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Introduction to  
Reinforcement Learning  
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Reinforcement Learning 
Applications  

 Finance 

 Portfolio optimization 

 Trading 

 Inventory optimization 

 Control 

 Elevator, Air conditioning, power grid, … 

 Robotics 

 Games 

 Go, Chess, Backgammon 

 Computer games 

 Chatbots 

 … 
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Reinforcement Learning 
Framework  

. . . . . . 

Agent 

Environment 
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Markov Decision Processes 

RL Framework + Markov assumption 
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Discount Rates 

An issue:  

Solution:  
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RL is different from 
Supervised/Unsupervised learning 
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State-Value Function 

Bellman Equation of V state-value function:  

Backup Diagram:  
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Proof of Bellman Equation:  

Bellman Equation  
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Action-Value Function 

Bellman Equation of the Q Action-Value function:  

Backup Diagram:  

Proof: similar to the proof of the Bellman Equation of V state-value function. 
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Relation between Q and V Functions 

Q from V: 

V from Q: 
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The Optimal Value Function  
and Optimal Policy 

Partial ordering between policies: 

Some policies are not comparable! 

Optimal policy and optimal state-value function: 

V*(s) shows the maximum expected discounted reward that one can 
achieve from state s with optimal play 
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The Optimal Action-Value 
Function  

Similarly, the optimal action-value function: 

Important  Properties: 
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Theorem: For any Markov Decision Processes 

 

The Existence of the Optimal Policy 

(*) There is always a deterministic optimal policy for any MDP 
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Example 

Goal = Terminal state 

 4 states 

 2 possible actions in each state. [E.g in A: 1) go to B or 2) go to C ] 

 P(s’ | s, a) = (0.9 , 0.1) with 10% we go to a wrong direction 
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Calculating the Value of Policy ¼ 

Goal 

¼1 : always choosing Action 1 
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Calculating the Value of Policy ¼ 

Goal 

¼2 : always choosing Action 2 

Similarly as before: 
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Calculating the Value of Policy ¼ 

Goal 

¼3 : mixed 



21 

Comparing the 3 policies 
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Theorem: Bellman optimality equation for V*: 

Backup Diagram:  

Bellman optimality equation for V*  

Similarly, as we derived Bellman Equation for V and Q,  
we can derive Bellman Equations for V* and Q* as well  

We proved this for V: 
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Proof of Bellman optimality equation for V*: 

Bellman optimality equation for V*  
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Bellman optimality equation for Q*: 

Backup Diagram:  

Bellman optimality equation for Q*  

Proof: similar to the proof of the Bellman Equation of V*. 
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Greedy Policy for V 

Equivalently, (Greedy policy for a given V(s) function): 
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The Optimal Value Function  
and Optimal Policy 

Bellman optimality equation for V*: 

Theorem: A greedy policy for V* is an optimal policy. Let us denote it with ¼* 

Theorem: A greedy optimal policy from the optimal Value function: 

This is a nonlinear equation! 
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RL Tasks 

 Policy evaluation: 

 

 

 Policy improvement 

 

 

 

 Finding an optimal policy 
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Policy Evaluation 
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Policy Evaluation with Bellman Operator 

This equation can be used as a fix point equation to evaluate policy ¼  

Bellman operator: (one step with ¼, then using V) 

Iteration: 

Theorem: 

Bellman equation: 
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Policy Improvement 
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Policy Improvement 

Theorem: 
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Proof  of  Policy Improvement 

Proof: 
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Finding the Optimal Policy 
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Finding the Optimal Policy 

 Policy Iteration 

 Value Iteration 

 Monte Carlo Method 

 TD Learning 

First we will discuss methods that need to know the model: 

Model based approaches: 

Model-free approaches: 
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Policy Iteration 

1. Initialization 

2. Policy Evaluation 
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Policy Iteration 

One drawback of policy iteration is that each iteration involves policy evaluation 

3. Policy Improvement 
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Value Iteration 

The greedy operator: 

Main idea:  

The value iteration update: 
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Model Free Methods 
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Monte Carlo Policy Evaluation 
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Monte Carlo Policy Evaluation  

Without knowing the model 
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 Empirical average: Let us use N simulations 

starting from state s following policy ¼. The 

observed rewards are: 

 

 

  Let 

 

 This is the so-called „Monte Carlo” method. 

 MC can estimate V(s) without knowing the model  

Monte Carlo Estimation of  V(s) 
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 If we don’t want to store the N sample points: 

 

 

 

 

 

   

 

 

 

Online Averages (=Running averages) 

Similarly, 
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 From one single trajectory we can get lots of R estimates: 

 

 

 

 

 

 

 Warning: These R(si) random variables might be dependent! 

s0 ! s1 ! s2 ! … ! sT 

r1 r2 r3 r4 
R(s0) 

R(s1) 

R(s2) 

A better MC method 
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Temporal Differences method 

We already know the MC estimation of  V: 

Here is an other estimate: 
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 Temporal difference: 

 Benefits 

 No need for model! (Dynamic Programming with Bellman 

operators need them!) 

 No need to wait for the end of the episode! (MC methods need 

them) 

 We use an estimator for creating another estimator 

(=bootstrapping ) … still it works 

Instead of  waiting for Rk, we estimate it using Vk-1 

Temporal Differences method 
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 They all estimate V 

 DP: 

 Estimate comes from the Bellman equation 

 It needs to know the model 

 TD: 

 Expectation is approximated with random samples 

 Doesn’t need to wait for the end of the episodes. 

 MC: 

 Expectation is approximated with random samples 

 It needs to wait for the end of the episodes 

Comparisons: DP, MC, TD 
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 White circle: state 

 Black circle: action 

 T: terminal state 
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MDP Backup Diagrams 
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Temporal Differences  Backup Diagram 
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Dynamic Programming Backup Diagram 
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TD for function Q 

This was our TD estimate for V: 

We can use the same for Q(s,a): 



52 

Finding The Optimal Policy with TD 
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 We already know the Bellman-equation for Q*: 

 

 

 

 DP update: 

 

 

 TD update for Q [= Q Learning] 

Finding The Optimal Policy with TD 
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 Q(s,a) arbitrary 

 For each episode 

 s:=s0; t:=0 

 For each time step t in the actual episode 

 t:=t+1 

 Choose action a according to a policy ¼ e.g. (epsilon-greedy) 

 Execute action a 

 Observer reward r and new state s’   

   

 s:=s’ 

 End For 

 End For 

Q Learning Algorithm 
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 Q-learning learns an optimal policy no matter which policy the 
agent is actually following (i.e., which action a it selects for any 
state s)  

 as long as there is no bound on the number of times it tries an 
 action in any state (i.e., it does not always do the same subset 
 of actions in a state).  

 

 Because it learns an optimal policy no matter which policy it is 
carrying out, it is called an off-policy method. 

Q Learning Algorithm 


