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Reminders

* Peer Tutoring

* Homework 7: Deep Learning
— Release: Wed, Apr. 05
— Part | due Wed, Apr. 12at 11:59pm RG]

— Part Il due Mon, Apr. 17 at 11:59pm

* Homework 8: Graphical Models
— Release: Mon, Apr. 17
— Due: Mon, Apr. 24 at 11:59pm




Bayes Nets Outline

Motivation

—  Structured Prediction
Background

— Conditional Independence

— Chain Rule of Probability
Directed Graphical Models

—  Writing Joint Distributions

— Definition: Bayesian Network

— Qualitative Specification

— Quantitative Specification

— Familiar Models as Bayes Nets
Conditional Independence in Bayes Nets

— Three case studies

— D-separation

— Markov blanket
Learning

— Fully Observed Bayes Net

— (Partially Observed Bayes Net)
Inference

— Background: Marginal Probability

— Sampling directly from the joint distribution

—  Gibbs Sampling

Last Lecture(s)

This Lecture



UNSUPERVISED LEARNING FOR
BAYES NETS



Learning Partially Observed BNs
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INFERENCE FOR BAYESIAN
NETWORKS



A Few Problems for Bayes Nets

Suppose we already have the parameters of a Bayesian Network...

1.

How do we compute the probability of a specific assignment to the
variables?
P(T=t, H=h, A=a, C=c)

How do we draw a sample from the joint distribution?
t,h,a,c ~ P(T, H, A, C)

How do we compute marginal probabilities?

P(A) = ...
<:| Can we

How do we draw samples from a conditional distribution? use
t,h,a~P(T,H,A|C=c)
samples
How do we compute conditional marginal probabilities? p

PH|C=0)=... <:|



Inference for Bayes Nets

Whiteboard
— Background: Marginal Probability
— Sampling from a joint distribution
— Gibbs Sampling



Sampling from a Joint Distribution

Nl T A Bthwu"( ﬂLI,> C="%

@-—{ / HNBW“"< ) (O B o
? A ~ Bﬂn«u"a(l)(,,,;r) K = :’: \i’:/—il
N

We can use
these samples

to estimate
many different
probabilities!
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Gibbs Sampling




Gibbs Sampling

L (t+1)




Gibbs Sampling




Gibbs Sampling

Question:
How do we draw samples from a conditional distribution?

yw yz) *°) yJ - p(yv Yz) *e0) yJ l Xw Xz’ e XJ)

(Approximate) Solution:
— Initialize y,(©), y,(©), ..., y (9 to arbitrary values
— Fort=1,2,...:
v, E~p(y, | v, ey O X X, e, X))
¢ YZ(tH) - p(Yz I Y1(t+1)f yS(t)’ N YJ(t)’ USTRSTERFRS )
© Y~ plys [y, v, 00y, 0,y O X %, el X))

© Y0~ plyy [y O, v,y X X, e X))

Properties:

— This will eventually yield samples from
p(yw Yas oo Yy I USTRASYRTTFIN )

— But it might take a long time -- just like other Markov Chain Monte Carlo
methods
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Gibbs Sampling

Full conditionals
only need to

condition on the
Markov Blanket

* Must be “easy” to sample from
conditionals

* Many conditionals are log-concave
and are amenable to adaptive
rejection sampling

Inp(x)




HIDDEN MARKOV MODEL (HMM)



HMM Outline

Motivation
— Time Series Data

Hidden Markov Model (HMM)

— Example: Squirrel Hill Tunnel Closures
[courtesy of Roni Rosenfeld]

— Background: Markov Models
— From Mixture Model to HMM
— History of HMMs

— Higher-order HMMs

Training HMMs
— (Supervised) Likelihood for HMM
— Maximum Likelihood Estimation (MLE) for HMM
— EM for HMM (aka. Baum-Welch algorithm)
Forward-Backward Algorithm
— Three Inference Problems for HMM
— Great Ideas in ML: Message Passing
— Example: Forward-Backward on 3-word Sentence
— Derivation of Forward Algorithm
— Forward-Backward Algorithm
— Viterbi algorithm



Markov Models

Whiteboard

— Example: Squirrel Hill Tunnel Closures
[courtesy of Roni Rosenfeld]

