

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Matrix Factorization and Collaborative Filtering

MF Readings:

(Koren et al., 2009)

Matt Gormley Lecture 25 April 19, 2017

Reminders

- Homework 8: Graphical Models
 - Release: Mon, Apr. 17
 - Due: Mon, Apr. 24 at 11:59pm
- Homework 9: Applications of ML
 - Release: Mon, Apr. 24
 - Due: Wed, May 3 at 11:59pm

Outline

Recommender Systems

- Content Filtering
- Collaborative Filtering (CF)
- CF: Neighborhood Methods
- CF: Latent Factor Methods

Matrix Factorization

- Background: Low-rank Factorizations
- Residual matrix
- Unconstrained Matrix Factorization
 - Optimization problem
 - Gradient Descent, SGD, Alternating Least Squares
 - User/item bias terms (matrix trick)
- Singular Value Decomposition (SVD)
- Non-negative Matrix Factorization

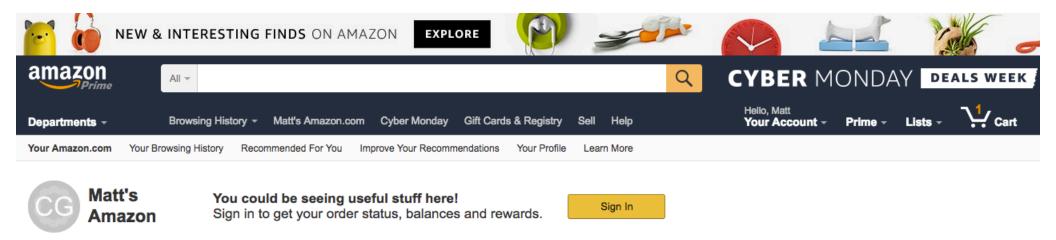
• Extra: Matrix Multiplication in ML

- Matrix Factorization
- Linear Regression
- PCA
- (Autoencoders)
- K-means

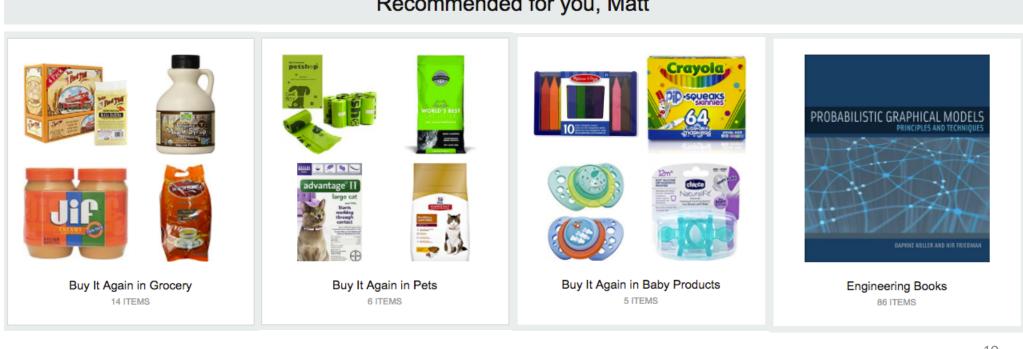
RECOMMENDER SYSTEMS

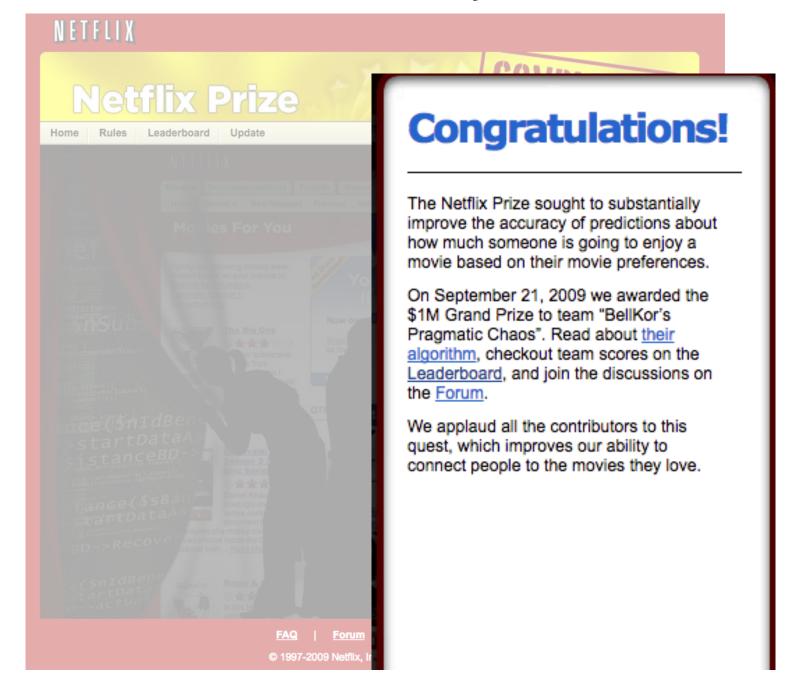
A Common Challenge:

