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Reminders

* Peer Tutoring

* Homework 7: Deep Learning
— Release: Wed, Apr. 05
— Part | due Wed, Apr. 12 [BiCla==]))
— Part Il due Mon, Apr. 17




BAYESIAN NETWORKS



Bayes Nets Outline

Motivation

—  Structured Prediction
Background

— Conditional Independence

— Chain Rule of Probability
Directed Graphical Models

—  Writing Joint Distributions

— Definition: Bayesian Network

— Qualitative Specification

— Quantitative Specification

— Familiar Models as Bayes Nets
Conditional Independence in Bayes Nets

— Three case studies

— D-separation

— Markov blanket
Learning

— Fully Observed Bayes Net

— (Partially Observed Bayes Net)
Inference

— Background: Marginal Probability

— Sampling directly from the joint distribution

—  Gibbs Sampling

Last Lecture

This Lecture



DIRECTED GRAPHICAL MODELS



Example: Tornado Alarms

1. Imagine that
you work at the
911 call center
— | in Dallas
0l 2. You receive six
it * calls informing
you that the
Emergency
Weather Sirens
are going off
3. What do you
conclude?

Figure from https://www.nytimes.com/2017/04/08/us/dallas-emergency-sirens-hacking.html



Example: Tornado Alarms

Hacking Attack Woke Up Dallas 1. Ima g ine that
With Emergency Sirens, Officials Say you wor k at the
By ELI ROSENBERG and MAYA SALAM APRIL 8, 2017 9 1 1 C a I I C e n t e r
— | in Dallas

2. Youreceive six
calls informing
you that the
Emergency
Weather Sirens
are going off

 feen 3. What do you

Warin o n D, et o ot th Pl emargis I svre wethr, st i conclude?

around 11:40 p.m. Friday, and were not shut off until 1:20 a.m. Rex C. Curry for The New York Times

Figure from https://www.nytimes.com/2017/04/08/us/dallas-emergency-sirens-hacking.html



Directed Graphical Models

(Bayes Nets)
Whiteboard

— Example: Tornado Alarms

— Writing Joint Distributions
* Idea #1: Giant Table
* |dea #2: Rewrite using chain rule
* Idea #3: Assume full independence
* Idea #4: Drop variables from RHS of conditionals

— Definition: Bayesian Network



Bayesian Network

@ @ p(X17X27X37X47X5) —
@ p(X5|X3)p(X4]| X2, X3)

x) () p(X3)p(X2| X1)p(X1)



Bayesian Network

Definition:

(%)
(x,, & P(X,..X )= ﬁP(X,. | parents(X,))

* A Bayesian Network is a directed graphical model
* It consists of a graph G and the conditional probabilities P

* These two parts full specify the distribution:
— Qualitative Specification: G
— Quantitative Specification: P



Qualitative Specification

* Where does the qualitative specification
come from?

— Prior knowledge of causal relationships

— Prior knowledge of modular relationships
— Assessment from experts

— Learning from data (i.e. structure learning)

— We simply link a certain architecture (e.g. a
layered graph)



Example: Conditional probability tables (CPTs)

Quantitative Specification

for discrete random variables

a0

0.75

bO

0.33

al

0.25

b1

0.67

P(a)P(b)P(c|a,b)P(d|c)

P(a,b,c.d) =

a’b? a’b’ a'b? a'b’
c? 0.45 1 0.9 0.7
¢! | 055 0 0.1 0.3
c? c’
d® (0.3 |0.5
d’ 07 |0.5

© Eric Xing @ CMU, 2006-2011
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Quantitative Specification

Example: Conditional probability density functions (CPDs)
for continuous random variables

P(a,b,c.d) =
A'"N(Ma, Za) B"N(ub: Zb) P(a)P(b)P(Cla,b)P(dIC)

C~N(A+B, )

P(D] C)

‘ DNN(“d"'C) Zd)

© Eric Xing @ CMU, 2006-2011




Quantitative Specification

Example: Combination of CPTs and CPDs
for a mix of discrete and continuous variables

q0

0.75

bO

0.33 P(a)P(b)P(cl|a,b)P(d|c)

a’

0.25

b1

P(a,b,c.d) =

0.67

|
)

C~N(A+B, )

DNN(“d"'C) Zd)

© Eric Xing @ CMU, 2006-2011
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Directed Graphical Models

(Bayes Nets)
Whiteboard

— Observed Variables in Graphical Model

— Familiar Models as Bayes Nets
* Bernoulli Naive Bayes
* Gaussian Naive Bayes
* Gaussian Mixture Model (GMM)
* Gaussian Discriminant Analysis
* Logistic Regression
* Linear Regression
* 1D Gaussian



GRAPHICAL MODELS:
DETERMINING CONDITIONAL
INDEPENDENCIES

Slide from William Cohen



What Independencies does a Bayes Net Model?

In order for a Bayesian network to model a probability
distribution, the following must be true:

Each variable is conditionally independent of all its non-descendants
in the graph given the value of all its parents.

* This follows from L
P(X,...X )= HP(X,. | parents(X,))
=1

-l [P X, x)
i=1

* But what else does it imply?