— First-order Markov assumption
— Conditional independence assumptions

18



Example: Squirrel Hill Tunnel Closures
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Mixture Model for Time Series Data

We could treat each (tunnel state, travel time) pair as independent. This
corresponds to a Naive Bayes model with a single feature (the word).

p(0,5,5,0,C,2m,3m, 18m,9m,27m) =  (.8*.2%.1% 03%*...)
O .8 0.8
S |1 S | .1
C A1 C|.1

© ¢
(=

(8|5 H(.5|.5
&5 &5 (o) @
a].2].3 O|.1].2].3
01.02..03 S |.01.02.03
0/0|O c/lojo|oO
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Hidden Markov Model

A Hidden Markov Model (HMM) provides a joint distribution over the the
tunnel states [ travel times with an assumption of dependence between
adjacent tunnel states.

p(0,5,5,0,C,2m,3m, 18m,9m,27m) = (.8 *.08*.2*.7%.03%*...)

e O S|C O S C
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From Mixture Model to HMM

T
“Naive Bayes”: H (Xe[Ye)p

o Eé 7

T
HP thYt Hp Y:|Y; 1)
t:1




From Mixture Model to HMM

O 0 0 O C
““Naive Bayes””: 1;[ (X:|Ye)p

e ; .

P(X,Y|Yo) = | [ P(X:|Y2)p(Y:]Yiz1)
t=1




SUPERVISED LEARNING FOR
HMMS



Hidden Markov Model
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Hidden Markov Model

HMM Parameters:
Emission matrix, A, where P(X; = k|Y: = j) = A, i, Vi, k
Transition matrix, B, where P(Y; = k|Y;—1 = j) = B, x, Vt, k

Assumption: y, = START z G

Generative Story:

For notational
convenience, we fold the

Y: ~ Multinomial(By,_,) V¢ initial probabilities C into
. . the transition matrix B by
Xy~ Multmomlal(AYt) vVt our assumption.

MO



Hidden Markov Model




Training HMMs

Whiteboard
— (Supervised) Likelihood for an HMM
— Maximum Likelihood Estimation (MLE) for HMM



Learning Fully Observed BN%

Learning this fully observed
Bayesian Network is
equivalent to learning five

p(X17 X27 X37 X47 X5) —
p(X5|X3)p(X4| X2, X3)

(small / simple) independent P(X3)p(X2| X1)p(X1)
networks from the same data




Supervised Learning for HMMs

Learning an s (3® 3
HMM g D" X )/ ())jtt

decomposes Lidilsd = P4 B> a /"7?(7‘@')’

into solving two

(Independent) [é \07? )’tl/f. I )+ /.7 f(’(é} ,A>I

Mixture Models &




HMMs: History

* Markov chains: Andrey Markov (1906)
— Random walks and Brownian motion
* Used in Shannon’s work on information theory (1948)
« Baum-Welsh learning algorithm: late 60’s, early 70’s.
— Used mainly for speech in 60s-70s.

« Late 80’s and 90’s: David Haussler (major player in
learning theory in 80’s) began to use HMMs for
modeling biological sequences

« Mid-late 1990’s: Dayne Freitag/Andrew McCallum

— Freitag thesis with Tom Mitchell on IE from Web
using logic programs, grammar induction, etc.
— McCallum: multinomial Naive Bayes for text

— With McCallum, IE using HMMs on CORA

37
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Higher-order HMMs

* 15torder HMM (i.e. bigram HMM)

RYERR

e 2"d-order HMM (i.e. trlgram Hl\/\l\/\)




BACKGROUND: MESSAGE PASSING



Great Ideas in ML: Message Passing
Count the soldiers
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Great Ideas in ML: Message Passing
Count the soldiers

Belief:
Must be

2 +1+3=060f
us
\

only sek
my incoming
messages
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Great Ideas in ML: Message Passing

Count the soldiers

here's
of me

Must be

I+I+ I= 6 of
us

SonIy sek
my incoming
messages
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Great Ideas in ML: Message Passing

Each soldier recetves reports from all branches of tree

o -
4 5
Ves
: )* Y
. p
me J N
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Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of free

# )

N
‘5*_;,jf ~ ’; :.'
B P
o
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Great Ideas in ML: Message Passing

Each soldier recetves reports from all branches of tree
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Great Ideas in ML: Message Passing