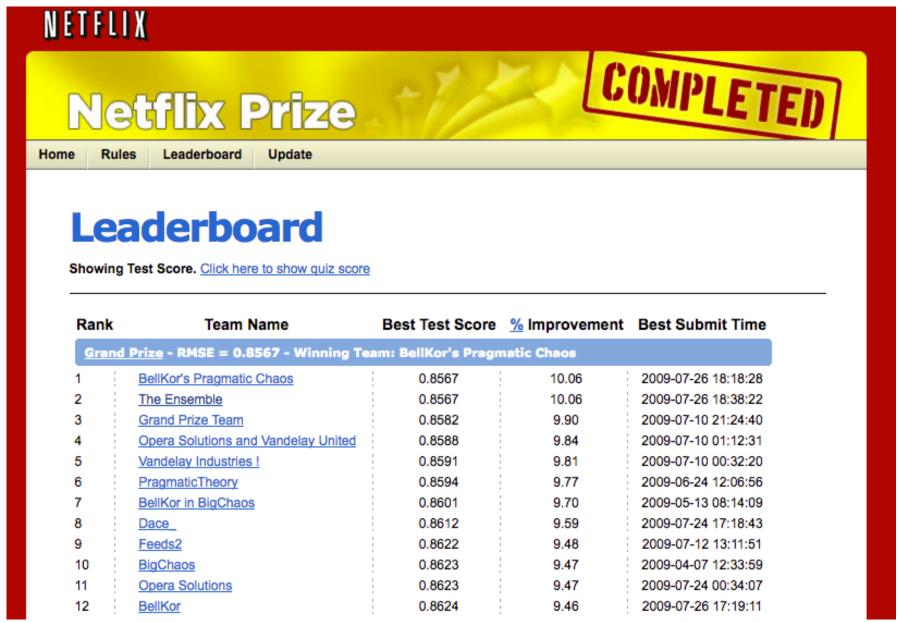
- Assume you're a company selling **items** of some sort: movies, songs, products, etc.
- Company collects millions of ratings from users of their items
- To maximize profit / user happiness, you want to recommend items that users are likely to want



Recommended for you, Matt







Setup:

- Items:

movies, songs, products, etc. (often many thousands)

- Users:

watchers, listeners, purchasers, etc. (often many millions)

