdot (R_k(s_t) - V_{k-1}(s_t))$

TD estimate: $V_k(s_t) := V_{k-1}(s_t) + \alpha_k \cdot \left((r_{t+1} + \gamma V_{k-1}(s_{t+1})) - V_{k-1}(s_t) \right)$

Instead of waiting for R_k , we estimate it using V_{k-1}

$$V_k(s_t) := (1 - \alpha_k) \cdot V_{k-1}(s_t) + \alpha_k \cdot \left(r_t + \gamma V_{k-1}(s_{t+1})\right)$$

Temporal difference: $(r_{t+1} + \gamma V_{k-1}(s_{t+1})) - V_{k-1}(s_t)$

Benefits

- No need for model! (Dynamic Programming with Bellman operators need them!)
- No need to wait for the end of the episode! (MC methods need them)
- We use an estimator for creating another estimator (=bootstrapping) ... still it works

Comparisons: DP, MC, TD

- They all estimate V^{π}
- DP: $V_k(s_t) \approx E_{\pi} \left(r_{t+1} + \gamma V_{k-1}(s_{t+1}) \mid s_t \right)$
 - Estimate comes from the Bellman equation
 - □ It needs to know the model

• TD:
$$V_k(s_t) \approx (r_{t+1} + \gamma V_{k-1}(s_{t+1}))$$

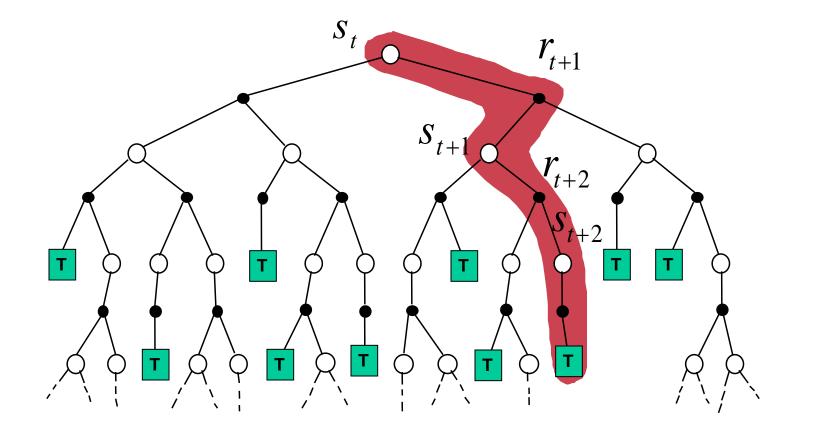
- Expectation is approximated with random samples
- Doesn't need to wait for the end of the episodes.
- MC: $V_k(s_t) \approx R_t(s_t)$
 - Expectation is approximated with random samples
 - □ It needs to wait for the end of the episodes

MDP Backup Diagrams

- White circle: state
- Black circle: action

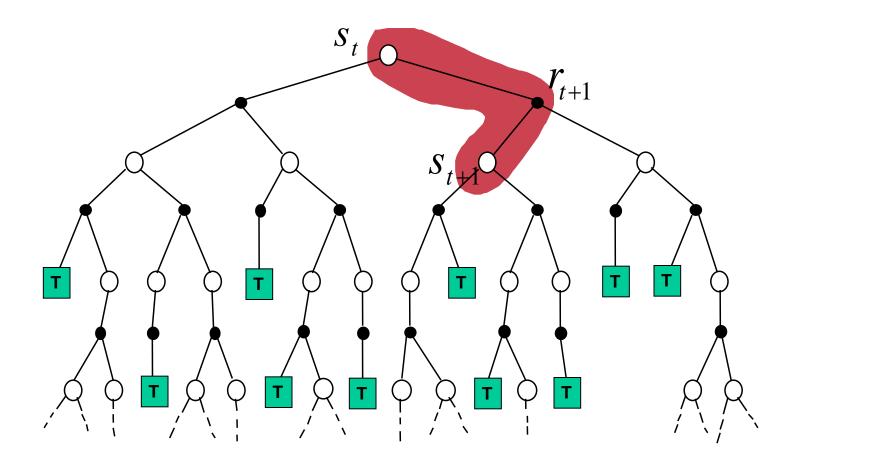
 S_t T: terminal state т Т Т Т Т т т Q Т т т