Each soldier recetves reports from all branches of tree
# )
l,( -’/g
e

A

Belief:
Must be
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Great Ideas in ML: Message Passing

Each soldier recetves reports from all branches of tree
o
C )

Must be

}j’“ wouldn't work correctly
V> witha'loopy' (cyclic) graph



THE FORWARD-BACKWARD
ALGORITHM



Inference for HMMs

Whiteboard

— Three Inference Problems for an HMM

1. Evaluation: Compute the probability of a given
sequence of observations

2. Decoding: Find the most-likely sequence of hidden
states, given a sequence of observations

3. Marginals: Compute the marginal distribution for a
hidden state, given a sequence of observations



Dataset for Supervised
Part-of-Speech (POS) Tagging

Data: D = {az!™, 3y}
Sample 1 ‘ ‘ @ ‘ ‘
Sample 2: ‘ ‘ ‘ ‘ ‘
© 6 6 O ©
Sample 3: ‘ ‘ @ ‘ ‘
OO,
Sample 4: ‘ ‘ ‘ ‘ ‘




Hidden Markov Model

A Hidden Markov Model (HMM) provides a joint distribution over the the
sentence/tags with an assumption of dependence between adjacent tags.

p(n, v, p, d, n, time, flies, like, an, arrow) = (.3 *8*2* g% )
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Forward-Backward Algorithm

Could be verb or noun Could be adjective or verb  Could be noun or verb

53



Forward-Backward Algorithm

ANANe




Forward-Backward Algorithm

A

START

AN

A

>

AN

n

N ’ﬁkﬁ%

o
A

i (i

* Let’s show the possible values for each variable
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Forward-Backward Algorithm

e N

L

* Let’s show the possible values for each variable



Forward-Backward Algorithm

N \/A

/\ﬁ?/\

* Let’s show the possible values for each variable
* One possible assignment
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Forward-Backward Algorithm

* Let’s show the possible values for each variable
* One possible assignment

 And what the 7 transition / emission factors think of it ...
58



Forward-Backward Algorithm

V n|la
v i1]/6|4
n| 8|4 /0.1
v alo.1 8|0 v v
N
[ ]
START n n \ n
T e 0
cl 0O
.‘nag a a a
v 3|5]|3
n 4|52
a 0.10.2/0.1

* Let’s show the possible values for each variable
* One possible assignment

 And what the 7 transition / emission factors think of it ...
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Viterbi Algorithm: Most Probable Assignment

<9 A M \ /
%@‘?& ‘ B(a,END)
o N\

A(pref., a)

* Sop(van)=(1/Z)* product of 7 numbers
* Numbers associated with edges and nodes of path
* Most probable assighment = path with highest product



Viterbi Algorithm: Most Probable Assignment

<) A M N\ /
\’)(5‘?& ‘ B(a,END)
o N\

A(pref., a)

* Sop(van)=(1/Z2) * product weight of one path



Forward-Backward Algorithm: Finds Marginals

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, = a)
= (1/7) * total weigl%t of A &



Forward-Backward Algorithm: Finds Marginals

: L5 < A
A \/ :

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, = n)
> (1/Z) * total weight of ANE



Forward-Backward Algorithm: Finds Marginals

ﬁ\é//ﬂi A

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, = v)
= (1/7) * total weigl%t of A 64



Forward-Backward Algorithm: Finds Marginals

: L5 < A
A \/ :

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, = n)
> (1/Z) * total weight of ANE



Forward-Backward Algorithm: Finds Marginals

0,(m) = total weight of these
path prefixes

(found by dynamic programming: matrix-vector products) "



Forward-Backward Algorithm: Finds Marginals

Ba(m) = total weight of these
path suffixes

(found by dynamic programming: matrix-vector products) v



Forward-Backward Algorithm: Finds Marginals

- = total weight of these - = total weight of these)

path prefixes (2 + D+ ¢) path suffixes (X +V + 2

Product gives ax+ay+az+bx+by+bz+cx+cy+cz = total weight of paths



Forward-Backward Algorithm: Finds Marginals

. % o
A Alret,n)

total weight of o/l paths through A
= o) Aref,n) By(n)
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Forward-Backward Algorithm: Finds Marginals

A “belief that ¥, = v”’
S / “belief that Y, =n”

AN n /"
A(pref., v)

total weight of A

= o,(v) A(pref,v) B,(v)

