

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Hidden Markov Models

Graphical Model Readings:

Murphy 10 – 10.2.1 Bishop 8.1, 8.2.2 HTF --

Mitchell 6.11

HMM Readings:

Murphy 10.2.2 – 10.2.3 Bishop 13.1 – 13.2 HTF --Mitchell – Matt Gormley Lecture 24 April 17, 2017

Reminders

- Peer Tutoring
- Homework 7: Deep Learning
 - Release: Wed, Apr. 05
 - Part I due Wed, Apr. 12at 11:59pm
 - Part II due Mon, Apr. 17 at 11:59pm
- Homework 8: Graphical Models
 - Release: Mon, Apr. 17
 - Due: Mon, Apr. 24 at 11:59pm

Start Early

Bayes Nets Outline

Motivation

Structured Prediction

Background

- Conditional Independence
- Chain Rule of Probability

Directed Graphical Models

- Writing Joint Distributions
- Definition: Bayesian Network
- Qualitative Specification
- Quantitative Specification
- Familiar Models as Bayes Nets

Conditional Independence in Bayes Nets

- Three case studies
- D-separation
- Markov blanket

Learning

- Fully Observed Bayes Net
- (Partially Observed Bayes Net)

Inference

- Background: Marginal Probability
- Sampling directly from the joint distribution
- Gibbs Sampling

Last Lecture(s)

This Lecture

UNSUPERVISED LEARNING FOR BAYES NETS

Learning Partially Observed BNs

Recall EM:

INFERENCE FOR BAYESIAN NETWORKS

A Few Problems for Bayes Nets

Suppose we already have the parameters of a Bayesian Network...

- How do we compute the probability of a specific assignment to the variables?
 P(T=t, H=h, A=a, C=c)
- 2. How do we draw a sample from the joint distribution? t,h,a,c ~ P(T, H, A, C)
- 3. How do we compute marginal probabilities? P(A) = ...
- 4. How do we draw samples from a conditional distribution? $t,h,a \sim P(T, H, A \mid C = c)$
- 5. How do we compute conditional marginal probabilities? $P(H \mid C = c) = ...$

Inference for Bayes Nets

Whiteboard

- Background: Marginal Probability
- Sampling from a joint distribution
- Gibbs Sampling

Sampling from a Joint Distribution

Question:

How do we draw samples from a conditional distribution?

```
y_1, y_2, ..., y_J \sim p(y_1, y_2, ..., y_J | x_1, x_2, ..., x_J)
```

(Approximate) Solution:

- Initialize $y_1^{(0)}$, $y_2^{(0)}$, ..., $y_1^{(0)}$ to arbitrary values
- For t = 1, 2, ...:
 - $y_1^{(t+1)} \sim p(y_1 | y_2^{(t)}, ..., y_J^{(t)}, x_1, x_2, ..., x_J)$
 - $y_2^{(t+1)} \sim p(y_2 | y_1^{(t+1)}, y_3^{(t)}, ..., y_J^{(t)}, x_1, x_2, ..., x_J)$
 - $y_3^{(t+1)} \sim p(y_3 | y_1^{(t+1)}, y_2^{(t+1)}, y_4^{(t)}, ..., y_J^{(t)}, x_1, x_2, ..., x_J)$
 - •
 - $y_J^{(t+1)} \sim p(y_J | y_1^{(t+1)}, y_2^{(t+1)}, ..., y_{J-1}^{(t+1)}, x_1, x_2, ..., x_J)$

Properties:

- This will eventually yield samples from $p(y_1, y_2, ..., y_j | x_1, x_2, ..., x_j)$
- But it might take a long time -- just like other Markov Chain Monte Carlo methods

Full conditionals only need to condition on the Markov Blanket

- Must be "easy" to sample from conditionals
- Many conditionals are log-concave and are amenable to adaptive rejection sampling

HIDDEN MARKOV MODEL (HMM)

HMM Outline

Motivation

Time Series Data

Hidden Markov Model (HMM)

- Example: Squirrel Hill Tunnel Closures [courtesy of Roni Rosenfeld]
- Background: Markov Models
- From Mixture Model to HMM
- History of HMMs
- Higher-order HMMs

Training HMMs

- (Supervised) Likelihood for HMM
- Maximum Likelihood Estimation (MLE) for HMM
- EM for HMM (aka. Baum-Welch algorithm)