Monte Carlo Backup Diagram



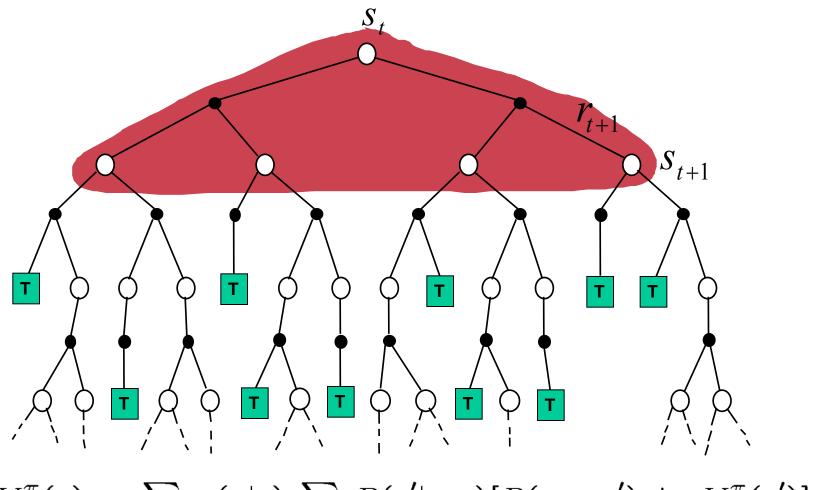
MC estimate: $V_k(s_t) := V_{k-1}(s_t) + \alpha_k \cdot (R_k(s_t) - V_{k-1}(s_t))$

Temporal Differences Backup Diagram



TD estimate: $V_k(s_t) := V_{k-1}(s_t) + \alpha_k \cdot \left((r_{t+1} + \gamma V_{k-1}(s_{t+1})) - V_{k-1}(s_t) \right)$

Dynamic Programming Backup Diagram



 $V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \sum_{s' \in \mathcal{S}} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi}(s')]_{50}$

TD for function **Q**

This was our TD estimate for V:

TD estimate: $V_k(s_t) := V_{k-1}(s_t) + \alpha_k \cdot ((r_{t+1} + \gamma V_{k-1}(s_{t+1})) - V_{k-1}(s_t))$

$$V_k(s_t) := (1 - \alpha_k) \cdot V_{k-1}(s_t) + \alpha_k \cdot ((r_{t+1} + \gamma V_{k-1}(s_{t+1})))$$

We can use the same for Q(s,a):

$$Q^{\pi}(s,a) = R(s,a,s') + \gamma \sum_{s'} P(s,a,s') \sum_{a'} \pi(s',a') Q^{\pi}(s',a')$$

= $R(s,a,s') + \gamma E_{\pi} \left[Q^{\pi}(s',a') \right]$

 $Q_k(s,a) = (1 - \alpha_k) \cdot Q_{k-1}(s,a) + \alpha_k \cdot \left[R(s,a,s') + \gamma Q_{k-1}(s',a') \right]$

Finding The Optimal Policy with TD

Finding The Optimal Policy with TD

• We already know the Bellman-equation for Q*:

$$Q^{*}(s,a) = R(s,a,s') + \gamma \sum_{s'} P(s,a,s') \max_{a'} Q^{*}(s',a')$$

= $R(s,a,s') + \gamma \mathbb{E}\left[\max_{a'} Q^{*}(s',a')\right]$

DP update:

$$Q_k(s,a) = R(s,a,s') + \gamma \sum_{s'} P(s,a,s') \max_{a'} Q_{k-1}(s',a')$$

TD update for Q [= Q Learning]

$$Q_k(s,a) = (1 - \alpha_k) \cdot Q_{k-1}(s,a) + \alpha_k \cdot \left[r + \gamma \max_{a'} Q_{k-1}(s',a')\right]$$

Q Learning Algorithm

- Q(s,a) arbitrary
- For each episode
 - $\Box s:=s_0; t:=0$
 - For each time step t in the actual episode
 - t:=t+1
 - Choose action a according to a policy π e.g. (epsilon-greedy)
 - Execute action a
 - Observer reward r and new state s'

$$Q(s,a) = (1 - \alpha_t) \cdot Q(s,a) + \alpha_t \cdot \left[r + \gamma \max_{a'} Q(s',a')\right]$$
$$s := s'$$

- End For
- End For

Q Learning Algorithm

□ **Q-learning learns an optimal policy** no matter which policy the agent is actually following (i.e., which action *a* it selects for any state *s*)

as long as there is no bound on the number of times it tries an action in any state (i.e., it does not always do the same subset of actions in a state).

Because it learns an optimal policy no matter which policy it is carrying out, it is called an **off-policy** method.