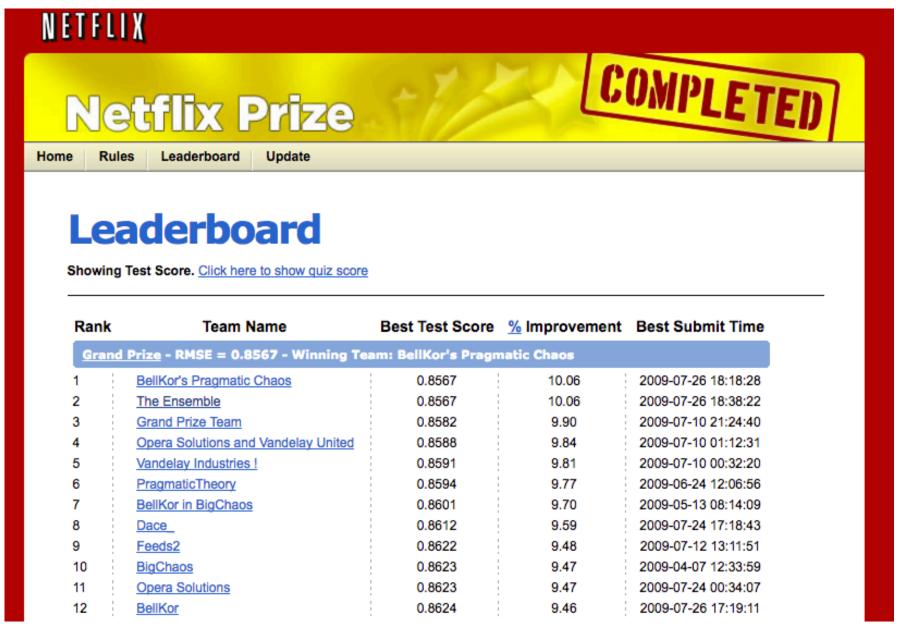
– Feedback:

5-star ratings, not-clicking 'next', purchases, etc.

Key Assumptions:

- Can represent ratings numerically as a user/item matrix
- Users only rate a small number of items (the matrix is sparse)

	Doctor Strange	Star Trek: Beyond	Zootopia
Alice	1		5
Bob	3	4	
Charlie	3	5	2



Two Types of Recommender Systems

Content Filtering

- Example: Pandora.com
 music recommendations
 (Music Genome Project)
- Con: Assumes access to side information about items (e.g. properties of a song)
- Pro: Got a new item to add? No problem, just be sure to include the side information

Collaborative Filtering

- Example: Netflix movie recommendations
- Pro: Does not assume access to side information about items (e.g. does not need to know about movie genres)
- Con: Does not work on new items that have no ratings

COLLABORATIVE FILTERING

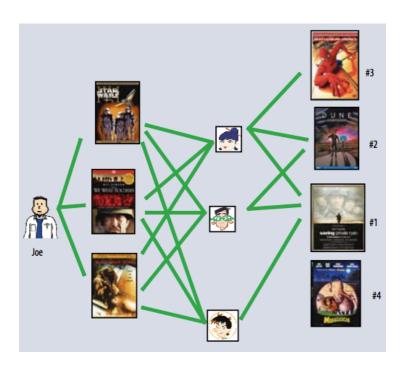
Collaborative Filtering

Everyday Examples of Collaborative Filtering...

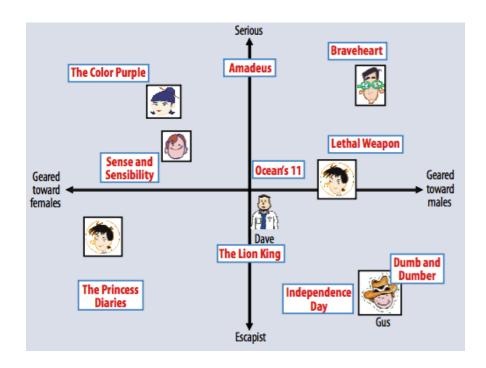
- Bestseller lists
- Top 40 music lists
- The "recent returns" shelf at the library
- Unmarked but well-used paths thru the woods
- The printer room at work
- "Read any good books lately?"
- **—** ...
- Common insight: personal tastes are correlated
 - If Alice and Bob both like X and Alice likes Y then Bob is more likely to like Y
 - especially (perhaps) if Bob knows Alice