70



Forward-Backward Algorithm: Finds Marginals

“belief that ¥, = v”’

AN “belief that ¥, =n"
B.(a)

“belief that ¥, =a”

sum=2
A(pret., a) (total weight

of all paths)
total weight of A
= a,(a) A(pref,a) B,(a)

71



Forward-Backward Algorithm

Could be verb or noun Could be adjective or verb  Could be noun or verb

72



Inference for HMMs

Whiteboard

— Derivation of Forward algorithm
— Forward-backward algorithm
— Viterbi algorithm



Derivation of Forward Algorithm

Definition: D({,(k,) 2 F(x,,,,.,xt,yt -.—lr.)

Derivation: Herein Ui : \/rnjs I
ox-(Ewo) = F(x,, s X7 ) Y= END) chorHund S yr=END
= ”) (Xu .oy X7 l_)i—) P(ZL) - -— 177 M R\ Jm;ﬂ.{—
T P(XTI}IT)I?(XU 25 8 IYr\ r()'r) G l97 Cond. ““J-"f- £ 4mm
= P(X‘,-ly,—) ?(x., X7y 1Y) «— by df £ Joit

= plely) %?(x.,.”,xr_,,yr_,,yﬂ oy Uf F Mgl

= p (e ly) = POt YY) plyry) o= by &8 8 jot

= p (xlyy) = PO X ) Vi) plrrly) M by ik 3
plel) Z )vr—\_LM(X.,-».,xr-.,\/T.,) phrlyrs) <= by 48 jous

= F(X-r’/r) %l °(T-.|()'r-|) P(}’r’)’r-l) = /77 L of o<, (k)




Forward-Backward Algorithm

—DQQ‘*L? o 4 (k) é’{’("'»"'/’(e;}'ﬁ’c‘) Asw yo=$T4?\T'
?é () 2 ',’(xl:n) ey X1 \Yt =k\ )’TH‘ END
© Tuhilae oo (STHT) =1 o (k)=0 ¥4+ START

FTH(EN.D) =1 PTH(") =0 ¥k 7END
,}LL alphes acdols W emossin ?m\,q\,lm/

@ Fz:r t- [, - T Y&A ww“'\O‘y Huw s "‘HL
T k=l K
oy (k)= plxe Ly =k) f‘«“u(ﬂ%ﬁ k| yes=3)
@ For £=T,.--,T
For £=l,,..,/(v:<—
ACE Ji F(xh.\yw D Ben® Plyen= 3 lpe=k)
@D Congete pR)= ot (E4D) ] Eunlonor)

© Cople plyesk [R) = X (I Bl)  [Mayoal]
P x) 75




Viterbi Algorithm

Vebwe : @, (k)2 max Xiyoy Xt Yoy ooy Yeur, Ye = k
r B o Pl Xe g Yo e )

ul%d,,(?o(u\tbv’_—’v bt(k);é ;'?n:;:.' P(’(uw--,xt:)’uw/)’e-uye‘k>

Asm Yo = START

(D Tuidnkee w,(STARD=1 W, ()=0 VktsarT

@ For £</,..,T:

For k=), k-
Wy (k)= je?\‘,‘f,,m F(X* ye = k) “’k-n(J)P(7¢=k\ )’e-.j)
N S CUADECTTORPAES
@ C’—\Mfo‘\’e Most Probeble Assipmmert EDw ‘("j]
éebnlgglm),l I s+
Ve = ben () ekpuiners”



Inference in HMMs

What is the computational complexity of
inference for HMMSs?

* The naive (brute force) computations for
Evaluation, Decoding, and Marginals take
exponential time, O(K")

* The forward-backward algorithm and Viterbi
algorithm runin , O(T*K?)
— Thanks to dynamic programming!



Shortcomings of
Hidden Markov Models

HMM models capture dependences between each state and only its
corresponding observation

— NLP example: In a sentence segmentation task, each segmental state may depend
not just on a single word (and the adjacent segmental stages), but also on the (non-
local) features of the whole line such as line length, indentation, amount of white
space, etc.

Mismatch between learning objective function and prediction objective

function

— HMM learns a joint distribution of states and observations P(Y, X), but in a prediction
task, we need the conditional probability P(Y|X)

© Eric Xing @ CMU, 2005-2015
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