Slide from William Cohen



What Independencies does a Bayes Net Model?

Three cases of interest...




What Independencies does a Bayes Net Model?

Three cases of interest...




Whiteboard

Proof of

conditional
independence @ e

(The other two
cases can be
shown just as
easily.)
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The “Burglar Alarm” example

* Your house has a twitchy burglar
alarm that is also sometimes Burglar arthquake
triggered by earthquakes.

* Earth arguably doesn’t care w
whether your house is currently
Phone Call

being burgled

* While you are on vacation, one of
your neighbors calls and tells you
your home’s burglar alarm is
ringing. Uh oh!

Slide from William Cohen



The “Burglar Alarm” example

* But now suppose you learn that
there was a medium-sized Larthquake
earthquake in your neighborhood.

Oh, whew! Probably not a burglar w

after all.

« Earthquake “explains away” the -
hypothetical burglar. Phone Call
* But then it must not be the case

that

Burglar 1L FEarthquake | PhoneCall
even though

Burglar 1. Earthquake

Slide from William Cohen



D-Separation

If variables X and Z are d-separated given a set of variables E
Then X and Z are conditionally independent given the set E

Definition #1:
Variables X and Z are d-separated given a set of evidence variables E

iff every path from X to Z is “blocked”.

A pathis “blocked” whenever:
1. dYonpaths.t.Y € Eand Y is a “common parent”

oRNeY Yeio

2. dYonpaths.t.Y € EandYisina“cascade”

®-O-@O -0

3. dYon paths.t. {Y, descendants(Y)} ¢ Eand Y isin a “v-structure”

@ -O-D-O @
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D-Separation

If variables X and Z are d-separated given a set of variables E
Then X and Z are conditionally independent given the set E

Definition #2:
Variables X and Z are d-separated given a set of evidence variables E iff there does

not exist a path in the undirected moral graph

: keep only X, Z, E and their ancestors
2.  Moral graph: add undirected edge between all pairs of each node’s parents
3. Undirected graph: convert all directed edges to undirected
: delete any nodes in E

Example Query: A I B|{D, E}
Original: Moral: Undirected:

OB CNOICNOIRGIOSROJE =
= not d-separated

25



Markov Blanket

Def: the co-parents of a node
are the parents of its children

Def: the Markov Blanket of a
node is the set containing the @

node’s parents, children, and @ @ @

co-parents.

Thm: a node is conditionally @ @ @ @

independent of every other

node in the graph given its
Markov blanket @ @ @



Markov Blanket

Def: the co-parents of a node Example: The Markov
are the parents of its children Blanket of X is

X, X, X, Xo, Xo, X
Def: the Markov Blanket of a W3 Xy X5, Xy X X}
node is the set containing the @

node’s parents, children, and @ @ @

co-parents.

Thm: a node is conditionally @ @ @ @

independent of every other

node in the graph given its
Markov blanket @ @ @



Markov Blanket

Def: the co-parents of a node
are the parents of its children

Def: the Markov Blanket of a
node is the set containing the
node’s parents, children, and
co-parents.

Thm: a node is conditionally
independent of every other
node in the graph given its
Markov blanket

Example: The Markov
Blanket of X is
X5 Xy X, X& Xo, X0}

Parents

)

Co -parents

Children @

X]Z



SUPERVISED LEARNING FOR
BAYES NETS



Machine Learning




Machine Learning

l"‘l’h ZANRARY



Learning Fully Observed BNs

- (x,) p(X1, Xo, X3, X4, X5) =
& p(X5|X3)p(X4| X2, X3)

x) () p(X3)p(Xa2| X1)p(X7)



Learning Fully Observed BNs

(%) p(X1, Xo, X3, X4, X5) =
p(X5|X3)p(X4| X2, X3)

x) () p(X3)p(Xa| X1 )p(X7)
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Learning Fully Observed BNs

- (x,) p(X1, Xo, X3, X4, X5) =
& p(X5|X3)p(X4| X2, X3)
x) () p(X3)p(X2| X1 )p(X1)

How do we learn these conditional and
marginal distributions for a Bayes Net?

34



Learning Fully Observed BNs

Learning this fully observed
Bayesian Network is
equivalent to learning five

p(Xla X27 X37 X47 X5) —
p(X5|X3)p(X4| X2, X3)

(small / simple) independent P(X3)p(X2| X1)p(X1)
networks from the same data




Learning Fully Observed BNs

How do we learn these
conditional and marginal
distributions for a Bayes Net? 0" = argmax log p(X1 , XQ, Xg, X4, X5)
0

= arggnaxlogp(X5]X3, 05) + log p(X4| X2, X3,04)

@ + log p(X3|03) + log p(Xo| X1, 02)
@ @ + log p(X1104)

67 = argmaxlog p(X1|01)

01
@ @ 65 = argmax log p( X5 | X1, 05)

02

05 = argmax log p(X3|03)
03

0, = argmaxlog p(X4[Xo, X3, 04)
04

9; — argmax lng(X5 Xg, (95)

95 36



Learning Fully Observed BNs

Whiteboard
— Example: Learning for Tornado Alarms