Forward-Backward Algorithm

- Three Inference Problems for HMM
- Great Ideas in ML: Message Passing
- Example: Forward-Backward on 3-word Sentence
- Derivation of Forward Algorithm
- Forward-Backward Algorithm
- Viterbi algorithm

Markov Models

Whiteboard

- Example: Squirrel Hill Tunnel Closures[courtesy of Roni Rosenfeld]
- First-order Markov assumption
- Conditional independence assumptions

Example: Squirrel Hill Tunnel Closures

Mixture Model for Time Series Data

We could treat each (tunnel state, travel time) pair as independent. This corresponds to a Naïve Bayes model with a single feature (the word).

$$p(0, S, S, O, C, 2m, 3m, 18m, 9m, 27m) = (.8 * .2 * .1 * .03 * ...)$$

A Hidden Markov Model (HMM) provides a joint distribution over the the tunnel states / travel times with an assumption of dependence between adjacent tunnel states.

$$p(0, S, S, O, C, 2m, 3m, 18m, 9m, 27m) = (.8 * .08 * .2 * .7 * .03 * ...)$$

From Mixture Model to HMM

From Mixture Model to HMM

SUPERVISED LEARNING FOR HMMS

HMM Parameters:

Emission matrix, **A**, where $P(X_t = k | Y_t = j) = A_{j,k}, \forall t, k$ Transition matrix, **B**, where $P(Y_t = k | Y_{t-1} = j) = B_{j,k}, \forall t, k$ Initial probs, **C**, where $P(Y_1 = k) = C_k, \forall k$

HMM Parameters:

Emission matrix, **A**, where $P(X_t = k | Y_t = j) = A_{j,k}, \forall t, k$ Transition matrix, **B**, where $P(Y_t = k | Y_{t-1} = j) = B_{j,k}, \forall t, k$

Assumption: $y_0 = START$

Generative Story:

 $Y_t \sim \text{Multinomial}(\mathbf{B}_{Y_{t-1}}) \ \forall t$

 $X_t \sim \mathsf{Multinomial}(\mathbf{A}_{Y_t}) \ \forall t$

For notational convenience, we fold the initial probabilities **C** into the transition matrix **B** by our assumption.

Joint Distribution:

$$y_0 = \mathsf{START}$$

$$p(\mathbf{x}, \mathbf{y}|y_0) = \prod_{t=1}^{T} p(x_t|y_t) p(y_t|y_{t-1})$$

$$= \prod_{t=1}^{I} A_{y_t, x_t} B_{y_{t-1}, y_t}$$

Training HMMs

Whiteboard

- (Supervised) Likelihood for an HMM
- Maximum Likelihood Estimation (MLE) for HMM

Learning Fully Observed BNs

Learning this fully observed Bayesian Network is equivalent to learning five (small / simple) independent networks from the same data

$$p(X_1, X_2, X_3, X_4, X_5) = p(X_5|X_3)p(X_4|X_2, X_3) p(X_3)p(X_2|X_1)p(X_1)$$

Supervised Learning for HMMs

Learning an **HMM** decomposes into solving two (independent) Mixture Models

$$\beta_{jk} = \pm (y_{t-1}^{(i)} = k)$$

$$\pm (y_{t-1}^{(i)} = j)$$

$$\hat{A}_{jk} = \pm \left(\begin{array}{c} \chi_{\ell}^{(j)} = k & \text{and} & \chi_{\ell}^{(j)} \\ \end{array} \right)$$

HMMs: History

- Markov chains: Andrey Markov (1906)
 - Random walks and Brownian motion
- Used in Shannon's work on information theory (1948)
- Baum-Welsh learning algorithm: late 60's, early 70's.
 - Used mainly for speech in 60s-70s.
- Late 80's and 90's: David Haussler (major player in learning theory in 80's) began to use HMMs for modeling biological sequences
- Mid-late 1990's: Dayne Freitag/Andrew McCallum
 - Freitag thesis with Tom Mitchell on IE from Web using logic programs, grammar induction, etc.
 - McCallum: multinomial Naïve Bayes for text
 - With McCallum, IE using HMMs on CORA

• ...