Two Types of Collaborative Filtering

1. Neighborhood Methods

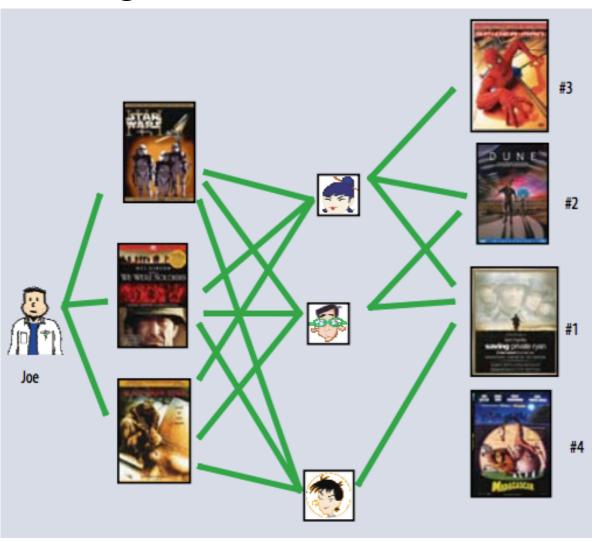


2. Latent Factor Methods



Two Types of Collaborative Filtering

1. Neighborhood Methods



In the figure, assume that a green line indicates the movie was **watched**

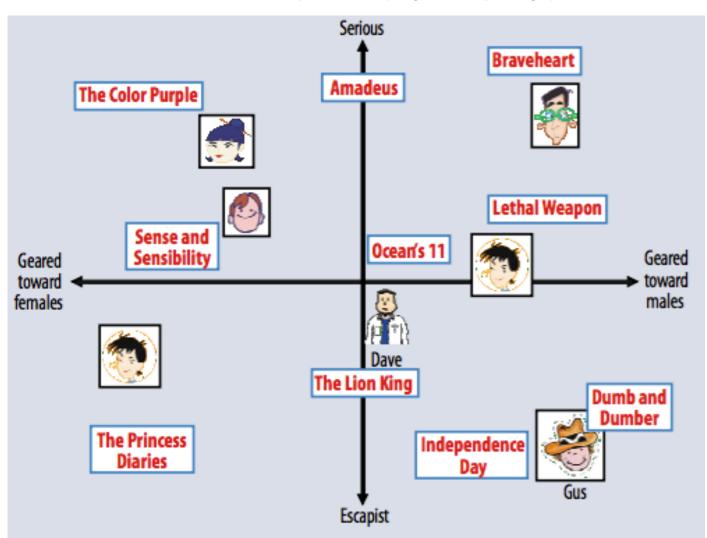
Algorithm:

- Find neighbors based on similarity of movie preferences
- 2. Recommend movies that those neighbors watched

Two Types of Collaborative Filtering

2. Latent Factor Methods

- Assume that both movies and users live in some lowdimensional space describing their properties
- Recommend a
 movie based on
 its proximity to
 the user in the
 latent space



MATRIX FACTORIZATION

Matrix Factorization

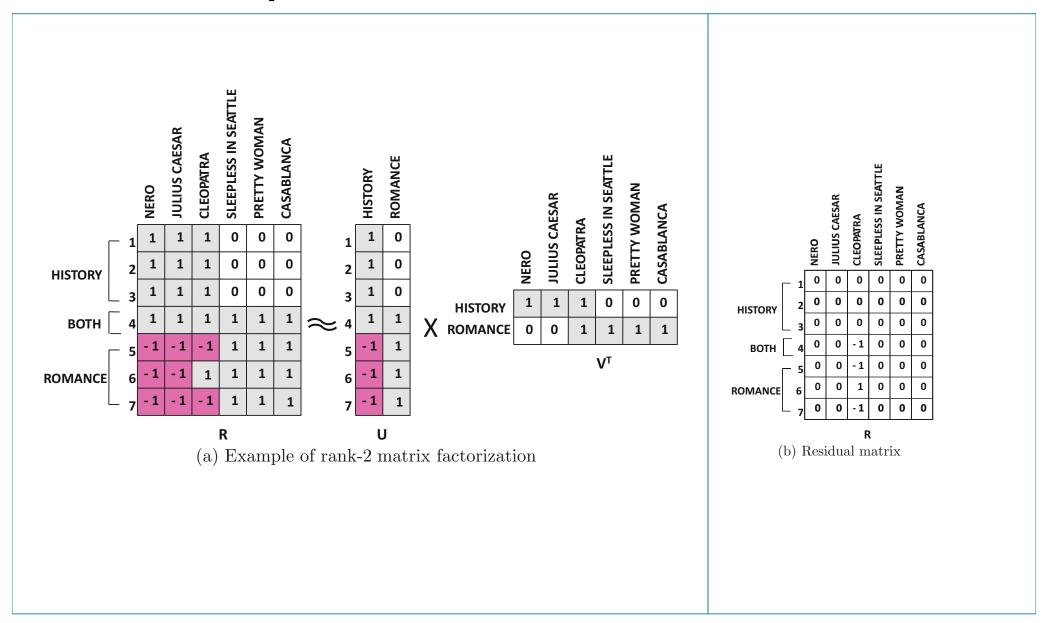
- Many different ways of factorizing a matrix
- We'll consider three:
 - 1. Unconstrained Matrix Factorization
 - 2. Singular Value Decomposition
 - 3. Non-negative Matrix Factorization
- MF is just another example of a common recipe:
 - define a model
 - 2. define an objective function
 - 3. optimize with SGD

Matrix Factorization

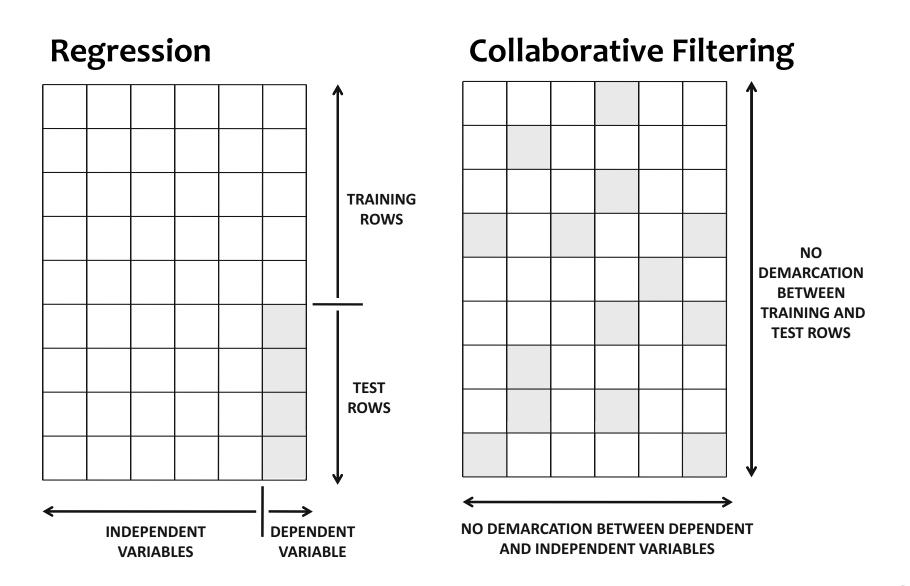
Whiteboard

- Background: Low-rank Factorizations
- Residual matrix

Example: MF for Netflix Problem



Regression vs. Collaborative Filtering



UNCONSTRAINED MATRIX FACTORIZATION

Unconstrained Matrix Factorization

Whiteboard

- Optimization problem
- SGD
- SGD with Regularization
- Alternating Least Squares
- User/item bias terms (matrix trick)

Unconstrained Matrix Factorization

In-Class Exercise

Derive a block coordinate descent algorithm for the Unconstrained Matrix Factorization problem.

User vectors:

$$\mathbf{w}_u \in \mathbb{R}^r$$

Item vectors:

$$\mathbf{h}_i \in \mathbb{R}^r$$

Rating prediction:

$$v_{ui} = \mathbf{w}_u^T \mathbf{h}_i$$

Set of non-missing entries

$$\mathcal{Z} = \{(u, i) : v_{ui} \text{ is observed}\}$$

Objective:

$$\underset{\mathbf{w},\mathbf{h}}{\operatorname{argmin}} \sum_{(u,i)\in\mathcal{Z}} (v_{ui} - \mathbf{w}_u^T \mathbf{h}_i)^2$$

Matrix Factorization (with matrices)

User vectors:

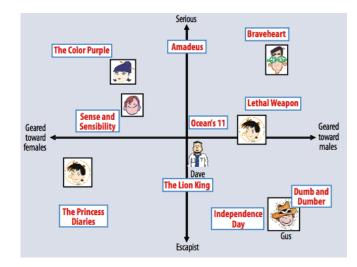
$$(W_{u*})^T \in \mathbb{R}^r$$

Item vectors:

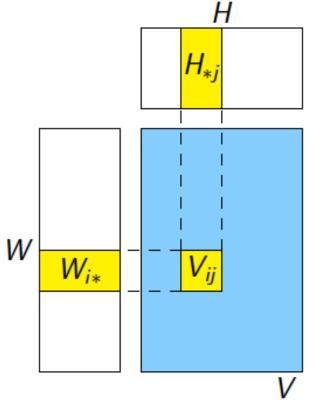
$$H_{*i} \in \mathbb{R}^r$$

Rating prediction:

$$V_{ui} = W_{u*}H_{*i}$$
$$= [WH]_{ui}$$



Figures from Koren et al. (2009)



Figures from Gemulla et al. $(2011)_{33}$

User vectors:

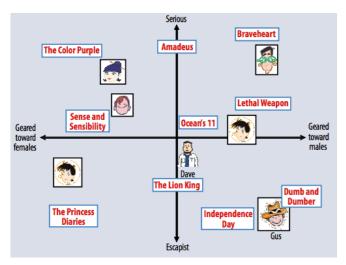
$$\mathbf{w}_u \in \mathbb{R}^r$$

Item vectors:

$$\mathbf{h}_i \in \mathbb{R}^r$$

Rating prediction:

$$v_{ui} = \mathbf{w}_u^T \mathbf{h}_i$$



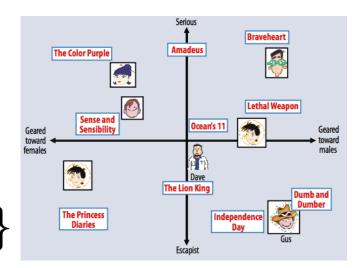
Figures from Koren et al. (2009)

• Set of non-missing entries:

$$\mathcal{Z} = \{(u, i) : v_{ui} \text{ is observed}\}$$

Objective:

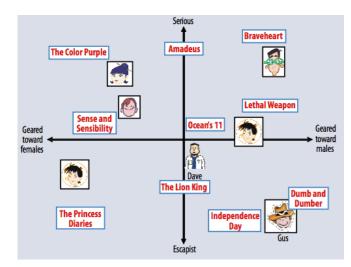
$$\underset{\mathbf{w},\mathbf{h}}{\operatorname{argmin}} \sum_{(u,i)\in\mathcal{Z}} (v_{ui} - \mathbf{w}_u^T \mathbf{h}_i)^2$$



Figures from Koren et al. (2009)

Regularized Objective:

$$\underset{\mathbf{w},\mathbf{h}}{\operatorname{argmin}} \sum_{(u,i)\in\mathcal{Z}} (v_{ui} - \mathbf{w}_{u}^{T} \mathbf{h}_{i})^{2} + \lambda (\sum_{i} ||\mathbf{w}_{i}||^{2} + \sum_{u} ||\mathbf{h}_{u}||^{2})$$



Figures from Koren et al. (2009)

Regularized Objective:

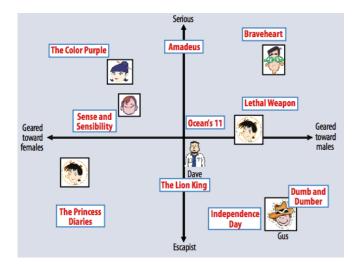
$$\underset{\mathbf{w},\mathbf{h}}{\operatorname{argmin}} \sum_{(u,i)\in\mathcal{Z}} (v_{ui} - \mathbf{w}_{u}^{T} \mathbf{h}_{i})^{2} + \lambda (\sum_{i} ||\mathbf{w}_{i}||^{2} + \sum_{u} ||\mathbf{h}_{u}||^{2})$$

SGD update for random (u,i):

$$e_{ui} \leftarrow v_{ui} - \mathbf{w}_u^T \mathbf{h}_i$$

$$\mathbf{w}_u \leftarrow \mathbf{w}_u + \gamma (e_{ui} \mathbf{h}_i - \lambda \mathbf{w}_u)$$

$$\mathbf{h}_i \leftarrow \mathbf{h}_i + \gamma (e_{ui} \mathbf{w}_u - \lambda \mathbf{h}_i)$$