Higher-order HMMs

• 1st-order HMM (i.e. bigram HMM)

• 2nd-order HMM (i.e. trigram HMM)

• 3rd-order HMM

BACKGROUND: MESSAGE PASSING

Count the soldiers

Each soldier receives reports from all branches of tree

THE FORWARD-BACKWARD ALGORITHM

Inference for HMMs

Whiteboard

- Three Inference Problems for an HMM
 - Evaluation: Compute the probability of a given sequence of observations
 - Decoding: Find the most-likely sequence of hidden states, given a sequence of observations
 - 3. Marginals: Compute the marginal distribution for a hidden state, given a sequence of observations

Dataset for Supervised Part-of-Speech (POS) Tagging

Data: $\mathcal{D} = \{oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)}\}_{n=1}^N$

Sample 1:	n	flies	p like	an	$\begin{array}{c c} & & \\ & & \\ \hline & & \\ &$
Sample 2:	n	n	like	d	$ \begin{array}{c c} & & \\ & $
Sample 3:	n	fly	with	heir	$ \begin{array}{c c} $
Sample 4:	with	n	you	will	$\begin{cases} y^{(4)} \\ x^{(4)} \end{cases}$

Hidden Markov Model

A Hidden Markov Model (HMM) provides a joint distribution over the the sentence/tags with an assumption of dependence between adjacent tags.

• Let's show the possible values for each variable

• Let's show the possible values for each variable

- Let's show the possible values for each variable
- One possible assignment

- Let's show the possible values for each variable
- One possible assignment
- And what the 7 transition / emission factors think of it ...

- Let's show the possible values for each variable
- One possible assignment
- And what the 7 transition / emission factors think of it ...

Viterbi Algorithm: Most Probable Assignment

- So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/\mathbf{Z}) * \text{product of 7 numbers}$
- Numbers associated with edges and nodes of path
- Most probable assignment = path with highest product

Viterbi Algorithm: Most Probable Assignment

• So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/\mathbf{Z}) * product weight of one path$

- So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/Z) * product weight of one path$
- Marginal probability $p(Y_2 = a)$ = (1/Z) * total weight of all paths through a

- So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/\mathbf{Z}) * \text{product weight of one path}$
- Marginal probability $p(Y_2 = n)$ = (1/Z) * total weight of all paths through n

- So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/\mathbf{Z}) * product weight of one path$
- Marginal probability $p(Y_2 = v)$ = (1/Z) * total weight of all paths through

- So $p(\mathbf{v} \mathbf{a} \mathbf{n}) = (1/\mathbf{Z}) * product weight of one path$
- Marginal probability $p(Y_2 = n)$ = (1/Z) * total weight of all paths through n

Product gives ax+ay+az+bx+by+bz+cx+cy+cz = total weight of paths

Oops! The weight of a path through a state also includes a weight at that state.

So $\alpha(\mathbf{n}) \cdot \beta(\mathbf{n})$ isn't enough.

The extra weight is the opinion of the emission probability at this variable.

"belief that $Y_2 = \mathbf{n}$ "

total weight of all paths through

$$= \alpha_2(\mathbf{n})$$

$$\alpha_2(\mathbf{n})$$
 A(pref., \mathbf{n}) $\beta_2(\mathbf{n})$

$$\beta_2(n)$$

"belief that $Y_2 = \mathbf{v}$ "

"belief that $Y_2 = \mathbf{n}$ "

total weight of all paths through

$$= \alpha_2(\mathbf{v})$$

A(pref.,
$$\mathbf{v}$$
) $\beta_2(\mathbf{v})$

$$\beta_2(\mathbf{v})$$

"belief that $Y_2 = \mathbf{v}$ "

"belief that $Y_2 = \mathbf{n}$ "

"belief that $Y_2 = \mathbf{a}$ "

sum = Z(total weight of all paths)

total weight of all paths through

A(pref., a) $\beta_2(a)$

Inference for HMMs

Whiteboard

- Derivation of Forward algorithm
- Forward-backward algorithm
- Viterbi algorithm