Figures from Koren et al. (2009)

Matrix Factorization (with matrices)

User vectors:

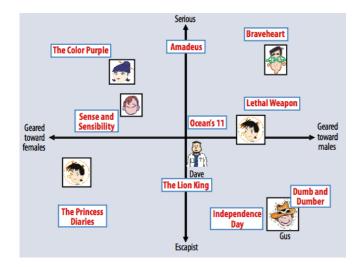
$$(W_{u*})^T \in \mathbb{R}^r$$

Item vectors:

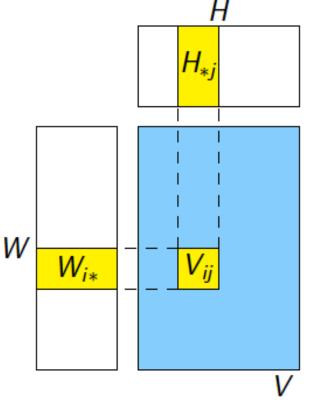
$$H_{*i} \in \mathbb{R}^r$$

Rating prediction:

$$V_{ui} = W_{u*}H_{*i}$$
$$= [WH]_{ui}$$



Figures from Koren et al. (2009)



Figures from Gemulla et al. (2011)₃₈

Matrix Factorization (with matrices)

SGD

require that the loss can be written as

$$L = \sum_{(i,j) \in Z} l(oldsymbol{V}_{ij}, oldsymbol{W}_{i*}, oldsymbol{H}_{*j})$$

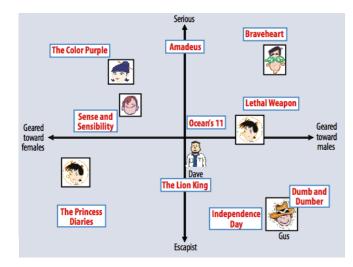
Algorithm 1 SGD for Matrix Factorization

Require: A training set Z, initial values W_0 and H_0 while not converged do {step}

Select a training point $(i, j) \in Z$ uniformly at random.

$$\begin{aligned} \boldsymbol{W}_{i*}' \leftarrow \boldsymbol{W}_{i*} - \epsilon_n N \frac{\partial}{\partial \boldsymbol{W}_{i*}} l(\boldsymbol{V}_{ij}, \boldsymbol{W}_{i*}, \boldsymbol{H}_{*j}) \\ \boldsymbol{H}_{*j} \leftarrow \boldsymbol{H}_{*j} - \epsilon_n N \frac{\partial}{\partial \boldsymbol{H}_{*j}} l(\boldsymbol{V}_{ij}, \boldsymbol{W}_{i*}, \boldsymbol{H}_{*j}) \\ \boldsymbol{W}_{i*} \leftarrow \boldsymbol{W}_{i*}' \\ \textbf{end while} \end{aligned}$$

Figure from Gemulla et al. (2011)



Figures from Koren et al. (2009)