Derivation of Forward Algorithm

Definition:
$$X_{t}(k) \triangleq p(x_{1},...,x_{t},y_{t}=k)$$

Derivation:

$$X_{T}(END) = p(x_{1},...,x_{T},y_{T}=END)$$

$$= p(x_{1},...,x_{T}|y_{T})p(y_{T})$$

$$= p(x_{1}|y_{T})p(x_{1},...,x_{T-1}|y_{T})p(y_{T})$$

$$= p(x_{T}|y_{T})p(x_{1},...,x_{T-1}|y_{T})p(y_{T})$$

$$= p(x_{T}|y_{T})p(x_{1},...,x_{T-1}|y_{T})$$

$$= p(x_{T}|y_{T}) \geq p(x_{1},...,x_{T-1},y_{T}) + by def ef joint$$

$$= p(x_{T}|y_{T}) \geq p(x_{1},...,x_{T-1},y_{T}|y_{T-1})p(y_{T-1}) + by def ef joint$$

$$= p(x_{T}|y_{T}) \geq p(x_{1},...,x_{T-1},y_{T}|y_{T-1})p(y_{T-1}) + by def ef joint$$

$$= p(x_{T}|y_{T}) \geq p(x_{1},...,x_{T-1},y_{T}|y_{T-1})p(y_{T-1}) + by def ef joint$$

$$= p(x_{T}|y_{T}) \geq p(x_{1},...,x_{T-1},y_{T-1})p(y_{T}|y_{T-1}) + by def ef joint$$

$$= p(x_{T}|y_{T}) \geq p(x_{1},...,x_{T-1},y_{T-1})p(y_{T}|y_{T-1}) + by def ef joint$$

$$= p(x_{T}|y_{T}) \geq p(x_{1},...,x_{T-1},y_{T-1})p(y_{T}|y_{T-1}) + by def ef x_{E}(k)$$

Define:
$$\propto_{\ell}(k) \triangleq p(x_1, ..., x_{\ell}, y_{\ell} = k)$$
 $\beta_{\ell}(k) \triangleq p(x_{\ell+1}, ..., x_{\ell} | y_{\ell} = k)$
 $\beta_{\ell}(k) \triangleq p(x_{\ell+1}, ..., x_{\ell} | y_{\ell} = k)$
 $\gamma_{\ell+1} = \epsilon_{\ell}$
 $\gamma_{\ell+1} = \epsilon_{$

Viterbi Algorithm

Define:
$$\omega_{\xi}(k) \triangleq \max_{y_1, \dots, y_{\xi-1}} p(x_1, \dots, x_{\xi}, y_1, \dots, y_{\xi-1}, y_{\xi} = k)$$

"back points"

 $b_{\xi}(k) \triangleq \alpha_{y} \max_{y_1, \dots, y_{\xi-1}} p(x_1, \dots, x_{\xi}, y_1, \dots, y_{\xi-1}, y_{\xi} = k)$

Assume $y_0 = START$

(1) Initialize $\omega_0(START) = 1$ $\omega_0(k) = 0$ $\forall k \neq START$

(2) For $t = 1, \dots, T$:

For $k = 1, \dots, K$:

 $\omega_{\xi}(k) = \max_{j \in \{1, \dots, K\}} p(x_{\xi} | y_{\xi} = k) \omega_{k-1}(j) p(y_{\xi} = k | y_{\xi-1} = j)$
 $b_{\xi}(k) = \max_{j \in \{1, \dots, K\}} p(x_{\xi} | y_{\xi} = k) \omega_{k-1}(j) p(y_{\xi} = k | y_{\xi-1} = j)$

(3) Compute Most Probable Assignment

 $\hat{y}_T = b_{T+1}(END)$

For $t = T-1, \dots, 1$
 $\hat{y}_{\xi} = b_{\xi+1}(\hat{y}_{\xi+1})$

Therefore $\hat{y}_{\xi+1}$

Therefore $\hat{y}_{\xi+1}$

Therefore $\hat{y}_{\xi+1}$

Therefore $\hat{y}_{\xi+1}$

Therefore $\hat{y}_{\xi+1}$

Therefore $\hat{y}_{\xi+1}$

Inference in HMMs

What is the **computational complexity** of inference for HMMs?

- The naïve (brute force) computations for Evaluation, Decoding, and Marginals take exponential time, O(K^T)
- The forward-backward algorithm and Viterbi algorithm run in polynomial time, O(T*K²)
 - Thanks to dynamic programming!

Shortcomings of Hidden Markov Models

- HMM models capture dependences between each state and only its corresponding observation
 - NLP example: In a sentence segmentation task, each segmental state may depend not just on a single word (and the adjacent segmental stages), but also on the (nonlocal) features of the whole line such as line length, indentation, amount of white space, etc.
- Mismatch between learning objective function and prediction objective function
 - HMM learns a joint distribution of states and observations P(Y, X), but in a prediction task, we need the conditional probability P(Y|X)