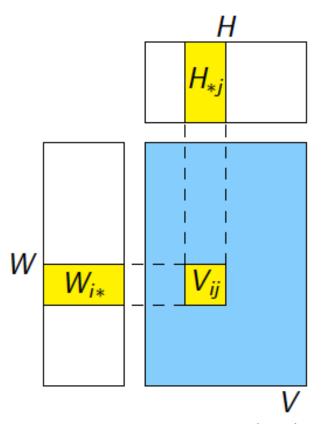
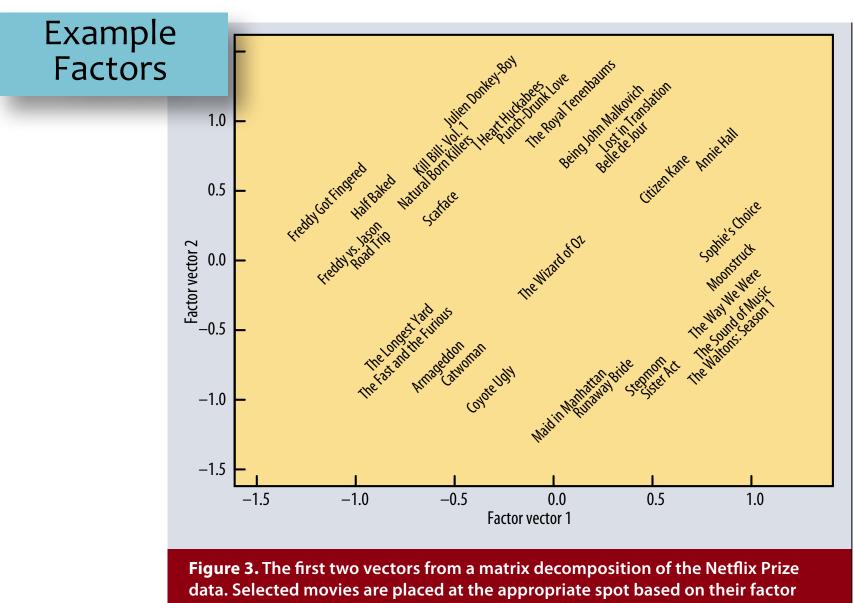


Figure from Gemulla et al. (2011)₃₉

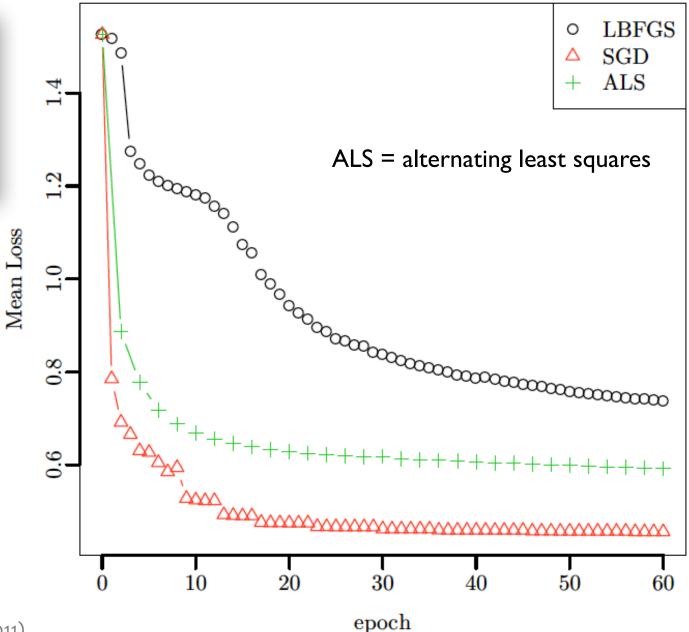
Matrix Factorization



data. Selected movies are placed at the appropriate spot based on their factor vectors in two dimensions. The plot reveals distinct genres, including clusters of movies with strong female leads, fraternity humor, and quirky independent films.

Matrix Factorization

Comparison of Optimization Algorithms



SVD FOR COLLABORATIVE FILTERING

Singular Value Decomposition for Collaborative Filtering

Whiteboard

- Optimization problem
- Equivalence to Unconstrained Matrix
 Factorization (fully specified, no regularization)

NON-NEGATIVE MATRIX FACTORIZATION

Implicit Feedback Datasets

What information does a five-star rating contain?

- Implicit Feedback Datasets:
 - In many settings, users don't have a way of expressing dislike for an item (e.g. can't provide negative ratings)
 - The only mechanism for feedback is to "like" something
- Examples:
 - Facebook has a "Like" button, but no "Dislike" button
 - Google's "+1" button
 - Pinterest pins
 - Purchasing an item on Amazon indicates a preference for it, but there are many reasons you might not purchase an item (besides dislike)
 - Search engines collect click data but don't have a clear mechanism for observing dislike of a webpage

Non-negative Matrix Factorization

Whiteboard

- Optimization problem
- Multiplicative updates

Summary

- Recommender systems solve many realworld (*large-scale) problems
- Collaborative filtering by Matrix
 Factorization (MF) is an efficient and effective approach
- MF is just another example of a common recipe:
 - define a model
 - 2. define an objective function
 - 3. optimize with SGD